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Eq. (6), Q is also proportional to Vsr at constant T. We
see, therefore, that the total concentration of free
carriers, e, is a maximum when V~ is a maximums,
despite the fact that the relative amount of uncompen-
sated donors, n/D+, is a minimum under the same condi-
tions. When Q))1, as in the II-VI compounds (see Sec.
III), the total concentration of free carriers is essentially
independent of Vsr. Thus, as psr is varied in these sys-

tems, only the concentration of compensated donors
varies.

It should be noted that the situation is entirely dif-
ferent if the donor impurities reside on Ã sites rather
than M sites. Under such circumstances, the solubility
of the impurities is maximized and the degree of self-
compensation minimized when V~ is minimized, i.e.,
when PM is maximizsed.
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Using a semiphenomenological method, the energy and wave functions of a self-trapped hole (U& center)
in LiF are obtained as a function of the separation between the two F ions at which the hole is assumed
trapped. The lattice distortion energy due to the changes in Madelung, repulsive, and polarization energies
is calculated as a function of the totally symmetric displacement of the two participating F ions and six
positive ions adjacent to the F ions. This lattice energy is combined with the calculated energy for the
F2 molecule to obtain the total energy as a function of the distance between the participating F ions for
both the symmetric (Z,) and antisymmetric (Z„) states of the hole on the U& center. Only the energy curve
for the ground (5„)state exhibits a minimum in the expected region of F -ion separation. From the resulting
configurational coordinate curves, the optical absorption energy and width are computed and found to be
in order-of-magnitude agreement with experiment. Computed values of the experimentally known isotropic
and anisotropic hyperfine constants are used to assess the validity of our molecular wave functions, which
were obtained in a one-electron approximation.

I. INTRODUCTION
' "N recent years, a fairly detailed understanding of the
~ - F center in alkali halides has been achieved by con-
certed theoretical and experimental studies of its elec-
tronic structure. ' The F center consists of an electron
bound to a negative-ion vacancy, and is the simplest
of several "electron" color centers such as the M, E,
and P' centers. ' A series of "hole" color centers also
exists (V&,H, V&); these are characterized by optical
absorption bands lying at somewhat higher energies
than those of electron centers, are generally stable only
at low temperatures, and must be formed by high-energy
irradiation. The best understood of these, a center
which consists of a self-trapped hole, has been studied
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I See, for example, the review article by B. S. Gourary and
F. J. Adrian in Solid State Physics edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1960), Vol. 10.

'See, for example, J. H. Schulman and W. D. Compton, Color
Centersin Solids (Pergamon Press, Inc. , New York, 1963).

elaborately by Castner and Kanzig. ' Electron resonance
data have conclusively shown that this center is not
associated with a vacancy but instead resembles a
negative halogen molecule-ion with a hole shared be-
tween two adjacent negative ions. Two previous theo-
retical attempts4' have been made to explain the
stability of this self-trapped holes. Yamashita4 tried to
calculate the energy of the hole in KC1 as a function
of the displacement of the Cl—ions which trap it. He
could not obtain a minimum in the energy as a function
of this displacement but suggested that the repulsion
between the core electrons of the Cl ions, which he
had neglected, might provide a minimum in the energy
curve at half the usual distance between the ions in the
crystal. A subsequent attempt by Nettel' gave the
result that the energy of a hole trapped as a CI2 ion
in the crystal had higher energy than a chlorine atom

'T. G. Castner and W. Kanzig, Phys. Chem. Solids 3, 1.78
(1957); Nuovo Cimento Suppl. 7, 612 (1958).

J. Yamashita, work at the University of Illinois, 1958
(unpublished).' S. J. Nettel, Phys. Rev. 121, 425 (1961).



at a cubic site. It appears that Nettel had not employed
adequate variational functions for the hole to take
account of the relatively strong distortion of the wave
function of one of the trapping ions by the other.

In the present paper we attempt to obtain the energy
of the LiF crystal containing a hole relative to that of
the perfect crystal. The hole is assumed to be shared
between two F ions so that we have in effect a F2
molecule. The energies of the three 0 electrons are
calculated as a function of the distance between the
ions in the two cases corresponding to the unpaired
electron being in a symmetric or antisymmetric state.
For each distance between the ions, the repulsive,
Madelung, and polarization energies are also calculated
allowing for relaxation and electronic polarization of
six positive ions in the plane of the F2 molecule, which
are the nearest neighbors to the two F—ions forming
the molecule. The minimum in the total energy curve
plotted as a function of the distance between the
fluorine nuclei of the F2 molecule then gives the equi-
librium configuration of the crystal.

In Sec. II, the various contributions to the energy are
discussed qualitatively. In Sec. III, the calculation of
the lattice energy change is described and in Sec. IV,
the computations for obtaining the electronic energies
and wave function of the F2 molecule are described.
In Sec. V, the configuration coordinate curves for the
crystal are presented and the optical absorption energy
and width and hyperfine constants are calculated and
compared with experiment. The nature of the agree-
ment between theoretical and experimental results is
then analyzed. In the last section, limitations of the
present work are discussed and suggestions for improve-
ment are listed.

II. ANALYSIS OF THE VARIOUS TERMS IN
THE ENERGY OF THE CRYSTAL

Our calculation is based on the variation principle.
The energy of the crystal containing the hole is calcu-
lated as a function of several variation parameters.
Some of these parameters may be regarded as equiva-
lent to the configuration coordinates in calculations on
luminescent centers, while others are variation pa-
rameters that occur in the electronic wave functions.
With respect to the former, our calculation resembles
that of Williams, with at least one major exception.
He was able to use experimental values of the excitation
energy of free Tl+ ion in constructing his excited state
configurational coordinate curves, whereas we must rely
on computations of this quantity.

Before we describe our variation parameters in detail,
we will list and explain the various terms in the total
crystal energy E when a hole is present

E=Eo+E~+ (nsre'/a)+EE+ AE~+ DEp+ AEI . (1)

'F. E. Williams, J. Chem. Phys. 19, 457 (1951).

C /A
FIG. 1.Diagram show-

ing the ionsA, B, ~, H
which we allow to dis-
place and their direc-
tions of displacement.

These terms may be understood in terms of a sequence
of events occurring during the removal of an electron
from the crystal. Eo is the energy of the perfect crystal;
the next two terms represent the energy required to
remove an electron from an F ion and place it at in-

finity; E.z is the electron affinity (work done in taking
the electron from F—itself) and nsre'/a is the Madelung
energy (work done taking the electron out of the electro-
static potential of the crystal). Here u is the nearest-
neighbor distance and n~ the corresponding Madelung
constant. Up to this point we have regarded the lattice
and remaining electrons as stationary; now let us as-
sume that the hole becomes shared with a nearest
neighboring F ion so that a molecule F~ is formed
(see ions A and 8 in Fig. 1). This will "require" an
energy Ez, a quantity which is negative and which
will certainly depend on E, the nuclear separation of
A and B. The redistribution of charge on the two F
ions, as well as their relaxation toward each other, will

cause a further change in electrostatic energy of the
crystal which is included in DE~. In this term is also
included the change of electrostatic energy due to the
relaxation of neighboring positive ions which will now
occur as explained in detail below. Finally, hE& and
AEI are the analogous changes in repulsive and po-
larization energies, respectively, occasioned by the re-
distribution of charge and motion of the ions.

