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The exact equation of state, two-time correlation function, and linear response function, are calculated in
the limit of in6nite N for a classical E-spin system with a ferromagnetic phase transition, in a particular non-
uniform magnetic field. The correlation function can be analytically continued in temperature (or magnetic-
field strength) from the nonferromagnetic to the ferromagnetic region of the T Hplan-e; the result of such
continuation is not, however, the correlation function for the ferromagnetic region, but a function which
grows exponentially in time. The frequency-dependent linear response function has a pole at zero frequency
throughout the ferromagnetic region due to a broken symmetry; the corresponding function in the non-
ferromagnetic region developes a pole at zero frequency as the ferromagnetic region is approached, but when
the function is continued in temperature (or field strength) into the ferromagnetic region, the pole detaches
itself from the origin and moves up into the complex frequency plane, signifying an exponential growth in
time of the linear response. The purpose of the model is to demonstrate that this kind of behavior does
not contradict any general structural properties of equilibrium thermodynamic correlation or response
functions. The possible general signi6cance of such behavior for a theory of metastable states is discussed.

I. INTRODUCTION quence. Its importance lies in the fact that it establishes
the mathermatictt/ possibility of such behavior. For al-
though there is no reason to reject a priori the occur-
rence of instabilities in analytic continuations of
correlation or response functions through transition
points, when found in approximate calculations, they
have generally been blamed on the inadequacy of the
approximation. "In a sense this is correct, since an
unstable response function signifies that the approxi-
mation may be giving the response of a state that is
not the true equilibrium state. On the other hand, the
possibility has not, to my knowledge, been considered,
that the dynamically unstable response or correlation
functions associated with this thermodynamically un-
stable (or possibly metastable) state, may be found
from the exact equilibrium functions by analytic con-
tinuation. This is probably due to the valid belief that
an exact correlation function describes only thermo-
dynamically stable states with stable linear response. '
This view obscures but does not prohibit the possibility
that dynamic instabilities may nevertheless be implicit
in the exact functions, as described in (c).

This paper might therefore be regarded as an exist-
ence proof. We shall produce a Hamiltonian which
leads to exact equations of state and two-time functions
having properties (a)—(c), thereby demonstrating that
the association of exponential growth with such func-
tions is not in contradiction to any of their general
structural properties.

There are two kinds of reasons for suspecting that
this kind of behavior may be a general feature of phase
transitions. There is 6rst the experience gained through
approximate calculations. We mention three examples:

' 'N this paper the exact equation of state, two-time
~ - correlation functions, and linear response functions
are calculated, in the limit of in6nite E, for a simple
Ã-particle system which undergoes a phase transition.
The model establishes the possibility that, in a system
capable of a phase transition, instabilities —i.e., ex-
ponentially growing time dependence —can be asso-
ciated with exact equilibrium correlation and response
functions.

This conclusion will be put in a mathematically
precise way in Sec. II, but I would first like to give a
less formal description of the result, since it is a simple
one which might be obscured by the number of de6ni-
tions required to state it with care. The system we will

examine has the following properties:

(a) It possesses a phase transition; i.e., in the limit
as Ã —+~, some derivatives of the free energy become
discontinuous at certain values of the temperature (and
other parameters necessary to determine the thermo-
dynamic state). (We call such values of the thermo-
dynamic parameters transition points. )

(b) The equilibrium two-time correlation functions
and linear response functions, considered for 6xed time
as a function of the thermodynamic parameters, are,
in the limit of infinite E, analytic at all real values of
the parameters except the transition points.

(c) The unique result of analytically continuing a
correlation or linear response function in a thermo-
dynamic parameter through a transition point, is not
the equilibrium function on the other side of the tran-
sition point; instead, such a procedure leads to a func-
tion which grows exponentially in time.

{1)If the pair correlation function is calculated {in
the ladder approximation) for a Fermion system whichIt is the last property that interests us. Since the

model is strikingly unlike anything to be found in
nature, this result would appear to be of little conse-

*Supported in part by the OfBce of Naval Research of the
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' L. KadanoG and P. C. Martin, Phys. Rev. 124, 670 (1961).' N. D. Mermin, Ann. Phys. (N. Y.) 18, 421 and 454 (1962).
3And also because one is usually not interested in the non-

equilibrium states.
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has a superconducting phase transition (in the BCS
approximation), the analytic continuation of its Fourier
transform from above to below the transition tempera-
ture, has poles with nonvanishing imaginary parts on
the physical sheet, i.e., the analytic continuation of the
time dependent function grows exponentially. '

(2) In a crude random-phase approximation theory
of the classical gas-liquid transition, it is found that
the analytic continuation in volume (for fixed tempera-
ture) of the time-dependent density autocorrelation
function through the transition point into the metas-
table region, develops an exponential time dependence
as the metastable region is left and the unstable region
entered. '

(3) Consider as a very crude model of an electron
gas, a set of spin--,' Fermions with very short-range
repulsive interactions. In the Hartree-Pock approxi-
mation such a gas is ferromagnetic. If time-dependent
spin autocorrelation functions are calculated in a
linearized time-dependent Hartree-Pock approximation,
it is found that the imaginary part of the spin-wave
poles found in the nonferromagnetic region, moves, as
one analytically continues in temperature through a
transition point, from the unphysical sheet in the lower
half-plane to the physical sheet in the upper half-plane.
This means that the nonferromagnetic correlation
function, when continued into the ferromagnetic region,
grows exponentially in time. '

In all three cases the approximate correlation func-
tions have properties (a)—(c). It is possible to prove in
each case that at values of the parameters where one
finds unstable response functions, there must exist
additional solutions to the same (approximate) equa-
tions which are stable. ' ~ One may therefore always
reject unstable functions in favor of stable ones, without
going beyond the original approximation. Nevertheless
the unstable functions are implicit in the stable ones,
can be recovered by analytic continuation in the
thermodynamic parameters, and, within the approxi-
mation, describe the response of a definite nonequi-
librium state.

A second reason for establishing the possibility of
property (c) is more speculative. It is generally held
that the analytic continuation (or some smooth
extrapolation) of the equation of state through a
transition point, although it no longer describes the
stable equilibrium state, may still describe a physical
nonequilibrium state of the system. There seems to be
no fundamental theoretical basis for this belief, but it

4 The static Hartree-Pock stability of this model is considered
at zero temperature by D. J. Thouless, The Quantum Mechanics
of paly Body Systems (Academic Press Inc. , New York, 1961).
I know of no discussions in the literature of the spin-wave stability
at nonzero temperatures.' D. J. Thouless, Nucl. Phys. 22, 78 (1961).

II D. J. Thouless, Ann. Phys. (N. Y.) 10, 553 (1960).
r N. D. Mermin, Ann. Phys. (N. Y.) 21, 99 (1963).

is convincingly supported experimentally. If one
accepts it, one may ask whether analytic continuations
through transition points of more complicated proper-
ties of the equilibrium state, will describe the corre-
sponding properties of this nonequilibrium state. If
this is so, then a linear response function for the
equilibrium state, provided it describes the response
to a perturbation capable of destroying the non-
equilibrium state, should, when continued through a
transition point, develop an unbounded growth in time.

