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This paper is concerned with the extension of some recently reported results, especially those of Bourret
(1960), relating to coherence properties of blackbody radiation. An explicit expression for the complex elec-
tric correlation tensor s;, (r,r) of blackbody radiation is derived, and on the basis of it spatial coherence
(r =0) is discussed in detail. The behavior of diagonal as well as nondiagonal components is illustrated by
contour diagrams. In particular, it is found that the nondiagonal components of the correlation tensor, even
though being zero for zero-space separation (r=0), acquire, in general, nonvanishing values when rre0.
The magnetic and mixed correlation tensors are also discussed.

1. INTRODUCTION

''T is a common notion that the most incoherent
~ - radiation is blackbody radiation in an equilibrium
enclosure. Recent researches' —4 have shown that even
in this type of radiation there is coherence in a suK-
ciently small space-time region. Bourret' has derived
expressions for the second-order electric correlation
tensor of blackbody radiation, using techniques analo-
gous to those employed in the theory of isotropic
turbulence of an incompressible Quid. Such a correlation
tensor describes the correlation between the Cartesian
components (denoted by subscripts i, j) of the electric
field E'"'(r, t) at two space-time points ri and rs, at
time instants t1 and t2,

tions. (See also Sudarshan, ""Wolf, ' Mandel, Sudar-
shan and Wolf, ' Mandel. ") The appropriate complex
electric correlation tensor &g;;(ri, rs, ti, ts) may be derived
from the real correlation tensor defined by (1.1), by
using the concept of an analytic signal. "'Assuming the
Geld to be stationary in time, so that 8;,(") depends on
t1 and t2 only through the time diRerence 7 =f1—t2, the
complex correlation tensor is given by"

h;t(rr, rs, r) = 2[8,;&"&(ri,rs, r)+i &g,,"'(ri,rs, r)j, (1.3)

where

where sharp brackets denote the time average:

I;&r&(rr, ti)E &"&(rs,ts) )

= lim
+~00 2T

Sarfatt' rederived some of Bourret's results using
quantum mechanical density matrix techniques.

The components of the correlation tensors discussed
by Bourret and Sarfatt are real functions of space and
time. However, numerous recent researches on co-
herence properties of light have shown that an appro-
priate measure of coherence is provided by certain
complex rather than real correlation functions (cf. Ref.
5), and this is also 'supported by recent investigations
of Glauber' based on quantum field theoretical calcula-

r E. C. G. Sudarshan, (a) Phys. Rev. Letters 10, 277 (1963);
(b) in Proceedings of the Symposium on Optical 3fasers (Polytech-
nic Press, Brooklyn, New York and J. Wiley 8z Sons, Inc. , New
York, 1963), p. 45.

I E. Wolf, in I'roceedings of the Symposilrrl on Optica/ Masers
(Polytechnic Press, Brooklyn, New York, and John Wiley tk
Sons Inc. , New York, 1963), p. 29.' L. Mandel, E. C. G. Sudarshan, and E. Wolf (to be published).

'v L. Mandel, Phys. Letters 7, 117 (1963)."D. Gabor, J. Inst. Electr Engrs. 93, P. art III, 429 (1946).
"An alternative, but equivalent, definition of the complex cor-

relation tensor, which will be needed later is as follows: With the
real Geld E&"&(r,t) we associate the complex analytic signal E(r, t),
1.e.y

E(r,t) =E&'&(r,t)+iE&'&(r, t),
where E(') is the Hilbert transform of E(").Then the complex cor-
relation tensor 8;; may be expressed in the form

E„;(r&,rs, r) = (E;(r&,t+ r) E;.*(rs,t) ). (1.3a)

The equivalence of the deGnitions (1.3) and (1.3a) is shown in
Ref. 17, pp. 464-466, where also a certain mathematical refinement
connected with questions of convergence is discussed.
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g,t&r&(r, r, t, t,)= (p, & &(r, t,)g,&r&(r, t,)) (1 l) is the Hilbert transform of &g;, &"&(ri,rs, r) and P denotes
the Cauchy principal value at T'= T.

Bourret and Sarfatt have restricted their discussion
of the tensor to certain special cases only, namely,
to those characterizing temporal correlation (ri ——rr)

1 and lateral and longitudinal spatial correlation (r =0).
g, &"&(ri,ti+t)p, &"&(rs,ts+t)dt . (1.2) Their results do not provide information about the non-

diagonal components of the correlation tensor, though,
in principle such information could be obtained with the
help of their formulas.
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In this paper an explicit expression for the complete
second-order complex electric correlation tensor of
blackbody radiation is derived and a number of
diagrams are obtained, which show the behavior of the
elements of this tensor. The magnetic and the mixed
second-order complex correlation tensors are also
discussed.