Of the six terms in (1) which represent the change in
the energy of the crystal due to the creation and capture
of a hole, the last three and n~e'/a may be considered as
constituting a change in lattice energy AEI.——5E~
+AEr+AE~+(nile'/a) These th. ree contributions are
calculated as a function of the fractional displacements
(in terms of nearest-neighbor distance in the lattice)
x, y, and s of the ions of types A, C, and E shown in
Fig. 1.The type-A ions are the two F ions (A,B) which
share the hole, type C are the two Li+ ions (C,D) which
are the nearest neighbors of A and 8. The type E ions
are the four Li+ ions (E,F,G,H) which are the nearest
neighbors of the A and 8 ions. They lie on the same
plane as the A- and C-type ions. The relaxation of the
four Li+ ions, which are nearest neighbors of the A and
8 ions but which do not lie on the plane of the A- and
C-type ions, is neglected. Because of the geometry of



MAGNET I C P ROPE RTI ES OV SELI-- r RAP P V 0 HOLE IN LiF A(OS1

the location of these ions, they are an order of magni-
tude less effective in influencing the lattice energy than
the ions C, D, E, Ii, 6, and H. In calculating the re-
pulsive energy change AEg, only nearest-neighbor inter-
actions are considered. The polarization energy of the
rest of the lattice as well as of the ions A, , Ii is
calculated following Mott and Littleton's procedure. '
The net lattice energy is thus obtained as a function
AEL(x,y,s). Since x represents the major relaxation,
DEL(x,y,s) is minimized with respect to y and s to
obtain DEL(x,yp, sp) which is a function of x alone. The
details and results of the lattice energy calculation are
presented in Sec. III.

The terms EA and I"~ represent the electronic energy
changes associated with the creation and capture of the
hole. The electron-afFinity EA of the F ion is taken as
0.363 eV, from Hartree-Fock calculations' on the F
ion. The F& binding energy EE is obtained by calculat-
ing the energy of three o electrons in the molecule (two
electrons in 0-, state and one in 0- when the hole is in
the antisymmetric state Z„, and two electrons in 0-„

state and one in o-, state for the hole in the symmetric
state Z, ) and taking the difference between this energy
and the energy of three 2p electrons on the F ion. The
details of the calculation of E~ as a function of the dis-
tance between A and B, that is, EB(x), as well as the
potential and the variational form of the wave function
employed will be discussed in Sec. IV. EB(x) is then
combined with DEL(x) to obtain the variation of the
total energy of the crystal with x; the position of its
minimum gives the equilibrium configuration of the
crystal. It will be seen later that a minimum is found
only when the hole is in the Z and not in the state Z, .

III. CALCULATION OF LATTICE ENERGY CHANGES

Ke shall first consider the change in the Madelung
energy of the lattice due to the presence of the hole.
For this calculation, we shall assume that the hole is

equally divided between the two F—ions. This is a
fairly good approximation if the bonding between 2
and 8 is not too strong so that there is not much
migration of charge to the region between the two ions.
The general expression for the difference in Madelung
energies of the crystal between the two situations in
which the ions A, B, C, , H are displaced, EM(x,y, s),
and undisplaced, EAr (0,0,0), can be shown to be given by

Here l L and i pr are the charges on the lattice points L
and 3f, and Lo and L represent, respectively, the un-
displaced and displaced positions of the point L. Thus,
for example, rLMp represents the distance between the
displaced position of the point L and undisplaced
position of 3f. If we are interested in an expansion of
(2) in powers of x, y, and s correct to second order, we

may take
i Li 3f ~ i Lt M

MQL PLMp MQL fLpMp

(3)

provided that all i ~ are equal to +e and are situated
on a regular cubic lattice. Equation (3) is a result of
the fact that in regular cubic crystals, the next multi-
pole interaction between ions after the monopole corres-
ponds to /=4. Hence only quartic and higher terms in

x, y, or s are to be expected from the summation in (3).
It follows that

i Li M " fLf3f " MhI

~«A" II rLM0 M~L rLpMp M =A fLM
M&I

which may be used to simplify Eq. (2) to the following
form:

E~ (x,y, s) —EM (0,0,0)

rr rr
p 1 2 1

2 i LE~I — + I (5)
2 M=A L =A kfL~ rLrAp rL rtr )

M gl.

If the charges on the A and 8 ions are —qe and the
charges on the rest of the lattice points are the same as
in the perfect lattice, then the above calculation must
be modified in an obvious way, and one obtains

E,Ar (x,y, s) E,,v (0,0,0)—
rr 1 1 1 1

+
L=A M=A rL~ rL,m, rLrtrp rr.oMI

p 1 1
+2 (q'—

krAB r AoBo

kI f—2(v —1) P I

—
I (6)

L=O(rLA, rL.A,)

EM (x,y, s) —E„~(0,0,0)

L=A M+A, ~ ~ ~, II

1
i rg~

~L 3I0 ~LpMp

In the present case we are assuming that q= —,'. Also,
i'L is +B for a positive ion and —e for a negative ion.
With the help of Fig. i, one can calculate the various
distances involved in Eq. (6) correct to terms quadratic
in x, y, and s. Thus, for example,

iv~ rr p1 1
+Z

r A M A (rLAr rL M

1 1. 1 1 v2

~AE ~A F ~AIr" ~A Z
(7)

7 N, F. Mott and M. J. Littleton, Trans. Faraday Soc. 34 485,
(1938).' C, Froese, Proc. Cambridge Phil. Soc. Sg, 206 (1957).

Equation (6) includes the repulsive energy between
charges —e/2 on the ions A and B, This is a spurious
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V(r) =Be "'& (10)

with 8 and p obtained from the observed compressi-
bility and lattice constant of the crystal. In the deter-
mination of 8 and p in the Born-Mayer formula from
the perfect crystal, Van der Waals forces were neglected,
i.e., their effect is assumed to be adequately included in
the exponential parameters. Therefore in using this
formula for the imperfect crystal, we should ignore
Van der Waals forces for the sake of consistency.
Huggins and Mayer" have also obtained 8 and p from
data on the perfect crystal, but including Van der
Waals forces separately. We shall also make use of these
constants to test the sensitiveness of the calculated
lattice energy to the choice of force constants. Another
form for the repulsive energy has been proposed by
Pauling, "namely

V (r) =0.0485e'r " '/r" (11)

where ro is the sum of the ionic radii of the positive and
negative ions and e depends on the nature of the posi-
tive and negative ion pair. For LiF one can take rI,=6
so that for the repulsive potential between Li+ and F

M. Born and J. E. Mayer, Z. Physik. 75, 1 (1932);we will use
the simple theory given by M. Born and K. Huang, Dynamics of
Crysta/ Lattices (Oxford University Press, New York, 1955), p. 26.

"M. L. Huggins and J. E. Mayer, J. Chem. Phys. 1, 643 (1933l."L. Pauling, Proc. Natl. Acad. Sci. India Sec. A, Pt. I 25,
(1956). See also Milne and Cubiccoti, J. Chem. Phys. 29, 846
(1956).

term introduced by our assumption that the hole is
equally distributed between the two F ions, and must
be excluded because all such intramolecular interactions
are contained in Eg. We therefore obtain the following
expression for DEJA.

AE~(x,y,s) =Esr (x,y,s)—Esr (0,0,0)
—[e'/4v2a(1 —v2x)]. (8)

Using equations like (7), Eqs. (6) and (8) may be ex-
panded in powers of x, y, and s, and after a lengthy
calculation one obtains

DE~ = (e'/a) (—0.177—0.500x—0.354x'
—1.414y+ 1.207y'+ 2.358s+3.426s'

+3.000xy+2.500sx—1.707ys) . (9)

It should be emphasized that this equation has been
derived for a particular (fcc) lattice.