No answers will be given here to the difFicult question
of whether analytic continuations through transition
points do, in general, describe physical nonequilibrium
states, or to the question of whether realistic systems
have property (c). What I wish to oGer is a first step
toward the consideration of these problems: a model
that establishes the consistency of exponential growth
in analytically continued two-time functions, and which
is suggestive of further problems that will have to be
faced in deciding whether such analytic continuations
are of more general significance.

II. THE MODEL

The model consists of a set of E spins (E even), half
of which are in a magnetic field H directed along the
positive s axis, and the other half, in a field —H. Their
interaction energy is to be negative and proportional
to the square of the total spin. Thus the Hamiltonian is'

N g N
3('.= —g H. s'+ g H s' — (g s')' (2.1)

i=qXN+1

and the equations of motion,

s'=WHxs' ——(g st) xs',

(The interaction strength must be proportional to 1/X
in order that the mean energy per spin be independent
of 1V, as X-+oo.) This is just the Hamiltonian for a
Weiss-model ferromagnet in a particular nonuniform
magnetic field. ' The customary way of finding its
equilibrium behavior, via a self-consistent molecular
field, is exact only in the limit of infinite E; since we
shall need to study the behavior for large but finite E,
a more thorough analysis is necessary.

An obvious example of this is an equation of state of the
van der Waals type, which can describe a metastable supercooled
gas. The equilibrium equation of state, obtained from the van der
Waals equation by applying the Maxwell construction, makes no
reference to the metastable states, but they can be recovered from
it by extrapolation through a transition point.

We measure JI in units such that the energy of a spin s in the
magnetic 6eld is just —H. s.' The Weiss model in a uniform magnetic Geld does not lead to
growing correlation and response functions. The explanation for
this is mentioned in Sec. VI, part E.
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then we need only deal with

G &(t)= lim ((s& &(t) —s& &)s&»), n, y=1, 2, (2.8)
N~m

in terms of which

An. understanding of the relevant (for our purposes)
properties of the system is made much easier by taking
the spins to be classical variables. Thus the s' are
vectors of fixed magnitude 0-, and orientation deter-
mined by their initial values and the equations of
motion. )The fixed magnitude is, of course, consistent
with (2.2).j We take the spin system to be in thermal
equilibrium, so the mean value of any function E(s')
is given by the canonical

(2.9)

(F(s'))= iI dQ, expL —PX,(s')]F(s')

average We would also like to calculate the linear response
functions. If the system, initially in thermal equilibrium,
is subsequently perturbed by a weak magnetic field
h'(t) (which in general may vary from spin to spin),
then to lowest order in h the change in (s') from its

g dg. exp) P~(s&)j (2 3) equilibrium value will have the form

P= 1/I& T, and the integrations are over all orientations
of each spin. The time-dependent spin autocorrelation
function is defined to be

&o"(t)= lim E((s'((s"),t) —s')sJ).
It is a consequence of the classical fluctuation dissi-

(24) pation theorem" that the linear response tensor I. is
given by

s&'&=—g s' (2.6)

and similarly,

s ('2i — Q si
g;=;N+i

(2 7)

Several remarks should be. made about (2.4):
(a) sf'((s"),t) is the ith spin at time t, given that at

time zero the initial spin values were (s~). We have
written it as an explicit function of the initial values to
emphasize that it is these initial values that are being
averaged over in (2.4). Unless there is a particular
reason to emphasize this dependence, we shall use the
shorter form, s'(t).

(b) We shall see that the factor E is necessary to
give a nonzero result. It also arises naturally if we

consider not the correlation function, but the linear
response function.

(c) A more conventional definition would have
replaced the average in (2.4) by

(2.5)

However the two differ only by a time-independent
term which can be calculated from the equilibrium
thermodynamics. In an exact calculation (2.4) seems

easier to work with.
(d) As defined in (2.4) each 8'&' is a 3&&3 tensor. We

will be interested only in particular components, e.g.,
&&,„'&'—but it seems desirable to use the tensorial form
whenever possible to keep indices to a minimum.

(e) &&" depends on which group of spins —those in
the field H or those in the field —H—the ith and jth
spins belong to, but not on the particular choice of
spins within each group. If we define s(" to be the
contribution to the mean spin per particle from all

spins in the first group,

(2.11)

It follows that the lowest order changes in (s&i&) or
(s&2&) in the limit of an infinite system are

where h"' and h&" are the average magnetic fields

perturbing each group:

—;N

h&" (t) = lim —Q h'(/).
CV~oo Q i=1

(2.13)
1 N

h&'& (t) = lim —g h'(&,') .

Evidently if the linear response function grows ex-
ponentially in time so will the correlation function, and
vice versa. "

The function that usually arises in practical calcu-

"We indicate how it can be derived for the peculiar case of a
classical spin system in Appendix A. A general discussion of
Quctuation dissipation theorems can be found in H. B. fallen and
T. A. Welton, Phys. Rev. 83, 34 (1951).

"This becomes rather puzzling if one wishes to take ex-
ponentially growing functions seriously, for although a growing
response function has a simple interpretation, it is not immediately
clear what one should make of an exponentially growing corre-
lation function. The problem does not arise for nonequilibrium
states since there is no fluctuation dissipation theorem to connect
the two. If, however, we wish to interpret the analytic continuation
of the correlation and response functions through a transition
point as describing the properties of some physical nonequilibrium
state, then, if the continuations are unique (i.e., if the transition
point is not a branch point), they will continue to be related by the
Quctuation dissipation theorem. This puzzle has a simple resolution
in our model. It is discussed in Sec. VI, part B.
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lations is

La&(s) — dteietLar(t) p

00

dte'*' G~—&'(t), (2.14)
0 Bt

—',,v
W(s) = g dQ, (&~ s——P s"

~

. (2.18)

$(1) H &t $(1) gs(s) && $(1)

s s = H &t S s —gs i &t s s
(2.15)

They thus depend only on their own initial values and
not on the detailed spin configuration within each group.
This reduces the ensemble average (2.8) to

G &(t) = lim E ds(')ds(')P(s('), s('))

X (Ls(~) ($(i) $(s) t) $(~)]$(v))

where

ds"'ds"'~(s"' s"') (2.16)

E(s('),s(')) = g dQ, expL —pR(s') )

1
)(6 s('& —— s~

( 1 sr

&&i)~ s&'& ——g s~
(

X ~-v+t

= exp(XpLH (s&'& —s&'&)

+-:g(s"'+$"')'j)lf'(s"') ll'(s"') (2 17)

where s is a complex variable in the upper half-plane.
Ordinarily I. is analytic in the upper half-plane, with
possible poles only on the real axis (giving the fre-
quencies of undamped resonances) or in its analytic
continuation into the lower half-plane (representing
damped resonances). If, however, L(t) increases
exponentially, then I.(s) will have a pole in the upper
half-plane. It is through such complex poles that the

type of instability we shall find in the model has
appeared in the approximate calculations described in
the Introduction.

Our task is to calculate G &(t) for all temperatures,
and to demonstrate that it can be analytically con-
tinued in P (or H) through a ferromagnetic transition
point to a function which has exponentially growing
time dependence; alternatively, we wish to show that
the exact L(s) can be analytically continued in P (or H)
to a function of s which has poles in the upper-half
2 plane.