In paper II (Ref. 13) the electromagnetic correlation
tensors defined on the basis of quantum field theory will

be evaluated for blackbody radiation and will be com-
pared with the corresponding tensors defined in the
present paper on the basis of semiclassical theory.
Higher order correlation tensors will also be considered
in paper II.

Equation (2.2) may be written as

45n4
y;, (r,r) = ((1;(), —6;,V')

8~'
exp{i(k r kc—r))

d'k, (2.5)
k(e' —1)

where c);—=8/Br; Usin. g spherical polar coordinates for
k, with the polar axis along the direction of r, we obtain

45n4
V* (r,r) = (~'~,—~' V')

Sm'

2. EXPLICIT EXPRESSION FOR THE SECOND-ORDER
COMPLEX ELECTRIC CORRELATION TENSOR

OF BLACKBODY RADIATION

In this section a new expression for the normalized
complex electric correlation tensor y;, (r, r) of blackbody
radiation will be derived. For any stationary field, the
normalized correlation tensor is defined by the formula

kdk eikr cosy sin8de
~ak {)

45n4 1 ~ sinks e—ikc

(c),c);—1);;V')— — —dk .
2~4 ~ enk

The last integral can be written as

(2 6)

oo

h, ,(r„rs,r)
y,,(r„r„r)= (2.1) ~-) 2i o

Lh;, (r, ,r, ,O)g' 'Lh, ,(rs, rs, 0)j' '
{eik(r cr) e ik(r+cr—)}e—nakdk—

1

2i ~=) nn —i(r—cr) nn+i(r+cr)where h,, is the correlation function (1.3). The normali-
zation ensures' that 0( ~y;, ] &1. In the case of black-
body radiation in a cavity whose linear dimensions are
large compared with the mean wavelength of the radia-
tion, the field is isotropic and 8;; and y;, depend effec-
tively on r& and r2 through the difference r= r&—r2 only.

An integral expression for 7;).(r,r) for blackbody
radiation has been obtained by Kano and Wolf. ' They
showed that

so that y;; may be expressed in the form

45n4 00 1
p,,(r, )= (a,a,—S;,V)Z—

2)r4 =i (nn+icr)'+r'

Carrying out the differentiation on the right-hand side,
we finally obtain the following expression for the normal-
ized complex electric correlation tensor of blackbody
radiation:k'8g —k;k,

k{exp(nk) —1)
y,,(r, r) =

8m' 90n' ~
y,r(r, r) =

)&exp{i(k r kcr))d'k, —(2.2) s' ~=i {(nn+icr)'+r'}'
where

n= Ac/ET, (2 3)

c being the vacuum velocity of light, A the Planck's
constant divided by 2m. , E the Boltzmann constant and
T the absolute temperature. The integration in (2.2) is
taken over the whole k space. The normalization con-
stant in (2.1) has the value

r r —r28"t2
2 (2.7)
{(sn+icr) +.r')'

where r,, r; are the components of the vector r with
respect to i and j axes, respectively.

3. TEMPORAL COHERENCE

Restricting ourselves first to the case r= 0, Eq. (2.7)
gives the following expression for the normalized tensor

(„os„mmat, on) that characterizes temporal coherence:

64 +'E4T4

45 (hc)'
(2.4)

y;, (O, r) = (90/or' )f(4, 1+icr/n) t');;, (3.1)

where f (s,a) is the generalized Riemann zeta function"

"C. L. Mehta and E. Wolf, following paper, Phys. Rev. 134,
A1149 (1964).

I E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, New York, 1958), p. 265;
(also Dover Publications, Inc., New York, 1962), p. 265.
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de6ned by

t(s a)= Q
n-0 (n+a)'

Equation (4.7) is valid for all r' but is not suitable for
computing y@(r') when r' is small. For small r', however,
we directly obtain from (4.1), on expanding in powers
of r,

It should be noted that the tensor y;, (O, r) is diagonal
The expression (3.1) for the temporal degree of co-

herence of blackbody radiation is identical with the
expression derived by Kano and Wolf' and discussed in
detail by them fcf. Eq. (11)of their paper). In particu-
lar they gave diagrams showing the behavior of the
modulus and the argument of y;;(O,r) as function of r

8 3
y;;(r')= y;—,(r,0)=b;, 1 —r—"+ r—"+.