Next, we consider AE~. In keeping with our earlier
assumptions for the Madelung energy change we shall
not consider the repulsion between the ions A and B.
This latter repulsive energy, when it becomes appreci-
able, will be included in the electronic energy terms.
Also, we shall consider repulsion between nearest neigh-
bors alone. There are several choices that one can make
for the repulsive interaction energy between the positive
and negative ions. One possible choice is the Born-
Mayer potential, ' which has the form

ion we can rewrite (11) as

V(r) =Ae'/r', (12)

where A=0.0485rs'. Using the form in Eq. (10) for
the repulsive energy, the expression for DE+(x,y,s) is
given by Eq. (13):

a ( xy)
aEg(x,y, s) =48e « ——

~

—x' —y' —2s' ——
~

p k 2)

+5.820s' —4.656xy —5.762xsf. (16c)

The difference between Eqs. (16a) and (16b) which
use the same force law but different force constants 8
and p could partly be ascribed to the neglect of the
effect of the Van der Waals forces in using the Huggins-
Mayer formula. In order to get an expression for

+—(x'+y'+2s' —xy —&2xs) . (13)
2p

In obtaining Eq. (13), the energy differences between a
pair of ions I.and M is calculated using the relation

QE~(1 ~)=73[e "rMln er A'o—leg (14)

where rl.~ and rl,,~, have the same meaning as in Eq.
(6). The distances rr, sr between the displaced ions and
their nearest neighbors are calculated up to quadratic
terms in x, y, and s as before.

Using the Pauling expression (12) for the force law,
Eq. (15) is obtained for the change in the repulsive
energy as a function of x, y, 2::

AE p (x y s) = (A e'/a') [60x'+60y'+120s'
—96xy —84'2xs]. (15)

In Table I are tabulated the constants 8 and p both
in the Born-Mayer and Huggins-Mayer approximations
as well as the value of 2 in the Pauling approximation.
In, obtaining A, a value of re=1.95 A was used in Eq.
(12), this value of rs being the sum of the ionic radii
of Li+ and F ions. The lattice constant a for LiF is
2.01 A, only slightly different from rs. On introducing
the values of 8, p, and A in Eqs. (14) and (15), we get
the following equations for DE+(x,y, s) in the three cases.
Hug gins-Mayer:

2

AEe(x, y, s) =—[1.664x'+1.664y'

+3.328s' —3.031xy
—3.642xsj, (16a)

Born-Mayer:

g2

AE~(x y s) =—[2.482x'+2. 482y'

+4.964s' —3.675xy —4.635xsj, (16b)
Pauling:

e2

~Ex(x,y, s) =—[2.910x'+2.910y'
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TABLE I. Table of constants in repulsive energy formulas. r, the radius vector joining the impurity charge i', and
the ion under consideration.

Born-Mayer
Huggins-Mayer
Pauling

8 (ergs) p (A.)

i.05 X10~ 0.244
1.354i X i0 '0 0.345

1.368X10 4'

i '(1—1/Es) (e'/A+n~)
M~=

4'[(e'/A)+-' , (n~+n )j

ZE&(x,y, s) which would be comparable to (16b) one
would have to include in AEz(x, y,s) the contribution
from the change in Van der Waals energy due to the
displacement of the lattice points. We shall not do this
but instead use the differences between the lattice
energy changes with Huggins-Mayer and Born-Mayer
formulas as a measure of the importance of Van der
Waals forces. Equations (16a) and (16b) indicate that
while the Van der Waals contribution to the lattice
energy is significant, it is definitely less important than
the repulsive energy change. The difference between
the energy expressions in (16b) and (16c) is due to the
different formulas LEqs. (10) and (12)j employed. It is
encouraging that the difference between Eqs. (16b) and
(16c) is less than that between (16a) and (16b) since
both Born-Mayer and Pauling formulas include the
effect of the Van der Waals forces indirectly. One last
comment about the repulsive energy calculation. We
have used Eqs. (10) and (12) together with the con-
stants in Table I which refer to the energy of repulsion
between Li+ and F ions. Actually ions A and 8 are
somewhat different from the regular F ion because
they each contain a total charge —e/2, which is less
than that of a regular F ion. Our belief that the use
of Eqs. (10) and (12) does not lead to significant error
is based on two considerations. First, that the charge
distribution of five and one-half 2p electrons is probably
not too different from what it would be for six. Secondly,
at least in the Z„state, the hole probably affects only
the charge distribution in the region between the two
ions A and B. Hence, to the nearest-neighbor positive
ions, C, D, . -, H, the A and 8 ions do not "look" very
different from perfect F ions.

We shall finally consider AEI, the energy associated
with the polarization of the lattice due both to the two
holes on ions A and 8 and the displacements of the
neighboring points C, D, , H. The polarization en-
ergy due to a point charge at a lattice site has been
considered in detail by Mott and Littleton. " In the
zeroth-order approximation, where one considers the
crystal as a dielectric continuum in calculating local
fields at the ions, the dipole moments on the positive
and negative ions are given by

Mgc'e

r2

with the dipoles directed outwards in the direction of

"See Ref. 7; B. G. Dick (private communication).

where n+ and n are the electronic polarizabilities of
the positive and negative ions on the lattice, Eq is the
static dielectric constant and A=6u/0 is the spring
constant with the compressibility 1/8 given by

1 1 1 2
—=————Be a]P

0 38 p cp
(19)

We however follow the first-order approximation of
Mott and Littleton in that we permit the nearest-
neighbor ions (B, C, , H in the case of the hole on A)
to move discretely and determine their displacements
by a detailed consideration of the various terms in the
lattice energy. So we have to allow for this difference in
nature between the ions A, , H and the ions in the
rest of the crystal. We shall do this by taking into
account only the electronic polarization of ions A to H,
since their ionic polarizations have already been con-
sidered by calculating their electrostatic and repulsive
interactions with other ions in the crystal in their dis-
placed positions.

Our polarization energy calculation is also somewhat
more involved than the calculation of the polarization
energy due to single point charges such as single va-
cancies and interstitials in a lattice. The ions A and 8
carry only charges —e/2 and are in displaced positions
as compared to their original positions Ao and 80 in
the lattice. Therefore, in the calculation of polarization
effects we have in effect to consider four charges,
namely ——',e each at A and B, and +e each at the points
A 0 and Bp. The latter two represent the effective charges
the vacancies wouM have if the charges —~e were
entirely removed. Each of these four charges polarizes
the ions in the rest of the lattice and the dipole moment
on the polarized ion not only interacts with the polariz-
ing charge (direct polarization energy) but also with
the other three charges (indirect polarization energy).
We shall consider the four ions in six pairs, namely
(A oBo), (AB), (ABo) (A oB), (AA o), and (BBp). To
avoid counting the direct polarization energy for each
of the four charges twice, we shall include the direct
polarization energies only while considering the first
two pairs (A pBp) arid (AB). Strictly speaking, one
should consider similar pairs for the ions C, D, E, F, 6, H
because they are also displaced from their original
equilibrium positions. A consideration of such effects is
equivalent to considering the polarization of the lattice
due to the dipoles produced by the displacements of
C, , H from their original positions. Since the dis-
placements of the ions C, , H are expected to be less
important than those of A and 8, we shall neglect the
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effects of the dipoles at C, ~ ~ ~, H on the polarization energy. Thus we have

DEB= DEq(AoBo)+AEy(AB)+AEp(ABo)+AEp(AoB)+&Ey(AAo)+DE~(BBo) . (2P)

e' 1 1 COSOA pi Bp cosHA„B, M2 M 1 M 1' )
DE, (A pBp) = Ml p +M2 p +Ml g +M2 g

a ' rApi .4 rApj
~ .4 rA 'rB.2 .2 rA jrB j' rAB rA c rA c~ .2 .2 4 4)

where

Ml cosOAocoBo Ml cosOAocBo Ml Mi—2
0 0 p

I
0 0 —2

rApCp rBpCp
2 2

rApC rBpC
2 2

rApEp rApE
4 43

Ml' Ml COSHAoEoBo Ml COSOAoEBo'1—2 — —4 (21)
4 2 2 2 2

rAoGo r AoG rA E rB E rA. E rB.E

[1—(1/&B)][(~'/A)+~+], ~+
Mg= Mi'= —,

4-[("/A)+-,'(;+--)1
[1—(1/EB)][(e'/A)+n ] Q

M2= M2'= —.
4~[("/A)+ 2 (~++~-)]

(22)

The summation in 2 in the first and third terms of (21) runs over the positive ions in the lattice while the summa-
tion over j in the second and fourth terms runs over the negative ions except that in the fourth term the points
j=A p and j=Bp are excluded. The fifth term arises because (when considering the effect of the charge +e at A p)

we do not have an ion at the Bp site and vice versa for the charge +e at Bp. The sixth, seventh, eighth, ninth, and
tenth terms in (21) take account of the correction to be int, roduced because we have to consider only the electronic
polarization of the displaced ions C, D, E, F, G, and H. The angles like 0A»Bo stand for the angle subtended by the
points Ao and 80 at the lattice point j.