Without going to the limit of infinite E we can
simplify things considerably. It follows from (2.1) that
s('~ and s(2) satisfy equations of motion involving only
themselves:

into (2.18), then the integrations over spin directions
factor into S/ 2 identical elementary integrations, after
which the integration over directions of u is equally
trivial. Up to an irrelevant constant factor which
disappears from the normalized I',

W(s) =—
t'1Vs (sing) l~

f' sin~ |'
~ ~

df . (2.19)
E~

The problem for 6nite E has therefore been reduced
to evaluating the integral (2.19), placing the general
solution" of (2.15) into (2.16), and performing the
remaining six integrations over the initial values. For
our purposes, however, this still formidable calculation
is unnecessary, since we are ultimately interested in G
only for strictly infinite Ã. It is only in this limit that
the singular behavior going with a phase transition can
occur, and hence that the analytic continuation of an
equilibrium correlation function. from one value of P
to another can lead to something which is not the
equilibrium correlation function for the new value of
p. '4 We shall therefore evaluate the integrals by steepest
descent methods, retaining only those terms which
continue to contribute to G as S —+~.

As it turns out, the infinite X limit not only simplifies
the integrations in (2.16) and (2.19), but also makes a
knowledge of the general solution of (2.15) unnecessary.
This is because I' is very sharply peaked (in the limit
of infinite X, completely concentrated in) values of
s&" and s"' which are time-independent solutions. As
a result, if one considers $(~)(s('),$(s),t) as a function
of its initial values, only the linear term in its expansion
about the set of initial values giving a stationary
solution contributes in the limit of infinite S.Therefore
if one wants G only for infinite X one need only solve a
version of (2.15) linearized about the stationary
solutions which maximize I'.

Although our result will be exact only in the limit of
infinite S, many features of the correlation functions
for large but 6nite X will be illuminated in the course
of discussion. The maxima of I' and the equation of

'3 It can be found in terms of elliptic functions.
' Since any physical system is Rnite it must be possible to

state our conclusions, if the are of any relevance, for Gnite E.
They could be put something life this: there exists a function of
t and P which is analytic for all positive real P, and which, above
the transition temperature agrees to within terms of order t/X
with the equilibrium correlation function provided the time is
less than of order X; but below the transition temperature this
function grows exponentially in time.

If one inserts the Fourier representation of the 8

function,

b(x) = due-*'"'* (2~)s,
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state are found in Sec. III. In Sec. IV certain features
of the exact equations of motion are examined; these
justify the subsequent linearization and reveal the sort
of behavior one would expect for large but finite N.
In Sec. V the infinite N correlation functions are found;
their properties are discussed in Sec. VI, along with
some puzzles and speculations suggested by the model.

III. EQUILIBRIUM THERMODYNAMIC PROPERTIES

To 6nd P for a large system we must 6rst know the
large S behavior of the density of states factors S'
appearing in (2.17). Since W is of the form

Hc = go

T

Tc
= 79~1 2

Frc. 1. The nonfer-
romagnetic (I) and
ferromagnetic (II) re-
gions of the II-T plane.
Transition points lie
along the boundary,
given by II=go.

xf(p H)

where

W(s) =—
ZS

i.&fi.s—&4 I &r & (3.1)

P,o )= i (s—/o) { ,' l—n (—sini /{'), (3.2)

an asymptotic expansion can be found by the method
of steepest descent. Saddle points occur at roots of

0=4.'(i) = '( /—) l ( —os' I/i'—) (3 3)

When i' =ir&, » real, this becomes

s/ =-', (cothr& —1/r&) =f(r&), (3.4)

which has a unique positive root r&(s), when s/o is
between 0 and ~."One easily verifies that this is the
only saddle point on the hne f= )+sr&(s), —po & $ & oo,

and that this line passes through the saddle point in
the direction of steepest descent. The contour in (3.1)
may be displaced to run along this line, and the resulting
asymptotic form is

W(s) =C(s) exp{ 1VL (s/o.—)rl(s)
——; 1n(sinhr&(s)/»(s)) 1), (3.5)

where, up to an irrelevant normalization constant,

~g(s)( 1 1 )-»' (1)
c(s)=

I

—
I

+oI —
I
.

s kg (s)' sinh'g (s)& kX)
Therefore

P(s&'& s&'&) =C(s&'&)C(s&") expI —1VC (s&'& s&")j (3.6)

where

@(s&l& s(2&) — pH, (s(1) $&2&) rpg(s&r&+s&s&)s

+s&"
r&

&"/o —-' ln (sinh»&'&/r& &'&)+s &'&rl &'&/o.

—sr in(sinht&&s&/r&&'&), (3.7)
and p& ) is de6ned by

sp&'&= (0,0,—f(P H)),
sp&'&=(0, 0, —-,'o f(PoH)).

(3.9)

II. H/g(a f(PoH) (ferromagnetic). 4 assumes its
minimum when s"' and s&2) are of the form:

sp&'& =-,' (sp+ H/g),
so&'& = -', (sp —H/g), (3.10)

where sp is perpendicular to H, with magnitude deter-
mined by

(sp'+ (H/g)')'~'= oy(Pgo I
sp'+ (H/g)'y'). (3.11)

The direction of so in the x-y plane is undetermined,
i.e., C is minimum on a one-dimensional family of
points.

The regions of the H-T plane in which the two types
of minima are found are indicated in Fig. 1, the
boundary of the two regions being given by points
satisfying

H/g =.f(P.H) (3.12)

Type II maxima can occur only for low temperatures,

average of any X-independent function, F(s&'&, s&s&)

will just be F(sp&",sp"'). More generally, if C does not
have a single minimum but assumes its least value on
a family of points, then the ensemble average of any
N-independent Il which assumes the same value at all
such points, is given by this value, in the limit of
infinite N. Because of this we can immediately deduce
the equation of state for the in6nite system from the
minima of C. These are found in Appendix 3, and are
of two types, depending on the values of P and H:

I. H/g~&of(PoH) (nonferromagnetic). C is minimum
at the single point

s&~&=-'a f(r&&~&) a= 1 2. (3 g)
and weak fields,

T ~& T,=-3go-', (3.13)

Since C(s) remains a slowly varying function of s
for large N, in this limit I' will be very sharply peaked
at the value or values of so) and s(" which minimize 4.
If C has its absolute minimum at a single point, soo),
so('), then in the limit of infinite N the ensemble

"s/0 cannot exceed s, its value when all sX spina are parallel.

H &H, =go-. (3 14)

Equations (3.9)—(3.11) give a complete description
of the equilibrium state of the ininite system in terms
of the variables (s,&'&), (s,&'&), (sr "&) (the magnitude of
the projection of s&'& in the x-y plane), (s&&'&), and (s)
(the magnitude of s&'&+s&s&, the total spin per par-
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ticle). In region I:

In region II:
(' »=-(. »=wg,
(s 0))=(s (2))= & so

(s)=so

(3.15)

(3.16)

(~-H~/g~)

H/g ~

In Fig. 2, (s,o))—(s,&") and (s) are plotted against
temperature for a typical 6eld strength B&B,.At high
temperatures (region I) the total spin is zero, and

(s,&") and (s,@)) are oppositely directed along the
magnetic field, with magnitude 2of(PoH—).. As T de-
creases, (s) remains zero, and (s,&')) and (s,&')) grow
until their difference equals H/g. At this point region II
is entered. Further lowering of the temperature leaves

(s,o)) and (s,&')) unchanged, but the total spin per
particle now developes a nonzero magnitude in the
plane perpendicular to H, which grows from zero at
the transition point to a maximum value of
(0'—(H/g)')'~' at T=0.