21 35

+ . ~/2 r/4+
r" 21 35

(r'(7r) . (4.9)

4. SPATIAL COHERENCE

Setting r=0 in Eq. (2.7) we obtain the following
expression for the normalized tensor that characterizes
spatial coherence:

90 ~ 8;, 2 rr, —br'
V,,(r, o) =—Z — +——

(n +r /Q2) + (n +r /D )
(4.1)

L(~a), —
n=l n +a 2a

It is seen from this expression that y,,(r,0) is real.
The series on the right-hand side of (4.1) may easily be
summed with the help of the result"

45
""g(r')=—(r' cothr'+r" csch'r' —2)

2r'4
("& ), (4.10a)

4 1= 1 r—"+—r'4+— (r' &x), (4.10b)
21 35

where r'= x'= 7rx/n
On the other hand, if r' is chosen perpendicular to the

g axis, then we obtain from (4.7) the following expres-
sion for /ateral coherence function y„'":

If we set i= j=x in (4.7) and (4.9) and take r' in the
direction of the x axis, we obtain the following expres-
sions for the longitudinal coherence function y„""g:

where L(g) is the Langevin function

L(x)=cothx —1/x . (4.3)

45
"'(r') = —L4—r' cothr' r" csc—h'r'

4r

Successive term by term differentiation of (4.2) gives
—2r" cothr' csch'r'j, (r'& ~), (4.11a)

00 1 d 7l

= ————L(m a)
n i (n'+a')' 2ada 2a

(4 4)

8 3
= 1 r"+ r'4—+— (r—' &x), (4.11b)

21 35

d 1 d 1
L(~a) . (-4.5)

n s(n2+a')=3 16a da a da a

If we set
r= (n/s)r', (4.6)

so that r' represents the separation of points in the
cavity in units of n/7r, (4.1) gives, with the help of
(4.4), (4.5), and (4.3),

45 rs rj
y;, (r')—=y,,(r,O) =—A(")~,;+B(r')- '

4r" r'2—
where

(4.7)

"L, B. W. Jolley, Summation of Series (Dover Publications,
Ngw York, 1961),p. 22, Series nu~ber 1&4,

A (r') = r' cothr' —r—"csch'r'
—2r" csch'r' cothr'+4, '

B(r') = 3r' cothr'+3r" csch'r' ' (4 g)

+2r" csch'r' cothr' —8 ..

+2r" csch'r' cothr' —8) (r'( ~ ), (4.12a)

gly/+ .
21

(r'&~) . (4.12b)

In Fig. 1, the xy section of the surface of constant
y,„(r') is shown. y,„(r') is positive in the I and III
quadrants and negative in II and IV quadrants, attain-
ing peak values at four points, denoted by letters A &, A 2,

B,, Bm in the figure, at distances r=nr'/x 2 3n/7r from.

where r'=(y"+s")'I'=s(y'+s')' '/a.
Expressions for y ""I y "' y "I and y ' ' are,

of course, strictly similar. The expressions (4.10a)—
(4.11b) are in agreement with those derived by Bourret. '

Next we will examine the three-dimensional distribu-
tion of yu(r'). First, let us consider a particular non-
diagonal component, say the xy component. From
(4.7) and (4.9), we obtain

45m'y'
y»(r') =

t
3r' cothr'+3r" csch'r'

4r"
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OLFM EH TA AND

~ ' = '= . We have from (4.7) and (4 9)corresponding to i= j=s. e av

45
y„(r' =— r-—r' cothr' —r csch r

4r'4
I2s—2r" cothr' csch'r'+4)+ —(3r' cothr

r"
2 I+3r" csc r rh' '+2r" cothr' csch'r —g)},

(r'& ~ ), (4.13a)
= x'

(r', in the xy plane. y „rFio. 1. Contours of y»ir, in
=(1/E) s.„(r,0); E= s..(0,0) = (6
a =Ac/KT.
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also of interest. Some of these eRects are characterized
by a magnetic correlation tensor X;, and mixed correla-
tion tensors g;, and g;;, introduced in earlier publica-
tions. " b These tensors may be defined in a similar
manner as the electric correlation tensor 8;;.Assuming
again that the field is stationary we have, in analogy
with (1.3a), -O.