8 1 1 COSOA, B COSOA~B 1
AEls(AB) Ml Q +M2 Q +Ml Q +M2 Q (M2 M2 )

4u ' rA4 & rAj4 rAi rBi rAj rBj rAB

co', c2', ' M, cos9 c, M, ' cos8 c i c2', kS, ' M, co',')—2 —2 —2
rAc rAc rAC rBC„rAC rBC ~ rAE rAE rAG rAG

Ml COSHAEoB Ml. COSHAEB

2AE~ rBEo &AE 2BE
where Ml, M2, and Ml' are defined in Eq. (22) and

(24)

The quantity e represents the polarizability of the x electrons on the F ion. The fifth term is introduced to take
account of the fact that only the polarization of the ~ electrons on A and 8 ions has to be considered; the polariza-
tion of the cr electrons will be taken care of indirectly in the electronic energy. The summations in the first and
third terms again run over the positive ions alone and those in the second and fourth terms over the negative ions
alone, the points j=A, 8 are again excluded from the fourth summation. The rest of the terms are introduced to
avoid introducing the ionic polarization of the ions C, D, -, H in AEI.

8 cosoAo jB COSHAojB Ml COSHAoCoB Ml COSHAoCB)
AE~(ABp)+DE„(A pB) = — Ml Q +M2 Q —2

rApi rBi.2 .2 fApj rBj.2 .2
rApCp rBCp2 2

&A,C &BC2 2

Ml COSHAoEoB Ml COSOAoEB i Ml COSHAoGoB Ml COSOAogBi—2
I

. (»)
rApEp rBEp rApE rBE2, 2 ) rA, G, ABC. ~A, G rBg2 2 2 2

In Eq. (25) also, the summation indices (in the first and second terms) refer to positive and negative ions, re-
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spectively, the ion 8 being left out of the summation in j.Finally, we have

e' COSOA„.A cosOApjA (Ml cosOApopA Ml cosOApcA
d j (AAp)+lplE (BBp)= — Ml Q +Ms Q

rAp' rA'.2 .2 rApj rA j ~ rAoQ' rAOo.2 .2 3 2 2
&AoC &AC

2 2

(Ml cosoAp&pA Ml cosoAp&A)t (Ml cosoApGpA Ml cosoApgA)

rA E fAEo rAoE rAE rA 6 rAG rAp'0 rA&

We can combine Eqs. (21), (23), (25), and (26) to
obtain the net polarization energy of the lattice given
by Eq. (20). Since we require the energy only up to
quadratic terms we have to express the polarization
energy in terms of linear and quadratic terms in x, y,
and s only. This can be done with the help of Fig. 1
and expressing the distances and angles involving the
displaced ions A, B, , II in terms of linear and quad-
ratic terms in x, y, and s. The detailed evaluation of the
coefIicients of these terms requires several lattice sum-

mations, some of them about the single center A and
some involving the two centers A and B.A few of these
summations were available from the work of earlier
authors, ' "namely

was tested by finding the additional contribution in

going to the thirteenth neighbors. The convergence in

all cases was better than 0.1%.
Next we have to consider the values of the quantities

~i, M2, M~', M2" to be used in the calculation. The

expressions for these are given in terms of Eq, o+, o;, 0.' ',

and the spring constant A in Eqs. (22) and (24). In
Table III the values of these quantities are tabulated

together with the source from which they were obtained.

TABLE II. Lattice sums involved in the calculation of AE„. The
sums and notation are defined in the text Lace Eq. (28)j.

1
-= 10.1977,
4

rAps

=6.3346,
rApj

.4

rA 'rB '.3 ' .3
=5.036,

1 1
=4.152.

j rAojrBoj' j rAoj'rBoj'

(27)

0 0 0 0 1 5
0 0 0 0 3 5
0 1 0 0 3 3
0 1 0 0 1 5
0 1 0 0 3 5
0 2 0 0 3 5
0 1 0 1 3 5
1 1 0 0 3 5
1 0 0 1 3 5
1 1 0 0 5 5
0 1 0 1 1 7
0 2 0 0 3 7
0 1 0 1 3 7
0 2 0 0 1 7
0 2 0 0 0 8
1 0 0 1 5 5

4.62961
2.79582
1.73987
0.73710
1.11161
1.42513
0.18422
0.31351—0.92679
0.08821
0.02760
1.17244
0.05051
1.64155
2.19260—0.97343

1.32584
0.41540
0.54498
0.13719
0.14987
0.34914
0.00136
0.19927—0.14850
0,04716—0.05133
0.12574—0.01262
0.41656
0.59693—0.07417

0 7 Sum over i Sum over j

These summations are the least convergent of the
various sums needed. The rest of the sums have the
general form

&Api &Boy P'Aps PBps.P .v

rApi rBp j

with similar expressions involving j. xA„, yA„, and 2,A„
represent coordinates of the ith ion in terms of the
crystal axes with respect to the undisplaced position
of A. These were performed on the Illiac at the Iini-
versity of Illinois computing center and checked on the
IBM-1620 at the computing center of the Riverside
campus of the University of California. Their values
are presented in Table II. The sums were carried out
in all cases up to the eleventh neighbors of the relevant

type (positive or negative ion), and the convergence

'3 J. R. Reitz and Gammel, J. Chem. Phys. 19, 894 (1951);
F. Bassani and N. Inchauspe, Phys, Rev. 105, 819 (1955).

Quan-
tity Value Source

&s 9.27 M. Born and K. Huang, Dynamical
Theory of Crystal Lattices (Oxford
University Press, New York, 1954),
Table 17.

0.03 X10 '4 cm' J. R. Tessman, A. H. Kahn and W.
Shockley, Phys. Rev. 92, 890 {1953).

0.652X10 "cm' C. Kittel, Solid State Physics, (John
Wiley and. Sons Inc. , New York,
1959), p. 165.

0.391X10 ' cm3 Represents polarizability of m electrons
which is —', of n )see R. M. Stern-
heimer, Phys. Rev. 96, 951 (1954)g.

M. Born and K. Huang, Dynamical
Theory of Crystal Lattices (Oxford
University Press, New York, 1954),
Table 9.

117 X10-»

TABLE III. Values of the quantities involved in expressions for
M1, M2, M1', and M2".
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Using these values, we obtain TABLE IV. Values of coefficients in lattice energy expressions.

3fg
=0,0624,

3fg' ——0.0036, (29)
Coefh-
cient Born-Mayer Hug gins-Mayer Pauling

M2 =0.0796,
M2' =0.0482.

The result of our expansion and substitution is finally,

1.953
3.691
8.368—0.698—1.707—2.162

1.135
2.873
6.732—0.053—1.707—1.169

2.381
4.119
9.224—1.678—1.707—3.288

EEz(x,y,s) = —(e'/4a) f1 416. 0—505. x+0 702. x'
—0.010y—0.007y'+0.089xy+0.037z

+0.087z'+0. 106xs7. (30)

It is understandable why in the expression for the
polarization energy the coefficients of the terms that
do not involve x are small. These terms arise out of the
electronic polarization of the positive ions which have
rather small polarizability. Combining Eqs. (9), (16),
and (30) we get the following equation for the net
change in the lattice energy, namely,

AEz (x y,s) = (n~e'/a) + (e'/a)L —0.538—0.374x
—1.416y+ 2.348z+ux'+Py'+Vs'

+Xxy+pyz+ vxz7, (31)

where the coefficients n, p, y, X, p, and v depend on our
choice of the repulsive energy formula. In Table IV,
the values of these coefFicients are tabulated when the
Born-Mayer, Huggins-Mayer, and Pauling repulsive
energy formulas are used. The coeKcients in the lattice-
energy expression are seen to be sensitive to the choice
of the repulsive energy formula, as discussed above.