Thus the system is ferromagnetic in region II. The
spin alignment is not perfect because the field H favors
opposite directions of the z components of 8&'~ and 8&2&.

In region I there is no ferromagnetic alignment at all,
either because the temperature is above the Curie
point, or because the anti-aligning held is too strong.

To calculate correlation functions in the two regions
we need to know more about I' than the location of its
maxima as X—+~, since G depends on the Quctuations
of 8(') and s&'& about their equilibrium values. " Still,
it is clear that when E is large only initial values in the
immediate neighborhood of the maxima will contribute
appreciably to G. We therefore turn to an analysis of
the solutions of the equations of motion, paying par-
ticular attention to those with initial values close to
maxima of I'.

IV. TIME DEPENDENCE OF s&~&

The solutions of (2.15) most important for the cal-
culation of G are those which are independent of time.
The general stationary solution either has 8('~ and 8&'&

both parallel to H and otherwise arbitrary, or so) —s")
=H/g, with s&')+s&') arbitrary. In the limit of infinite

Ã, I' is maximum at a stationary solution of the first
kind in the nonferromagnetic region, and has a family
of maxima of the second kind in the ferromagnetic
region. This fact enables us to calculate G for the infinite
system (and, for the finite system, to any order in an

'6 The missing sixth variable, q, the angle of s in the x-y plane,
is of no interest, since in region I all components perpendicular
to 8 are zero and in region II all directions are equally likely.' The argument that enabled us to deduce the equation of
state from the maxima of P does not apply to G because of the
factor 1V appearing in its definition.

FIG. 2. Equations of state when B&H,. The dashed curve is
the magnitude of the total spin, which vanishes in region I. The
solid curve is the difference of the z components of s&') and s&~),

which is constant in region II.

so
H X=H A(0) ——',g(sP —s, (0)'). (4.4)

Xn the rotating coordinate system 8& therefore satis6es

Sg= —gg-, Sg Sg—Qsg ~ (4.5)

~=o'-g&&'(0) -kg'»(0)'. (4.6)

asymptotic expansion in 1/E) without having to use
the rather complicated form of the general solutions.

It is nevertheless worth carrying an exact analysis
of the time-dependent solutions of (2.15) to a point
which clearly shows why we are entitled to the simplifi-
cations we shall eventually make. In terms of the total
spin per particle, s=s&')+s&'), and the deviation of the
spin difference from the stationary value H/g, &=a&»
—s&') —H/g, (2.15) becomes

s= —H x 4, dA/dt= —gs x A. (4.1)

Taking advantage of the fact that s, is a constant of
the motion, we transform (4.1) to a coordinate system
rotating about the z axis with angular frequency

(4.2)

In the rotating frame,

s = Q x s—H x 4, d 4/dt = Q x 4—gs x 6, (4.3)

where Q =OH/H. It follows that

s=Gx (Qxs) —HxL(2Q —gs) xLj,
which, by virtue of the particular value of 0, simpliies
to

sg ———n's, +g(H a)s„
for the components of s in the x-y plane. Furthermore,

dd, d
H' =—gs's= —2g—sy

1 2

6Q
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This is just the equation of motion for a particle of
unit mass moving in two dimensions under the infiuence
of a central force given by the potential

U (sr) =nsrs/2+ g'sr'/8

The initial velocity of the particle is

s, (0) =Q xs, (0)—H x ~(0),
and its conserved angular momentum is

(4 7)

(4.8)

8r= —QSr —s g Sr +P/Sr (4.10)

and its angle, f, in the x-y plane is required by con-
servation of angular momentum to obey

p = l/srs . (4.11)

The initial velocity necessary for the integration of
(4.10) is

8, (0)= s, (0) sr(0)/sr(0)
= H ( (0)X & (0))/ (0). (4.12)

Evidently (4.9)—(4.12) all remain valid in the original
stationary coordinate system except that the angular
velocity q now satisfies

(4.13)

Equation (4.10) can be solved in terms of elliptic
functions, but all relevant features of the motion can
be understood by considering how a particle would
move in two dimensions in the potential U."Since the
potential depends, through n, on the initial conditions,
not all particle orbits in a given U are possible orbits
for s&, however for given initial conditions U is deter-
mined and the subsequent motion of s& is given by the
orbit in that particular U followed by a particle with
the appropriate initial position and velocity. The nature
of this orbit depends critically on the sign of 0.. When
n is positive the motion is in a simple potential well
with a minimum at s&= 0; for negative n, U is minimum
at s, = (—2o/g')'~', the force is repulsive for smaller s,,
and the origin is a local maximum of U.

Consider now initial values of the form

l= (sr(0) Xs,(0)),=Os'(0)' —H(Ar(0) s, (0)). (4.9)

The magnitude of s& therefore satis6es the radial
equation

velocity, s, (0) and s, (0) are also of order e. Therefore
within the nonferromagnetic region, for small enough
e, s,, and ds, /dt will move along orbits in the neighbor-
hood of zero. This is enough to guarantee that if s&'&(0)

and s"&(0) are within o(e) of the nonferromagnetic
maximum of I', then s&'&(i) and s&'&(t) stay within o(e)
of this maximum at all times.

On the other hand, if the initial values are of the form

s"'(o) = s(~*(0),~, (0),H/g)+o(e),
s"'(o) = l(~*(0),4(0), —H/g)+ ( ),

(4.15)

which puts them in the neighborhood of a ferromagnetic
maximum of I', then n= ——,'g's, (0)'+o(e), and U is
minimum at s, within e of s, (0). The initial velocity is
still of order e so s& can only undergo small oscillations
in the neighborhood of its initial value. The angular
velocity (in the stationary coordinate system) will be

j = —H(X, (0) s, (0))/so'+o(e'), (4.16)

which is of order e, and, to this order, time-independent.
There will thus be a slow uniform precession of sj
about H superimposed on the small oscillations in its
magnitude. As e —+ 0 the period of precession becomes
infinite.

We shall draw further on this helpful reduction of the
two-spin problem to a problem of two-dimensional
motion in a central force, in the concluding discussion
in Sec. VI.

and

G..zz(i) = hm X((Z.(~) —Z,)Z,), (5.1)

G, »(~)=hm X((Z, (~)—Z, )Z ),

V. CALCULATION OF CORRELATION AND
RESPONSE FUNCTIONS

We shall calculate correlation functions involving
components of s=s&"+s"& and X=s"&—s&'& since
these follow more naturally from the equations of
motion. The s"', s&" correlation functions can then be
found by taking simple linear combinations of the s,
X functions; the time dependence of the latter follows
from a knowledge of the two functions

s&'&(0) = (0,0,—,'o f(aoH))+o(e),
s&'&(0) = (0, 0, ——,'o f(PoH))+o(e).

4.14
This is because:

Zg =Z,&iZ„. (5.2)

In the nonferromagnetic region these are very close to
the maximum of I'. In the potential that they
determine,

a =gH(H/g o f(PoH))+o(e), —

which, for suKciently small ~, is positive within the
nonferromagnetic region. The initial position and

' The motion of sq immediately determines the motion of
everything else: n„by (4.4), and ckr, since Ar= HXsr/Ip.