Zl

3C,,(ri, rz, r) = (H;(ri, h+r)H;*(rs, t)),

g,,(ri, rz, r) = (E;(ri,t+ r)H, (rz, t)),

g;,(r, ,rz, r) = (H;(ri, h+r)E;*(rs, t)),

(5.1)

(5.2)

(5.3)
Yl

where, as before E(r,t) denotes the complex analytic
signal associated with the real electric field E'"'(r, t) and
H(r, t) denotes the complex analytic signal associated
with the real magnetic field H&"'(r, t).

We note that the tensors g and g are related as
follows:

L(ri rz')=8' (rz ri ( )
FIG. 5. Contours of y,.(r') in the yz plane. (Surfaces of constant

It js k nown 16~ 17 that j~ pggN0 each of these tensors Yz are the surf aces generated by rotation of these cur ves about
the s axis).

Y'

X

etc. , where h)s' (k=x, y, z) are the components of the
gradient, taken with respect to the coordinates of r1 and
&,A, & is the completely antisymmetric unit tensor of
Levi-Civita. There is a similar set of differential equa-
tions involving the components BI,' of the gradient,
taken with respect to the coordinates of r2. In the case
of blackbody radiation, one has, on account of isotropy
Bs' ———Bz' ——r)/Br~ where r„are components of the
vector r= r1—rq.

Now for blackbody radiation we have from (2.1)—(2.4)

hc k'by —k;k;
8;s(r,r) =

2srz k(exp(nk) —1)

)&exp(i(k r—kcr))dzk. (5.7)

On substituting from (5.7) into (5.5) and solving the
resulting equation for g, subject to the boundary condi-

Fio. 4. Contours of y..(r') in the xy plane.

satisfies two homogeneous wave equations. Also, that
the tensors are not independent but satisfy diRerential
equations of the form"b '7

).0

1 8
e;at~s'bi +-—L =o,

c 87.
(5.5)

0.5

1 a
eszi8s'gi~+ —5('s~ =0, —

c 87'
(5 6)

"E.Wolf, (a) Nuovo Cimento12, 884 (1954); (b) in ProceeChsrgs
of the Symposzlm on Astronomical Optics, edited by Z. Kopal
(North-Holland Publishing Company, Amsterdam 1956), p. 177."P.Roman and E. Wolf, Nuovo Cimento 17, 462 (1960).

yl
IQ

FIG. 6. I.ongitudinal coherence. Variation of p„""g(r')—p„(r,0),
with r', when r' is along the s axis.
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tion L. (r, oo) =0, we obtain, if we also use (5.4), ZI

hc ~k
L„(r, )= —g,„(r, )=-

2xs exp(nk) —1

Xexp(i(k r—kcT))d'k. (5.8)

From (5.8) and (5.6) we find on solving for K; subject
to the boundary condition BCi (r, ~ ) =0, and on corn par
ing the resulting expression with (5.7),

se; (r,T)= 8;„(r,T). (5.9)

In deriving (5.9) use has been made of the identity"
e,sis~s; ——bs his —hss bi~ Relat. ion (5.9) implies that the

mggrtetic cohererlcy tensor is identical zenith the electric
cohererlcy tensor, discussed in detail in the preceeding
sections.

Let us now consider the mixed tensors g and g.
From (5.8) we may readily derive series expansions for -5

plot( ()

l.0

Fio. 8. Contours of [0 „(r') f
=—fo,„(r,0) f

in the ys plane.
o,„(r')=0,„(r,0) = (1/N) g,„(r,0); N = (64/45) (T'/hc)'E4T'.

We see that the mixed tensors b; and g,„are anti
symmetric and that

g, (0,.) =L (0,.) =0. (5.12)

0.5

-0.1-
I I I I

IQ

Fio. 7. Lateral coherence. Variation of y„"'(r')—=p„(r,0), with
r', when r' is along the x axis.

Equation (5.12) implies that at every point r, E;(r, t+ T)
and H, *(r,t) )and also, of course H, (r, t+ T) and E,*(r,t)j
are urlcorrelated irrespective of the time delay r, i.e.,
there is no "temporal coherence" between the complex
electric and the complex magnetic field.