From Eq. (31), one obtains the energy of the lattice
as a function of x alone by minimizing the lattice energy
with respect to y and z. This leads to the equations

2Py+ pz = 1.416—Xx,

py+2&z = —2.348—r x.
(32)

One can now solve Eqs. (32) in terms of x and substi-
tute the following expressions (33) obtained for y(x)
and z(x) in Eqs. (31) and hence express the lattice
energy in terms of x alone, as in (34):

and

ye(x) =b+cx,
zo(x) =d+ex,

0 Ez, (x) =A+Bx+Cx'.

(33)

From Eq. (34), one can obtain a plot of the lattice
energy as a function of x or of R, the distance between
the ions A and 8, the relation between R and x being
given by

R =v2a(1 —&2x) . (35)

In Table V, the values of b, c, d, and e in Eq. (33) and
A, 8, and C in Eq. (34) are tabulated for our three
diferent repulsive force laws. In Fig. 2, we have plotted
DEz(R) as a function of R and as expected there is

IV. ELECTRONIC ENERGY CALCULATIONS

The next quantities that we have to calculate are the
energies and wave functions for a F2 ion as a function
of internuclear separation. There are various standard
methods in molecular physics to accomplish this,
broadly divided into molecular orbital and valence-

TmLE V. Coeflicients b, c, d, e, A, 8, and C in Eqs. (34) and
(35) for the di6'erent choices of repulsive energy formula. A, 8,
and C are in Ry (en/2ao).

Coefh-
cient

b
c

e

8
C

Born-Mayer

0.163
0.127—0.124
0.142
0,503—0.116
0.923

Huggins-Mayer

0.202
0,036—0.149
0.091
0.473—0.111
0.569

Pauling

0.148
0.245—0.114
0.201
0.515—0.131
0.971

great similarity between the Born-Mayer and Pauling
curves, there being a minimum in the lattice energy
curve in each case. The positions of the minima can be
expressed either in terms of x or in terms of R, using
Eq. (35). In Table VI, we have tabulated for the cases
of the three repulsive formulas employed, the values
of xe Rp and DEI, (Rp), the lattice energy at the posi-
tion of the minimum in DEI, (R). The rninirnum in the
lattice energy curve is rather significant and arises out
of a compromise between the energy of interaction be-
tween the ions A and 8 with the ions C, D, E, F, 6, H.
Thus, the distance between the ions A and C decreases
as x increases while the distances between ion A and
ions E and Ii increases as x increases. The fact that we
get a minimum in the lattice energy curve indicates
that there is self-trapping of the hole even in the ab-
sence of appreciable electronic conjugation between the
ions A and 8 leading to the F2 molecule ion. As we
shall see in the next section, there is also a stable state
for the free F2—ion. The relative depths and shapes of
the lattice energy and electronic energy curves are im-
portant in determining the nature of the total energy
curve for the crystal. We shall discuss this point further
in Secs. IV and V after describing the electronic energy
calculation.
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TmLE VI. Positions R0 of the minima and minimum values
AEI, (x0) of the lattice energy for the various approximations.
&&L,(xp) is expressed in Ry, and R0 is in units of ap. For @=0,
that is, for the undisplaced positions of 2 and 8, R=5.371u0.

o.s 0

PAULIN G

BORN-MAYER

Quantity Born-Mayer Huggins-Mayer Pauling
0.55

~ HUGGINS -MAYER

Xo
Ro
aEr, (xp)

0.063
4.893
0.502

0.097
4.680
0.470

0.068
4.855
0.513

bond methods. "Both these methods in their improved
forms, including configuration interaction in the mo-
lecular orbital approach and ionic character in the va-
lence bond approach, are essentially equivalent. In their
improved forms they are comparable to variational
approaches in the self-consistent procedure for atoms
including configuration interaction. In our calculations,
we have not attempted to include any configuration
interaction or self-consistency requirements, but have
adopted a simple molecular orbital procedure. In the
usual molecular orbital method, as in the Hartree-Fock
approach for atoms, one generally starts from the
following many-electron Hamiltonian and computes
from it a one-electron Hamiltonian for each state:

0.45—
0.8 0.9

R (users or 0)

Fro. 2. Curve showing lattice energy AEI, as a function of the
distance R between the F ions A and B. Curves for all three
approximations for the repulsive energy, namely Born-Mayer,
Pauling, and Huggins-Mayer are given.

the following linear combinations:

C,=g cy;„

2s 2~=-Z ~,'+Z —+2—
r; '»r;;

(36)
where

dig=0 iA 4 iB, —4'ls 4'1A+$1B )

For simplicity, we have adopted the following approxi-
mate one-electron Hamiltonian for the three 2p elec-
trons which take part in the o- bond for the F2 molecule:

4'2g $2A 4'2B i $2s $2A+$2B i

48g 4 3A+4'3B y 48s 4'3A 43B )

(39)

~= —~"+VA(rA')+ VB(rB') wit
443 44A+4'4B y 4'4s 44A rt14B|

The potentials VA(rA;) and VB(rB,) both represent the
one-electron potentials seen by a 2p electron on a F
ion. The justification for choosing (3'7) is the following.
When the unpaired electron in the molecule is in the
neighborhood of ion A, then as far as the ion A is con-
cerned, it sees the potential that a 2p electron on an
F ion would see. In the same situation, as far as ion
8 is concerned, the charge distribution on it looks like
a neutral atom to the unpaired electron on 3 and there-
fore the electron again experiences the same potential
from ion 8 as a 2p electron on an F ion would. These
arguments are valid when the cores of the F are not
too distorted by the presence of the hole. This would be
true if the distance between the fluorine nuclei in the

molecule is not very greatly different from the distance
in the perfect crystal.

As basis functions for our determination of the 0,
and a„ functions for the F2 molecule, we have selected

"C. Coulson, Uolence (Oxford University Press, New York,
1953).

P..(")
41A Vl (tiA)4A) | $3A=

P..(")
I'o'(0. ,~.),

rA
(40)

P2, (rA)
$2A P2 (rA) Vl (9A O'A) 44A Vs (eA ctlA) ~

rA

The function Psg(rA) is taken to be the radial part of
the 2p wave function of the F ion. Ideally one should
have used in addition to plA and &2A, functions whose
radial parts are rAP»(rA), rA'Psg(rA), . to include a
complete set. We have chosen only two functions out
of the complete set as a compromise to reduce the work
involved. The same remark applies to the choice of
the functions &3A and &4A. Taking the radial parts of
all the functions as being related to P»(rA) enables us
to make use of the known integral and differential
properties fEq. (43)$ of this function, especially as they
relate to the effective potentials VA and V~ and the
atomic eigenvalues 82„.

To set up secular equations to obtain the coefficients
c, and d; in Eq. (38), we have to compute matrix ele-
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that have to be calculated are

l4

IO-

Q*~l —~'I&'~), 9'~l V~le'~&, and

8'n I
—~

I @'~) (4'~ I V~
I &'~).

Of these integrals only the 6rst two are one-center
integrals, the other three are two-center integrals. The
one-center integrals can be obtained by direct numerical
integration. For example, we have

aoidp is oa p 2

I
dr+2

'"
dr,sEdrl o r'

2Z
oop 2

2n
2Z(r)«,

p r

(41)

4-

where the potential V~(r) has been expressed as

V~ (r)=——2Z(r)/r. (42)

2-

We obtain Vz(r) directly from its definition by the one-
electron Hartree-Fock equation:

l

0

P I/

U~(r) =+8»—
I'2„r"- (43)

FIG. 3. Plot of 2Z(r) versus r.