(a) Correlation functions pairing a s component with
a ~ component, a plus with a plus, or a minus with a
minus, vanish even for finite Ã due to the syrnrnetry
under rotations about the s axis;

(b) '(i) =—'(0);
(c) ds~(t)/dk= WiHZ~(t);
(d) the —+ functions are complex conjugates of

the + —ones;
(e) ((~+(~)—~+)~-)=((~+(—~) —~+)~-)*.
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(5.9)

Z+(s, X,t) =Z+ cosco,t—i(coo/H)s+ sincoot, (5.10)

~o= LH« ga—f(PaH))]"'

From (5.9) it follows that G, »(t) is independent of
time, so

lim 1V(Z+Z ) and lim 1V(s+Z ).

It is also convenient to write the correlation functions
in terms of the deviation of Z, (t) from its (stationary)
value at the maximum of I', Zo, ——H/g. We can replace
(5.1) by

G„»(t)—=0. (5.12)

Equation (5.10) gives G+»(t) in terms of equal time
correlation functions. These are evaluated in Appendix

C, and the result is

G+»(t) = (2o/PH) f.(PoH) coscoot,
G..»(t) = lim Ar((Z. (t)—Z,)(Z,—Z„)),

N—+~

Due to (a) and (b), G,,»(t) is the only nonvanishing The required solutions to (5.8) are

s—Z correlation function involving s components;
using (c)—(e) we can obtain the reinaining nonvanishing
s —Z correlation functions froin G+ (t) by time inte-

gration, complex conjugation, and a knowledge of the
equal time correlation functions

since this only adds a term which vanishes even for
finite S due to the translational invariance in time of
canonical ensemble averages. Furthermore, if we define

G, »(t) = lim X((Z.(t) —Zo, )(Z.—Z,,)), (5.3)
N-+oo

or
G+»(t) = (2o/PH) f(PaII) (coscoot 1). —(5.13)

If we integrate G+ ~s(t) between 0 and t, we find

G+ 's(t) = (—2ia/pcop) f(poH) sincoot=G~ s'(t). (5.14)

then
G»(t) G»(t) G»(0) (5.4)

Again integrating (5.14) and using the fact that

(s+(0)Z (0))=0 (Appendix C) we have

so it suAices to 6nd G. Similarly, if

G+ ~~(t)= lim F(Z+(t)Z ), (5.5)

G+ "(t)= (2oH/pcog) f(paH) (coscoot 1) . (5—.15)

The linear response functions corresponding to
(5.12)—(5.15) can be found at once from (2.14) and are

S= —H & X )

dX/dt = —(1—(go/H) f(pa H))(H x s) .
(5 8)

"The equilibrium fluctuations are discussed in Appendix C.

(Zp+ vanishes in both regions), then

G "(t)=G "(t)—G "(0). (5.6)

The analysis now depends on which region P and H
lie in.

A. Nonferromagnetic Region

Because P is very sharply peaked at sp, Xo, for fixed
t we expand X (s,X,t) about this point and examine the
contribution of each term to (5.3) and (5.5). The
leading term is just Xo——(0,0,Zo,), and therefore gives
no contribution. The linear term gives a contribution
that goes as X times a mean-square fluctuation, and is
therefore of order unity. "All higher order terms give
no contribution, since the neth order terms give E times
a mean mth power deviation, and are therefore no
larger than X '~+'

We may therefore replace X(s,X,t) by its lowest
order term in s—so and X—Xo. But this is found

simply by solving the equations of motion linearized
about the stationary solutions s(t)=so=0 X(t)—= Xp

=(0,0,of(Po.H)) The exact eq.uation (2.15) in terms
of sand X is

s= —H x X, dX/dt= —H x s+gX x s, (5.7)

which linearizes to

L, »( )s=0; (5.16)

L»(s) =2o f(PaH)coo2/(s' —coo')H (5.17)

L~ '~(s) =L+ r'(s) =2o f(PoH)s/(s' —co02) (5.18)

L "(s)= 2of(PaH) H/. (s' o&o') . — (5.19)

E(sc'& s&'&) =p(s, c",s, "&,s,c",s,"' 8)

and I' has a single maximum at

S (~) S (2) ~$
2 o)

so, &i& = —so &'& =H/2g, 80——0,

(5.20)

(5.21)

Lwhere so is the solution. to (3.11)].Now froin Eq. (4.4),

G„~s(t) = —(g/2H) lim 1'((sc2(t) —SP)Z,) . (5.22)
N—+oo

It is also true that

G+»(t) = (1/H2) lim 1&I((s+(t)—s+)s ). (5.23)

In Eqs. (5.22) and (5.23) the quantities to be averaged
depend on the initial values 8") and 0&" only through 8.
We can therefore replace the average over s&') and s("
by an average over the five variables on which P

B. Ferromagnetic Region

We can deal with the added complexity due to the
family of maxima of I'(sci&, s "&) by using the cylindrical
coordinates s&&'), s,"), 8(", s&&", s &" 0"' In its
angular dependence P is a function only of 0= 0"'—0&'):
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depends, and then, taking advantage of the unique
maximum of 2', proceed as in the nonferromagnetic
case.

We first define, in analogy to (5.3) and (5.5),

The initial velocity is, to lowest order,

s, (0) =-',Hsp8(0) .
If we place these results in (5.27) we find that

(5.35)

(5.25)G+»(t)=(1/EP) lim E(s+(t)s ),

G, »(t) = —(g/2H) lim X((si'(t) —sp')&,), (5.24) G, ss(t) = lim ÃL(h. ')(cosgspt —1)+~oo ¹rso
+(M„)-',sp singspt), (5.36)

where h, =Z,—Zp, =Z,—H/g Land s+(sp, Xp) = s (sp, Xp)
=07, so that

plus a time-independent term which does not contribute
to G„.The equilibrium ensemble averages are found in
Appendix C; the result is

G(t) =G(t)—G(0) (5.26)
G,,sz(t) = (1/Pg) (cosgspt —1) . (5.37)

in both cases. The factors s,'(t) —spp, h„s+(t), and
s (t) are all, to lowest nonvanishing order, linear in
the deviations of their initial values from the stationary
values (5.21). It therefore suffices to replace each by
the linear term in its expansion about the stationary
initial values. Equation (5.24) immediately reduces to

G. »(t) = —(gsp/H) lim 1V((s,(t) sp)t) .).—(5.27)

We may rewrite (5.25):

G. * (t) = (1/H ) l ~(('.(t)+'"(t)'(t))
~ (s ts &)&i[i (&)—el) (5 28)

Because si(t) and j (t) are linear in the deviation of the
initial values from equilibrium, for any finite time the
phase factor in (5.28) makes no contribution as X -+~ .
We may also replace si(t) and si by their equilibrium
values, to get:

G -"(t)=(1/H') l' D.(t) .)+ '(~(t)p)

+isp(( j (t)s,)—(si(t) j))). (5.29)

G+ *(t)= (1/Pg) (cosgspt —1). (5.38)

The values of the equilibrium correlation functions
(Appendix C)

lim X(Z, (O)Z (0))=2/Pg,

lim 1V(Zp(0)s (0))=0,

enable us to find, by time integrations of (5.38),

H t'singspt
G+-'*(&)=~-+'*(p= —'—

l +') (i »)
Pg~ gsp

To find G+», we differentiate (5.34) and use (5.35)
to get:

s, (t)s, (0)= (-,'Hsp)' cos(gspt)0(0)'
—

p H s p sin (gs pt) 8(0)6,(0) .