It will be convenient to normalize the tensors g and

g in a similar manner as we normalized h, i.e., we
define normalized mixed correlation tensors o. and o- by
the formulas

these tensors. For this purpose, we first rewrite (5.8) in
the form

h
g,~(r, )T= cJ~(r, )T=— ejtns( zclk)

2%3

j.
o; (r, T) = g; (r,T), —o, (r, T) = g; (r, T), —(5.13)

V S
where Lcf. (2.1), (2.4), and (5.9))

exp(i(k r kcT))—
d'k (5.10)

exp(trk) —1

and apply to the integral on the right-hand side of
(5.10) a similar procedure as used in connection with
Eq. (2.5). We then obtain

(tT„„(r')(

0.5

16hc
gjm(rp )= Tom(ry T) = Z ej msrs

7r2

nn+icT
XE (5»).— L(n +i") +T g

"H. Jeffreys and B.S. Jeffreys, Methods of Mathematical Physics
(Cambridge University Press, New York, 1950), 2nd ed. , p. 73.

Fro. 9. Variation of )0,„(r') ( with r',
when r' is along the s axis.
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-~'= Eh„(0,0)]"'[3c,,(0,0)j'I'
64 ~'K4T4

= &~y(0,0) =3c,y(0,0) =
45 (hc)'

It follows from (5.13), (5.14), and (5.11) that o and
a may be represented in series form as follows:

From (5.15) we obtain in the special case r=0

5.14
(spotiol coheretsce between the electric and magnetic
fields), for typical nondiagonal elements of o and o.,

180
o.„(r,o) = —e„„(r,o) = i s P — . (5.16)

+~4 n=l ~' r' 0,»
i80+4

SQ+1CT

-(r )=-;-(r, )= The diagonal elements are, of course, identically zero,
since 0 is antisymmetric.

00 We see from (5.16) that in the plane s=O (xy plane)
o,„(r,0) is identically zero. In Fig. 8 the contours of
~o,„(r,0)

~
in the yz plane are presented and in Fig. 9

Here the constant n is given by (2.3) as before. the variation of
~

o.,„(r,O)
~

along the s axis is shown.
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Coherence Properties of Blackbody Radiation. * II. Correlation
Tensors of the Quantized Field

C. L. MEHTA AND E. WQLF
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Expressions are derived for the electromagnetic correlation tensors of blackbody radiation defined on the
basis of the theory of the quantized field. Correlation functions of all order are considered, but second-order
ones are discussed in detail; it is found that these are identical with those obtained on the basis of semi-
classical theory in part I of this investigation. This result illustrates a recent theorem of K.C.G. Sudarshan
relating to the equivalence between semiclassical and quantum mechanical description of statistical light
beams.

1. INTRODUCTION
' "N part I of this investigation, ' expressions were
- - derived for the complex second-order electromag-
netic correlation tensors of blackbody radiation and
their behavior was discussed in detail and illustrated
by a number of diagrams. The statistical methods used
were based entirely on classical concepts, though
quantum mechanical features of the radiation were
implicit in that treatment, since the spectrum of the
radiation was taken to be given by Planck's law.

In the present paper the second-order correlation
tensors introduced recently by Glauber' on the basis of
the theory of the quantized field, are evaluated for
blackbody radiation and are shown to be identical with
those defined and evaluated on the basis of the semi-
classical theory. This result illustrates a recent theorem
of Sudarshan, ' relating to the equivalence between

semiclassical4 ' and quantum mechanical description of
statistical light beams.

In Sec. 4 higher-order correlation tensors of black-
body radiation are briefly discussed.

2. THE SECOND-ORDER CORRELATION TENSORS OF
THE QUANTIZED FIELD

It will be useful to begin with some results which will
be needed later, relating to quantization of the electro-
magnetic field and the definition of the correlation
tensors of the quantized field.

The electric-field operator, at the space-time point
x=—(r,ot), when expanded in a Fourier series is given
by' (with i= x, y, s)

A, (x) =E,&+& (x)+A, t-& (x),

'The term "semiclassical" implies here that the distribution
functions characterizing statistical properties of the beam are
not necessarily non-negative and may therefore not be true
probabilities. They are essentially Wigner distribution functions
(see Refs. 5 and 6), called also "quasiprobabilities. " However, in
the present case (blackbody radiation} the distribution function
turns out to be positive. LSee Kq. (3.1).g

5 E. P. Wigner, Phys. Rev. 40, 749 (1932).
6 (a) J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).

(b) G. A. Baker, Jr., Phys. Rev. j.09, 2198 (1958). (c) C. L.
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