0.2

O. I

]IE

4.0 4.5 5.4

ments X;;=(P;I%I&;& for both u and g states. These
matrix elements BC;; involve integrals over the orbitals
in Eq. (39). Examples of the various types of integrals

where hs~ is the one-electron energy for the 2p state
and P"=d'P/dr'. The function P» and the energy
parameter h» are taken from Froese's calculations. ' In
Fig. 3 we have plotted the values of 2Z(r) as a function
of r. For the two-center integrals we employ Lowdin's
o.-function method. "The n functions and the integrals
involving them that were required Lto determine the
matrix elements of the Hamiltonian K, Eq. (37)$, were
obtained at the computing centers of the University of
Rochester and Argonne National Laboratory. Since we
require the electronic energy as a function of the dis-
tance between the ions A and 8 we have to compute
the matrix elements for diBerent values of E. These
computations were done for six values of E, namely
40ap 44ap 4.8ap 5.0ap 5.2ap and 5.4ap. Since the
functions p; do not form an orthonormal set, we must
take account of the integrals S;;=/;lg;) for both the
r, and 0-„states and the eigenvalue secular equation
then takes the form:

-O.ai—

Detl&;;—S;;El =0

for both 0-, and 0- states. The eigenvalues 8, and 8„
for the six values of R considered are tabulated in
Table VII. Also tabulated in Table VII are the
quantities

-0.02— and

E =h +2hs+(2/R) —3h„ (43)

Eg 28„+Bg+ (2/R) 3h, ~. —— (46)—

"P. O. Lowdin, Advsn. Phys. 5, 96 (1956).

The quantity E„represents the decrease in energy of

FIG. 4. Curves for the electronic energies for both the Z and the three o- electrons due to bonding between the ions
Z„states of the hole as a function of E, the distance between ions
A and B.
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TABLE VII. Energy values in rydbergs for electronic and hole states for different values of
the internuclear distance of E.

Energy
va

g
8„

s„+2s,+(2/E)
s,+2 s.+ (2/E)

Eg

4.0

—0.5997—0.4103—1.1097—0.9203—0.0207
+0.1687

—0.5666—0.4352—1.1137—0.9823—0.0247
+0.1067

4.8

—0.5400—0.4498—1.1131—1.0229—0.0241
+0.0661

5.0

—0.5282—0.4534—1.1098—1.0350—0.0208
+0.0540

5.2

—0.5179—0.4558—1.1070—1.0414—0.0180
+0.0376

5.4

—0.5086—0.4552—1.1020—1.0486—0.0130
+0.0304

A and 8, when the hole is in the Z„state; E, represents
the corresponding energy decrease of the three a- elec-
trons for the Zp state of the hole. The term 2/E repre-
sents the Coulomb energy of repulsion between the
effective unit positive charges at the 2 and 8 ions
about which the three r electrons of the F2 molecule
can be considered as moving. Thus E„and E, give the
values of the term Es in Eq. (1) for the Z„and Z,
states of the hole, respectively. The variations of E
and E, with R are shown in Fig. 4. It is seen that while
E„has a minimum at R=4.56ap Eg has no such mini-
mum. This result indicates that while the Z state for
the hole in the free F2 molecule is stable, the Z, state
is not, as expected. Finally, to obtain the variation in
total energies of the hole states Z and Z, in the crystal
with the distance R between 3 and 8, we have to
combine the energies plotted in Figs. 2 and 4 which will
give us the variation with R of the total energy of the
crystal in the presence of the hole.

V. TOTAL ENERGY OF CRYSTAL AND INTERPRETA-
TION OF VARIOUS EXPERIMENTALLY
STUDIED PROPERTIES OF THE HOLE

In Table VIII, we tabulate E—Ep of Eq. (1) as a
function of R. In addition to the lattice energy calcu-
lated from Eq. (34) and the electronic energy tabulated
in Table VIII we have added the electronic amenity E&
which we have taken as 0.363 Ry from Froese's calcula-
tions. For the lattice energy, in view of the inaccuracy
in principle in the use of the Huggins-Mayer expression,
as mentioned earlier, we have only used the Born-
Mayer and Pauling expressions. Also tabulated is bE

which is the difference between E and the quantity

n e'
+8~=1.283 Ry, (47)

representing the increase in energy of a crystal when an
electron leaves the crystal (or a hole is produced in the
crystal) excluding the energy change due to relaxation
of the ions of the lattice and the electronic binding be-
tween the iona 3 and B.The sufFixes g and I to bE and
E are added in Table VIII to indicate the corresponding
states Z, and Z„of the hole. The negative values of
bE„and bE, indicate that the combined effects of the
lattice distortion and electronic conjugation between 3
and 8 ions is to stabilize the hole center. In the case of
the Z„state both the lattice distortion and electronic
conjugation lead to stabilization. For the Z, state, the
lattice distortion leads to stabilization while the pres-
ence of two antibonding 0-„electrons and only one
bonding 0, electron leads to destabilization. In Fig. 5
the energies bE„and bE, are plotted as functions of R
for both the Pauling and Born-Mayer approximations.
The zero ordinate on this plot would represent the
energy of the undisturbed crystal after the hole has
been removed, while the energy of the perfect crystal
Ep lies at —1.283 Ry. As was found in Fig. 4 with the
electronic energy, again we have a minimum only in
the Z„state and none in the Z, state suggesting that
only the Z„state for the hole has a stable minimum.
This result cannot be taken too literally, however, be-
cause we must realize that when R corresponds to the
normal lattice distance or greater distances, our de-

TABLE VIII. Energy in Ry of the crystal due to the presence of the hole.

Kner

E„(Pauling)
E (Born-Mayer)
E (Pauling)
E, (Born-Mayer)
BE„( ulPi ag)n
BE (Born-Mayer)
SE, (Pauling)
BE, (Born-Mayer)

4.0

0.869
0.858
1.058
1.047—0.415
0.425—0.225—0.236

0.855
0.845
0.987
0.976—0.428—0.439—0.297—0.307

0.852
0.841
0.942
0.931-0.431—0.442—0.341—0.352

5.0

0.855
0.844
0.930
0.919—0.428—0.439—0.353—0.364

5.2

0.860
0.848
0.915
0.904—0.424—0.435—0.368—0.380

5.4

0.868
0.856
0.911
0.899—0.416—0.428—0.372—0.384
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j(&.30

4.40 "

of the absorption peak at 3.54 eV. We thus obtain only
order-of-magnitude agreement with experiment. There
are two possible sources of error which might be re-
sponsible for the disagreement between theoretical and
experimental absorption energies. Our molecular calcu-
lations are approximate and perhaps a better calcula-
tion would lead to a stronger binding that is, a deeper
energy curve for the Z„state of the hole and move the
Z, state correspondingly upwards in energy. " The
other possibility is the lack of self-consistency in our
calculation which is implied by the direct addition of
E~ and AEI,.

From the ground state and excited state curves for
the energy as a function of E, we can also obtain the
width of the absorption band. Assuming a linear de-
pendence on the excited state configuration coordinate
(R in our case)" one obtains the following expression
for the width at an intensity equal to one half of that
at the maximum, namely:

AW=27A(11K) "4eV, (48)

-0.45
4.0

~&ss

4.S 5.0

FIG. 5. Curves for the total energies hE„and 8Eg for the Z„
and Zg states, respectively, of the hole as a function of R.

"C.J. Delbecq, W. Hayes, and P. H. Yuster, Phys. Rev. 12&,
1043 (1961).

scription is not a complete one. In that case, there is
high probability of the hole hopping to a new pair of
F ions.

A comparison of Figs. 2, 4, and 5 indicates that the
depths and rates of variation around the minimum of
the Born-Mayer and Pauling curves are comparable.
Also it is seen that the minima of the lattice energy
curves for the Pauling and Born-Mayer approximations
are at 8=4.89ao and 4.92ao, respectively, while the
minimum in the E„curve for the electronic energy
occurs at about 4.56ao. In comparison, the minimum in
the 8E„curves for the total energy occurs at about
4.72ao for both the Pauling and Born-Mayer approxi-
mations. These considerations indicate that according
to our calculations, the lattice distortion around the
VI, center and the electronic binding within the F2-
molecule are comparable in importance in contributing
to the stabilization of the V~ center.