The time-independent term in (5.31) does not con.—

tribute to G, and, using the ensemble averages in
Appendix C, we have

Now from (4.13), (4.9), and (4.2), EP (cosgspt —1 t'i
G "(t)=—

l

Pg & (gsp)'4 (t) = —(H/ )L(."'(o)—o."')
-(""'(0)-".')3, (53o)

The corresponding linear response functions are
to lowest order, and this is independent of time; as a
result, the imaginary term in (5.29) vanishes and we E **"(s)=gsp'/(s' —(gsp)'),
are left with

(5.40)

(5.41)

G+ *'(t)=H—' lim 1V/(s, (t)s,)+spP(jp')$ (5.31)
g -+oo

It remains to find the linearized solution, si, of (4.10).
Since P and 0' are of second order, we can replace
(4.10) by

si(t) =——,'g'(s '(t) —si'(0))s (t)+gHtI), (0)s,(t). (5.32)

Further linearization of the remaining terms gives

E+»(s) =gso'/(s' —(gso)') (5.42)

EP)1 1
E+-"(s)=—

I —,+,
g ks' s' —(gsp)'

(5.44)

VI. CONCLUSIONS

H( s 1
E.+ '(.) =E.+ "(.) =—

~

+-, (5.43)
g s' —(gsp)' s

si(t) = —g'sp'(si(t) —si(0))+gH~*(0)so (5 33) There are several remarks to be made:
(A) The correlation functions have the properties

described in the Introduction. In particular p)p LEq.
si(t) =si(0)+ (Hh, (0)/gsp) (1 cosgspt)— (5.11)j is real in the nonferromagnetic region and

+ (s, (0)/gsp) singspt. (5.34) becomes imaginary as the ferromagnetic region is
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entered. Since all the nonferromagnetic correlation
functions are even functions of coo, as a transition point
is approached they remain analytic functions of p and
H, and have unique analytic continuations into the

ferromagnetic region, which grow exponentially in time.
Similarly, as the ferromagnetic region is approached,
poles of the response functions, (5.1/) —(5.19), move
toward the origin, reaching it at the transition point.
Beyond the transition point the correct response func-
tions are the ferromagnetic ones, (5.42)—(5.44). These
join continuously to the nonferromagnetic ones. The
pole at s=0 remains there throughout the ferromag-
netic region, being just the Goldstone pole associated
with the broken symmetry of the ferromagnetic
state." However, in the analytic continuation of the
nonferromagnetic response function the Goldstone pole
does not stay at the origin, but moves up into the
complex plane, reQecting the exponential growth of the
time-dependent function.

(8) An exponentially growing linear response func-
tion signi6es the failure of the assumption that a weak
disturbance produces a weak response, but what is one
to make of a correlation function that grows expo-
nentially? To answer this we 6rst re-emphasize the fact
that the infinite E case is not only the only one in which
it is easy to calculate exact results, but also the only
case in which our conclusions apply. When S is 6nite
there is no mathematical phase transition, and all
analytic continuations of equilibrium correlation func-
tions remain equilibrium correlation functions. Expo-
nentially growing correlation functions can therefore
be associated only with the mathematically in6nite
system. But in the in6nite system growth from order
unity to order S is indistinguishable from unbounded
growth.

To see how this accounts for the unbounded growth
of the correlation functions, consider, as the simplest
example, the function

G'~'~(f) = lim X(/s, (f) s,js,)—
= (2aH/ppppp) f(poH) (cos(opf —1), '

in the nonferromagnetic region. (Although this is one
we have not explicitly calculated it must be the same as

G+ "(t)= lim X((s,(t)e'«&"—&l —s,)s,),
N~oo

since s&(t)sL is already of order 1/X in the nonferro-
magnetic region, and hence the phase factor can be
ignored at any 6nite time. $ Its oscillatory behavior is
due to the fact that I' picks out only initial values very
close to the stable stationary point s&——0. When con-
tinued into the ferromagnetic region it still behaves as
if only initial values near s~=0 were contributing, but

pp Symmetry is broken in the sense that the equilibrium (sql
in the presence of an additional weak magnetic 6eld perpendicular
to 8 does not approach, as the perpendicular 6eld vanishes, the
value (sql =0 which holds in the absence of such a 6eld.

now this is an unstable stationary point. Therefore"
initial values very near s&=0 will lead to oscillations of
s~(f) between 0 and a value of order o, i.e., of order
unity with respect to X. Thus ELs, (t)—s~(0)) will be
of order X for almost all times when s~(0) is close to,
but not equal to, zero.

We have now reversed the problem and must explain
why in the limit of infinite S the continuation of G'&'&

into the ferromagnetic region is not infinite for all
nonzero times. The answer to this is that because both
the initial position and velocity of s& become closer and
closer to zero with increasing E, the period of the
macroscopic oscillations becomes infinite as S—+~.
Thus, when X is enormous, the initial values con-
tributing to the analytic continuation of G'~'& are so
close to being stationary that it takes s& an enormous
time to begin its journey from the origin. When E
becomes infinite it takes G'&'~ an infinite time to grow
to order X, and what we see is an exponential growth.

The role of the Quctuation dissipation theorem that
this feature of our model reQects leads to an interesting
possibility. Suppose it were eventually established that
analytic continuations of correlation and linear response
functions through transition points described physical
nonequilibrium states. If the singularity at the tran-
sition point were a branch point, the continued func-
tions might lie on different sheets and would then no
longer be related by the Quctuation dissipation theorem.
If, however, as in our model, the continuation were
unique, then the equilibrium Quctuation dissipation
theorem would continue to hoM in the nonequilibrium
states. This would impose stringent restrictions on the
kinds of perturbations capable of destroying the non-
equilibrium state: They would have to be such that
the corresponding correlation functions would be
capable of growing from order unity to order S in
describing the relaxation back to an equilibrium state.
In our model this growth can be rationalized for all
perturbing magnetic 6elds, but in a realistic system the
requirement of only physically sensible growing corre-
lation functions would lead to the stability of the
nonequilibrium state under a large class of pertur-
bations. Although it is fun to contemplate the ramifi-
cations of this idea, it would be foolish to push it any
further before one knows whether the speculations on
which it is based, can be put on solid ground.

(C) The secular terms in the ferromagnetic corre-
lation functions (5.39) and (5.40) are correct. They
are there as a reQection of the infinitesimal rate of
precession of s& around the z axis, and appear as an
unbounded growth in the in6nite T correlation func-
tions for reasons essentially the same as those just
discussed. Since they are due to a zero frequency (the
rate of precession goes to zero as E—+~) mode of the
system that exists in the absence of any perturbation,

2'This and subsequent statements about the exact time de-
pendence are easy to prove in terms of the motion of the equivalent
particle in two dimensions discussed in Sec. IV.



A122 N. DAVI D M ERM IN

they lead to the poles at a=0 in the linear response
functions (5.43) and (5.44). In this context they are
much less alarming, being just the Goldstone poles due
to the broken symmetry that is present throughout the
ferromagnetic region.

(D) If analytically continued correlation functions
describe a physical state, is this state metastable or
unstable) In our model the nonequilibrium state so
reached is one which could be described by an ensemble
in which, initially, s&" (t) and s&'&(1) were very close to
the unstable stationary points (0, 0, +-,'s&&,), s&&, )H/g.
But even though this point is dynamically unstable,
the time-dependent" (s& &(t)) will remain close to their
initial values, since the spins of each element of the
ensemble, although they oscillate between the initial
point and a macroscopically di8ering one, still spend
almost all of their time in the neighborhood of their
initial values, because of the microscopic difference
between their initial values and the stationary ones.
If, however, there were some dissipative mechanism
present to damp these large oscillations, then after a
long time the (s' ' (t)) would assume values appropriate
to an equilibrium state in the ferromagnetic region. "
The time this took would be of order ln(N) times the
number of oscillations possible before the damping
became macroscopic. Although this is infinite for
strictly infinite Ã, for large but finite E the state would

appear to be unstable in the presence of dissipation. '4

(E) The nonuniform magnetic field is essential. When
the Weiss model is not in a magnetic field, the con-
tinuations of nonferromagnetic correlation and linear
response functions into the ferromagnetic region remain
dynamically stable, even though the corresponding
stationary point of the spin distribution function is not
a local maximum. This is because the magnitude of the
total spin is now conserved. Although a state with total
spin zero would like, from thermodynamic consider-
ations, to grow into one with a net macroscopic spin,
it is dynamically incapable of doing so. Nor will in-
stabilities appear in the Weiss model in a uniform
magnetic field, since $, is conserved, and hence a state
aligned opposite to H cannot correct itself.

(F) In the limit of infinite N the random-phase
approximation gives the exact linear response functions
of the model. " It is easy, once one understands the

22 They are time-dependent since the density matrix is now no
longer a function of the Hamiltonian."This can be seen from considering the behavior, in the
presence of a dissipative term, of the two-dimensional particle of
Sec. IV.

'4From a purely thermodynamic point of view we should
probably call it unstable, since it is not described by a local
maximum of P.

"In our model the random-phase approximation reduces to
the following procedure: define, as in the theory of the Weiss
model, an internal molecular field, H =g((s&'&)+(s&i&)), find the
partition function in the effective field H+H, and use it to
determine self-consistently the value of H; then calculate the
response of s( ) to a perturbation h(t) to lowest order in h and the
deviation of s( ) from a solution to the self-consistent equations.
There is a slight complication in the ferromagnetic region, since

structure of P(s&'&, s&'&) and the exact equations of
motion to convince oneself that this must be so. It
might be instructive in developing further the kind
of approach Haag" used to prove that the BCS solution
was exact in the limit of infinite volume, to try to
construct along similar lines a rigorous proof that the
random phase approximation is (or is not) exact in
the infinite g limit of the quantum version of our model.

APPENDIX A

The Quctuation dissipation theorem for a classical
spin system may be somewhat unfamiliar, so its proof
is indicated here.

Suppose we have a classical system with canonical
variables qi q&v, pi .pz (which we shall denote
collectively simply by x) and with Hamiltonian K(x).
Let the system be perturbed by a potential U(x(t), t)
which vanishes in the remote past. To linear order in

U, the time dependence of any function A(x(t)) is

given by

A (x(t))=A (x&&(1))

+ LA(xp(/)), U(xp(1'), t')]dt', (A1)

where x&&(t) is the solution to the equations of motion
in the absence of U, and the bracket is a Poisson
bracket. We wish to specialize (A1) to the case
A = s '(/), U =P,„h„'(t')s„'(t'), and average both sides
over a canonical ensemble of initial values at some time
before the appearance of U. Suitable canonical variables
for a classical spin are s, and &p (its angle in the x-y
plane), so the Poisson bracket is

N BABU BABU
LA, U$= Q

s=i By' BS ' BS ' By'

BA BU
X

i=i
(A2)

The second apparently noncanonical form is much
easier to use, since it allows us to remain in rectangular
coordinates, where, for example, the equations of
motion are enormously simplified.

there are many solutions to the self-consistent equations to use as
initial equilibrium states; however, the random-phase approxi-
mation response of a given ferromagnetic equilibrium state
averaged over all possible orientations of sq gives the correct
result."R.Haag, Nuovo Cimento 25, 287 (1962).
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The linear response is therefore

3(s '(t)) = dt' g dQ' expI —PK((s'})5
i~I

t' ()
X Q s".

I
s '((s'},t)

&as'

Minima of C can only occur at points satisfying

0= ae/Bs(') = —p(H+g(s&'&+s&"))
/rt(&)$(r)/ag(r) (8$)

0=()@/c&s("=P(H—g(s("+s")))Pr&")s")/as(" (8{j)

Such a point will be a local minimum provided the
matrix of second derivatives at the point,

Now the kth term in the summation will contain an
integral of the form

g j((st} t ) IIt j(t') (A3) ~emvn=, () @'/()~m r)&n

as" =3-.L(."/ (.))-Pg5+2( -&-".'-&/ (-&')

XL(1/ 'f'( "))-( "/2 ")5
= —

pg(& „, (rWy, (82)

8 8
dQ' exp( —P3(:)fi(Q') ~-'((s'},t) X ~-'((s'},t')

ask ask

If we transform this to a volume integral, it becomes

t9 8
o ds" exp( —PX) s„'((s'},t)

s~( BSk ask

is positive definite.
We first look for stationary points with s(" parallel

to s&'). (Consider them parallel when either is 0.) This
can only happen if both are parallel to H. If we define

X( ) =r&( )(sin(s, ( &)),

l,he (3.8) becomes

g ( )= f(x( ))

X s '((s'},t') I
. (A4) and the stationary conditions are)

(89)

But (A4) is invariant under cyclical permutation of the
three functions exp( —PK), s ', and s„t. Therefore

x"'=Pa(H+V*)
x"'=—Pa(H —V*),

(810)

h(s '(t)) = dt'P dQ' exp(, —PX)

where s.=s.(')+s.(".The general solution to (89) and
(810) is

xP I s„'(t),s„~(t')5It.t(t')

dt' g dQ' P s„t(t')

s, & &=0 0,=1 2+sf' & ) P

s, (') = ', o f[j9a(H-+gs, )5;
'fLP (H—-v)5—

where s, is any solution to

(811)

XLexp( —P30), s„'(t)5It„t(t')

dt' Q (8 '(t)s. (t'))tt„&'(t').

APPENDIX 3
In the limit of large X, the distribution function

P(s"),s(s)) will be almost entirely concentrated at
points where C(s"&,s&'&) LEq. (3.2)5 is minimum. In
finding the minima of C we shall need the following
properties of the function f(rt) = cothrt —1/rt ":

f(~)= f( n); f(v)&—0, n&—0; f(o)=o; (»)
f'(n) &o; f'(o) = l; (82)

f"(~)«, n&0; (83)

d/drt(f(rt)/rt) «, r&) 0. (84)

"Equations (81) and (82) are trivial, and (83) with f'(0) =0
implies (84); the fact that sinh3g —3 sinhx-4g'cosh@ has a
Taylor series with positive coefEcients establishes (83).

(d(r&
M= pgI

4—1 d(s)~
(813)

where 1 is the 3/3 unit matrix, and d"' and d(" are
diagonal 3&&3 matrices with diagonal elements

d, & "&= (x& )/Pgs, ( &) —1, i,=x, y;
d."=I: 2/gPaf'( "x) —5 1

s,= a[f(Pa(H+gs,—)) f(Po (H gs,)—)5. (812)—

One solution to (812) is s,=0, which leads to the
stationary point given in (3.9). To establish that this
point gives the absolute minimum of C in region I, we
will show that it is a local minimum whenever H/g
)af(PoH), that no other solution of (812) gives a
local minimum, and that C has no nonparallel stationary
points unless H/g (af(PaH).