From Fig. 4 one can also obtain the absorption energy
for transitions between the Z„and Z, hole states. By
the Franck-Condon principle, we expect the transition
energy to be obtained vertically from the minimum in
the E curve. From Fig. 5, the absorption energy for
both the Born-Mayer and Pauling approximations is
0.097 Ry, which corresponds to 1.32 eV. This is to be
compared with the experimentally observed' position

6$'= 0.58 eV (49)

as compared to the experimental value of 0.95 eV
found by Delbecq et al."So the calculated value of the
half-width is about a factor of 2 less than experiment.
An improved electronic energy calculation would lead
to a deeper potential well for the Z state implying an
increase in E, while the Z, state would get steeper
leading to an increase in A. These two consequences are
opposite in their influence on 6$' but perhaps their
combined effect would lead to better agreement with
experiment. Another quantity that can be derived from
Fig. 5 from the ground-state curve is the half-width of
the lowest vibrational state. One can deduce the follow-
ing expression for this latter half-width, namely

(AR) res
——(0.996) (IzK) 'i'a p. (50)

Using the values of p and E for the Born-Mayer curve

"See, for example, D. L. Dexter in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic Press Inc. , New York,
1958), Vol. 6, p. 353.

where A is the excited state slope in Ry/as, y, is the
effective mass of the oscillator in units of the electron
mass, and E is the ground-state force constant in
Ry/as'. Properly, one should use not only the reduced
mass of the two F atoms A and 8 but include a small
correction from the ions C, D, , II which relax.
However this last correction is rather dificult to calcu-
late and is not warranted because of the various ap-
proximations that we have made so far in our calcula-
tions. So we take

p =9.5m.X 1837,

where the electron mass, m, =9.11X10 "g. From the
Born-Mayer curve in Fig. 5, we get K=0.1 Ry/ass,
A=0.1 Ry/as. Substituting these numbers in (48) we
have
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we get (AR)1@=0.015sp. The Pauling curves in Fig. 5
yield almost exactly the same values for 6$' and
(DR)1~2 as the Born-Mayer curves. This small value
of (&R)ii2 assures us that the actual inter-nuclear dis-
tance in the F2 molecule is always well within the re-
gion in which our calculation is valid.

With the wave functions that we have obtained for
the V~ center, we can make an approximate calculation
of the hyperfine coupling constants between the un-
paired electron spin and the F" nucleus. The Hamil-
tonian describing the magnetic hyperfine interaction
between a nucleus and the spins of the orbital electrons
is given by

where

and

ti 1P

K—KAjp+Kr )

2p~ps S,'I 3(S,'r, )(I r;)
+I ' r,3

(51)

(52a)

Kr = (16'/3) (I1&IAB/I) p, S,'I8(r;) . (52b)

In Eqs. (52), p~ and I are, respectively, the magnetic
moment and spin of the nucleus, p~ is the Bohr magne-
ton, S, and r, are, respectively, the spin and position
vectors of the ith electron. The summation in i runs

over all the electron spins in the atomic or molecular
system under consideration. When we have a system
with one unpaired electron and the wave functions for
the various electronic states of the system are orthogonal
we can drop the summation over i in Eqs. (52a) and
(52b) and take expectation values over the orbital
corresponding to the single unpaired electron. However,
when the wave function for the orbital of the unpaired
electron is not orthogonal to the wave functions for
other states one has to take the expectation values of
the summations in (52a) and (52b) over the entire
determinantal wave function involving both the outer
unpaired electronic state and all other paired states of
the molecule. It can be shown" however, that in such
cases, one can simplify the calculation by making the
unpaired electron wave function orthogonal to the wave
functions for the paired states by the Schmidt or-
thogonalization procedure. One then has to take the
expectation value of only one term out of the summa-
tions in (52a) and (52b) over the orthogonalized wave
function. For the ground state Z of the hole, the un-
paired electron will be in a O.„state. The orthogonalized
wave function for the unpaired electron will therefore
be of the form:

4'u ~1(flSA+41SB) ~2(42SA+42SB)

&f&+251 &$1SA I
$1SB)+2S2 (4'2S A I 4'2SB)+4~152(4'1SA I $2SB)jl'

(53)

where

Si &0'
I
0'isA) Q'

I 01sB) 1

+2 &O' ICOSA)= —
&O' IASB),

~'=&~-l~.)

terms in (54) are identically zero. The fourth and fifth
terms are two orders of magnitude smaller than the
leading term. Therefore we can write, using (38) and
(39),

f = (3~~/21&2) LK d'dr(&&'A I
o

I »A)
The overlap integrals Q'isA I pisa), &ASA I ASB), and

Q 2sA I lp2SB) are all one order of magnitude less than the
overlap integrals S~ and S2, so we shall neglect them.
Using Eq. (53) for the wave function P of the unpaired
electron and Eq. (52a) for KA;„we obtain Eq. (54) for
the hyperfine constant "b". Since we want to express
"b" in Oersteds we have divided the hyperfine constant
in energy units (ergs) by 2ps.

b= (3~B/21&')L&4 l0I4 )+Si'&&1SAI0IASA)
+52 Q 2SA

I
o

I
ASA) —2~1@.I 0 I ASA)

—2S2Q
I
0

I $2SA)+2S152$1SA I
0

I $2SA)j, (54)
with

0= (3 cos'eA —1)/rA',

where r~ and |Ijg refer to the polar coordinates of the
electron with respect to A and with the AB direction
as the Z axis. Equation (54) is approximate because a
number of cross terms, involving 1S and 2S orbitals
on atom B have been dropped. These terms are three
orders of magnitude less than the leading term Q I

Ol P ).
Furthermore it is clear that the second, third, and sixth

+(»A I 0I »B)+O'Bl 0I »A)+(4'BI 0I 41B))] (55)

In Eq. (55) the fourth term in brackets is two orders
of magnitude smaller than the contribution from the
first term while the second and third terms are each
more than one order of magnitude smaller. Also, when
either i or j is three or four, the contribution to the
first term is identically zero. We thus have finally,

(AN/51&') pi &41A I rA I41A)+d2 &42A I
rA I4'2A)

+2did2(4 1A I
rA

'
I 4 2A)j ~ (56)

Using Eq. (39) for piA and &2A we then obtain for b

the value 747.30e for both the Pauling and Born-
Mayer approximations. More than 99%of the contribu-
tion to b comes from the first term in (56). Since our
wave functions were tabulated for the points listed in
Table VIII, we had to interpolate the coefficients d; in
Eq. (55) at R equal to 4.72ap. The calculated value

' See, for example, B. Gourary and F. J. Adrian, Phys. Rev.
105, 1180 (1957); W. Blumberg and T. P. Das, ibid. 110, 647
(1959).
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TABLE 1X. Contributions from the various terms in Eq. (57)
to the isotropic hyperfine interaction constant for F'9 nucleus in
the Vq center. The wave function densities are in units of uo 3

and the contributions to uy in Oe.