Let us label the rows and columns of M by s,('),
s„(",s."~ s,('), s„(",s, ('&, in that order. At a parallel
stationary point
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One easily verihes that

1 (d(d&'& —p,)
(M—l()-'=—

!
pg( d

(815)
d(d"'-~)&

q(&) =g(2) gO) —$(2) (824)

Since f())) and f(7(&)/g are monotonic for positive )),
(823) and (3.8) imply

and
d;0)d;&') —1)0; i= x, y) or s.

(817)

At the stationary points (3.9)

d;"'=d;(2'=(2H/go. f(poH)) —1, i=x, y; (818)
d.&'& =d, &'& = (2/pgo' f'(paH) ) 1. —

This reduces (817) to the conditions

go f(POH)/H&1, Pga2f'(PoH) &1. (819)

The second condition is unnecessary, since f(x)/x
always exceeds f'(x), and the irst is just the condition
that p and H are within region I.

At a stationary point with s,&0, the second of con-
ditions (817) always fails when i=x (or y). With (89)
and (814) it requires that

' f( "') f( "')
+ ! . (82o)

xo) x(2) )
On the other hand, (89) and (812) give

=( /2 .)(f(x"')+f(x"')) (8 )

Subtracting (821) from (820) and again applying
(812) gives

H (f(x"') f(x"'))
x(2) xo) j

Now f(x)/x is a decreasing function of the magnitude
of x, so either H and s, have the same sign and
& g('), or H and s, have opposite sign and) x(') . But either possibility is inconsistent with

(810), so there are no parallel minima of C other than
(3.9).

To see that there are no nonparallel stationary points
in region I, and to establish the nature of the minima
of C in region II, we return to the general stationary
conditions (85) and (86). When both hold,

where
~=~/Pg d= L(d"'—~)(d"'—u) —13 ' (816)

The eigenvalues of M are therefore pg times the roots of

(d, ("—p) (d;"'—p) —1=0, i= x, y, or s,
all of which must be positive for the corresponding
stationary point to be a local minimum of C. We must
therefore have

d, o)+d, (&))0

Furthermore, (823) reduces (85) or (86) to

$0)—s (2) —H/g

which requires that (3.10) holds, with so perpendicular
to H because of (824). Equations (3.10), (823), and
(3.8) now lead to (3.11), which determines the mag-
nitude of so, and has a real positive solution if and only
if P and H are in region II.

The direction of so is arbitrary, but the value of C

is independent of this direction. Since (3.10) and (3.11)
give the only'', ."stationary points in region II, these
points must give C an absolute minimum.

APPENDIX C

Nonferromagnetic Region

Because P(s&'&, s&'&) has the form (3.6), in a calcu-
lation of the second moments,

6,; &= lim cV((s;( )—(s;( )))(s;(~)—(s, (~)))), (C1)
N~~

the leading term is given by taking

P(s"),s(2)) =constantXexpL —2X P M~;;
X (s;(a) —so (~)) (s (v) —so,.h'))), (C2)

where 3f is the matrix of second derivatives, given at
the nonferromagnetic maximum by (813) and (818).
Corrections to the moments given by (C2) due to the
expansion of C(s(~)) about so& &, or due to higher order
terms in the expansion of C (s"',s"&) all give no con-
tributions to (Ci) as S-+~. Furthermore, higher
moments,

hm g((g. (ag) (g. (us))). . . (g, (~m) (g, (&m))))

have leading terms which vanish as E '"+'.
The second moments are therefore given by

(C3)

The elements of the inverse matrix are found from

(815) (with p=o), (816), and (818), and lead to the
moments:

go f(paH)
!f(P~H)! 25.„+

4pH 4 H gof(poH)I—

+s&'&
L

(g(')/os(2)) —2Pg) =0. (822)

If s(') and s(2) are not parallel, then

( pW'f'(p~H) )
f'(P~H)! 2S.„+—

4 'E 1 Pgo'f'(Po H))—

(C4)

&)(')/os (') =))(')/~s(') =2pg. (823) a;;-~=0, iw~.
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ln particular,

lim N(Z+ )
= lim N((s, &'& —s,&'&)'+ (s„' —s ")')

&1+g PP+ g 11+g PP 2 (g 1P+g 1P)

=2-f(P-H)/PH, (C5)

The second variation in C near a stationary point
follows from (B/):
d'C =-'Pg(isp'(d8)'+ (ds, &'& ds, &—'&)'

+ (ds. "& ds—.&'&)'+E[(spds, &'&+ (H/g)ds. &»)'

+( pd "' (—H/g)d ."')')}, (CS)
where

E= [2/(sp'+ (H/g)'))[(1/Pga'f (»))—1), (C9)

and, similarly, (C10)V=Pg[sp'+ (H/g)')'"
lim N(s+Z )=0.
N-+eo

(C6)
Since (3.11) can be written, 1=Pgo'f(i&)/q, and since
0 &f'(q) &f(q)/q, E is positive and (CS) is positive
de6nite.

We can write (CS) more compactly as

Ferromagnetic Region

The difBculty due to the existence of a family of
maxima of I' is removed by working in cylindrical
coordinates with the function P [Eq. (5.20)), which
has a single maximum, (5.21), and by taking only
moments of the cylindrical variables:

4

d'4=-', Pg[-,'spP (d8)'+P M„„ds„ds„), (C11)

s,('), s (') s,('), s.(') 8.
where we understand ds„ to run through ds&&'), ds&('),

(C7) ds.&'&, ds. "&, in that order. The matrix M is

1+Esp'

M=
EspH/g

1+Esp'

1+E(H/g)'

EspH/g—
(C12)

0 —EspH/g

Second moments involving the variables in (C7) are given by

1+E(H/g)'

lim N(8') =4/Pgsp',

lim N(8(s„—(s„)))=0,

»m N((s.—(s.))(s.—(s.)))= (1' ')"/Pg

(C13)

(C14)

(C15)

The inverse matrix can be verified to be

a' u' 0 0 a'+1
u' e' 0 0 1 a' —1 a'+1+-

2E(H/g)p 0 0 1 1 4 a a-i —a+a-i a—p+1 a—p
(C16)

0 0 1 1
where a=H/gsp.

The moments required in Sec. V are:

a' —1 a'+1

Finally, note that

lim N(h, ')= lim N((ds, &'& —ds, &'&)')
N~&e N~~

=(1/Pg)((1'' ') +(1'-') —(~ ') —(~ ') )= 1/Pg;

lim N(Z~ )= lim N((si&'&'+si&'&' —2si&'&si&'& cos8))N~ N~&&0

= lim N(((dsi&'& —dsi&P&)')+~~sp'(8'))
N-+&&o

=(1/Pg)((~ ') +(1' ') —(~ ') —(1' ') )+1/Pg=2/Pg

lim N(Z+s )= lim N((s, &'&' s,&'&')+p(—s,&'&s, &'& sin8)) =0

(C17)

(C18)

(C19)

(even for finite N), since P is a symmetric function of s,&" and si&'&, and an even function of 8.