Term in
Eq. (57)

Wave function Contribution to hyper-
density fine constant eg

First
Second
Third
Fourth
Fifth
Sixth

Total

0.00012
0.00684
0.00604—0.00178—0.00167
0.01288
0.02243

0.175
10.317
9.099—2.679—2.516

19.384
33.780

of the hyperfine constant b is in fair agreement, cer-
tainly in much better agreement, with experiment than
the optical absorption frequency and width. The ex-
perimental value of b is not known unambiguously'
because it depends on the sign of a which is not
known. If the sign of a is assumed negative, the ex-
perimental value of b would be 946 Oe while for a
positive the value would be 828 Oe. The hyperfine con-
stant a is given by

where

a= up —(b/3), (57)

"A. Mukherjee and T. P. Das, Phys. Rev. 111, 1479 (1958).

rsF= (g7rpN/3I1P)[y s(A)+Srsfrs@s(A)

+SR'ssg'(A) —2Sr4(A)As(A) —2Ss4'„(A)As(A)

+2SrSsfrs(A)ass(A) ).
The term ap arises from the Fermi contact term BCp

in the Hamiltonian and b/3 from—Xs;,. In Eq. (57)
we have neglected all the terms that involve Prs~(A)
and loess~(A). We have done this because the terms in-
volving ursa(A) and fssB(A) are an order of magnitude
smaller than the smallest of the terms in Eq. (54).
This approximation is in line with our assumption con-
cerning the smallness of the overlaps between the 1S
and 2S orbitals about the two centers. To emphasize
the importance of the overlap terms which may also
be referred to as the Pauli correlation terms, "we have
tabulated in Table IX the values of the various terms
in the brackets of Eq. (57) in units of as ' as well as
the value of ap in Oersteds for 8=4.72ao, the equi-
librium distances for both the Pauling and Born-
Mayer cases.

Combining as and b/3 we ge—t for a the value
—215.3 Oe. It appears that the constant b is in much
better agreement with experiment than the costant a.
The reason for this can be gauged by examining
Table IX. From Table IX it appears that the major
contribution to a comes from the second, third, and
sixth terms in Eq. (57). All these terms depend bi-
linearly on the overlap integrals S& and S2. A stronger
conjugation between the two ions A and 8, as expected
from earlier considerations of the optical data, would

reduce the distance corresponding to the minimum in
the total energy curve in Fig. 4 and would therefore
increase S& and S2 significantly. Such an increase would
enhance ag and therefore cause a greater cancellation
between as and b—/3 leading to a smaller theoretical
value of a. The value of b on the other hand, as seen
from Eq. (56) does not depend sensitively on R and
should therefore be relatively unaGected by a stronger
conjugation. This stronger conjugation would also
make the electronic energy curve deeper than the lattice
energy curve and therefore make the properties of the
VI, center less sensitively independent on the lattice
potential. Evidence that this is the case has been ob-
tained by Twidell and Hayes" in recent work on CaF2.
It should be mentioned here that in addition to the
Pauli correlation effect there will be a contribution to
ag from the exchange polarization effect" which arises
out of the difference in the potentials experienced by
electrons in the two spin states of the 1S and 2S shells.
For an order of magnitude estimate of the exchange
polarization one could use as a criterion the results from
the nitrogen atom. Thus, noting that there are three
unpaired 2p electrons in the nitrogen atom as compared
to approximately one-half of a 2p electron per fluorine
atom in the present case, one would expect the ex-
change polarization contribution to a to be about a
sixth of the 10 Mc result found for the nitrogen atom.
This would correspond to only about 0.25 Oe. While
this result is probably an underestimate because the
1S and 2S wave functions in fluorine atom are more
strongly bound than in nitrogen, it is however clear
that a consideration of exchange polarization effect
alone cannot explain the difference between our calcu-
lated values of a and experiment.

VI. CONCLUSION

From the calculations in the previous sections it
appears that both the distortion of the lattice around
the VJ, center and the electronic binding of the 0- elec-
trons play important roles in determining the properties
of the VI, center. The relative importance of the lattice
and electronic energies would of course determine how
the properties of the V& center will vary from one
crystal to another. Recent work of Twidell and Hayes, '0

however, indicates that the electronic properties of the
VI, center in CaF2 are almost the same as in LiF. This
could be explained either if the electronic binding
energy of the F2 molecule and the lattice energy are as
comparable with each other in importance as in LiF or
if the electronic binding energy has been underestimated
by us and really involves a curve with a steeper mini-
mum than we have calculated and the lattice effect is
of minor importance in determining the equilibrium

0 A. Twidell and W. Hayes, Proc. Phys. Soc. (London) A79,
1295 (1962).

» P. Heine, Phys. Rev. 107, 1002 (1957); T. P. Das and A.
Mukherjee, J. Chem. Phys. M, 1808 (1960).



MAGNETIC PROPERTIES OF SELF —TRAPPED HOLE IN LiF A1093

configuration. The latter possibility seems somewhat
more probable, from our considerations of optical and
hyperhne data in the last section. Also, we have made
an approximate calculation of the energy of a trapped
fluorine atom at a F site using the Born-Mayer
approximation and allowing for displacements of the
nearest neighbor Li+ ions. The procedure employed in
the calculations is analogous to that used by Dick"
in recent work on alkali halide solid solutions. The
energy of the trapped Quorine atom relative to the un-
disturbed crystal after the hole is removed is then
found to be —0.441 Ry. Comparing this with the corre-
sponding energy, —0.443 Ry for the VI, center for the
Born-Mayer approximation, it is noticed that they are
almost equal, although one would expect the V& center
to be lower in energy from a consideration of relative
stability. This result seems to substantiate our conclu-
sion that we have underestimated the electronic binding
energy of the VI, center and should have a curve with a
steeper minimum for the ground state in Figs. 4 and 5.

It would be useful to combine the results of a careful
recalculation" of the electronic energy of the Fz
molecule with the results of our lattice energy calcula-
tions in Sec. III to obtain a better total energy curve
for the Vg, center. It would also be interesting to 6nd
out if the recalculated wave function for the electronic
0. state gives better agreement with the experimental
value of the hyperfine constant u. It is encouraging
that the results of the lattice energy calculations in
Sec. III with two widely different repulsive energy
formulas, such as the Born-Mayer and Pauling expres-
sions (10) and (12), are not very different from one
another and especially that the curves in Figs. 2 and 5
are so similar in shape. This is a very signi6cant result
because the eGects of such widely diferent force laws
have not been extensively compared in imperfect crys-
tals. In future calculations one could therefore use
either the Born-Mayer or Pauling repulsive formula
with equal confidence.

One possible source of error in the calculation of the
absorption energy should be mentioned here. When we
consider the Hartree-Fock approximation for an atomic

"3.G. Dick and T. P. Das, Phys. Rev. 127, 1053 (1962).
"See, for example, A Kolos and C. J. Roothaan, Rev. Mod.

Phys. 52, 219 (1960);B.Ransil, Rev. Mod. Phys. 32, 245 (1962).
Such calculations are already in progress at Argonne National
Laboratory (A. C. Wahl and T. L. Gilbert, private communi-
cation).

or molecular system, the net energy of the system is not
just the sum of the one-electron energies for the in-
dividual states because then the Coulomb and exchange
interaction energies get counted twice. One has there-
fore to subtract off the Coulomb and exchange energies
from the sum of one-electron energies for the various
states. The difference in E„and E„which are tabulated
in the last column of Table VII, is therefore likely to
differ from the Z„—+ Z, excitation energy for the hole
if there is appreciable difference in the exchange and
Coulomb integrals occurring in the energy expressions
for the a-, and 0-„states of the electrons. We have not
made any estimates of the correction due to this source
of error because such a refinement would be inconsistent
with the approximations we have already made in our
electronic energy calculations in Sec. IV.

There is one other correction that has to be con-
sidered in any improved calculations in future. In Sec.
IV and in Fig. 5 we have directly added the electronic
and lattice energies associated with the VA, center
which amounts to a neglect of self-consistency require-
ments. To be entirely self-consistent, one should con-
sider the change in the potential seen by the electrons
due to the distortion and polarization of the lattice.
Correspondingly, one has also to consider the change in
lattice energy produced by the redistribution of the
electron density on the F2 molecule due to electronic
binding. However, if it turns out in a reined calculation
that the electronic binding is much more important
than the lattice distortion in determining the equi-
librium situation for the VI, center, one would expect
the consistency condition involving interaction be-
tween lattice and electronic potentials to be correspond-
ingly less important.
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