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The techniques of Kroger and Vink and Brebrick are extended to allow a calculation of the minimum
extent of self-compensation by simple vacancies or interstitial atoms in heavily doped binary semiconductors.
The resulting equations are applied to a series of compounds, and it is found that the degree of self-compensa-
tion by singly ionizable vacancies varies from essentially complete in KCl (all but ~10 ' of the impurities
compensated) to practically none in GaAs (only &10 of the impurities compensated}. The II-VI com-
pounds occupy an intermediate position with about 99 and 99.9/& self-compensation in CdTe and ZnTe,
respectively. These theoretical conductivity limitations are not sufficient to account for the experimental
limitations found in, for example, n-ZnTe or p-CdS. The above results are extended to include multiply
ionizable vacancies, the ionization levels of which fall within the bandgap. It is found that essentially
complete self-compensation by a combination of singly and doubly ionized vacancies will occur in the higher
bandgap II-VI compounds. As a consequence, for example, the Fermi level in ZnTe cannot be pushed closer
to the bottom of the conduction band than half the energy separation between the second ionization level
of the acceptor vacancy and the bottom of the conduction band. Some specific implications of the above
calculations with respect to CdTe and GaAs are discussed. Finally, certain solubility effects (oi impur-
ities) related to stoichiometry and the above calculations are discussed,

I. INTRODUCTION
' 'T is well known that the introduction of electrically
& - active impurities into a semiconductor host crystal
induces the formation of electrically active "natural"
defects (vacancies, interstitial atoms, etc.), which tend
to at least partially compensate the electrical activity
of the impurity. This phenomenon has been considered
by a number of workers, particlarly in a review article
by Kroger and Vink' and, somewhat more rigorously
and recently, by Brebrick. ' ' This self-compensation
may be analyzed simply in terms of an energy balance
equation, i.e., energy must be supplied by the crystal
to produce the "excess" concentration of defect centers
while energy is gained by the crystal by the interaction
of the defects with the free carriers produced by the
added impurity centers. Clearly, if the energy of defect
formation is large compared to the energy gained by
compensation, very little self-compensation will take
place. On the other hand, if the energy of defect forma, -

tion is small compared to the energy gained by compen-
sation, all free carriers will be compensated by the
formation of defects and only insulating crystals will

be accessible by equilibrium processes.
The purpose of this paper is the calculation, in terms

of the energy parameters of the host crystals, of the
minimum extent of self-compensation by simple vacan-
cies in a series of binary compounds, i.e., KCl, ZnTe,
CdTe, and GaAs. Qualitatively, we expect to observe
a trend in this series due to the fact that the more
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ionic compounds, e.g., KCl, have electronic bandgaps
which are large compared to their cohesive energies
while the reverse is true for the more covalent corn-
pounds, e.g. , GaAs. Roughly speaking, the energy
gained by the system upon "recombination" of a free
carrier at a vacancy is expected to correlate with the
bandgap, while the energy required to generate a va-
cancy, i.e., the energy required to remove an atom from
the lattice, is expected to correlate with the cohesive
energy.

The possibility of obtaining appreciable n and p-type-
conductivity in the II-VI compounds, e.g., CdTe and
ZnTe, is a question of increasing technological im-
portance because of possible application toward an
injection luminescence device operating in the visible
region of the spectrum. These compounds appear to be
an intermediate case requiring somewhat more careful
analysis.

In Sec. II, we calculate the degree of self-compensa-
tion by simple singly ionizable acceptor vacancies in a
binary semiconductor ME, into which we have intro-
duced a large concentration of shallow donors, D. (A
precisely analogous situation will exist for acceptors. )
This calculation is based essentially upon the equation
for charge neutrality and Fermi statistics as applied to
a nondegenerate semiconductor. ' '

In Sec. III, we apply the resulting equations to the
series of compounds under consideration and find the
expected trend in the results. Of particular interest are
the results for CdTe and ZnTe, which indicate that the
degree of self-compensation by singly ionizable vacancies
calculated theoretically is rot sufficient to account for
the observed conductivity limitations in the II-VI
compounds, Zn Te being a particularly appropriate
example.

In Sec. IV, we generalize the results of Sec. II to in-
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elude multiply ionizable vacancies, in particular, doubly
ionizable vacancies, such as might be expected to be
important in the II-VI compounds. It is demonstrated
that multiply ionizable va, cancies can be of critical
importance in determining the degree of self-compensa-
tion under certain circumstances, these circumstances
being most probably appropriate to the II-VI com-
pounds. In particular, under these circumstances, we
find that the Fermi level cannot be pushed appreciably
closer to the bottom of the conduction band than half
the energy separation between the second ionization
level of a simple doubly ionizable acceptor vacancy and
the bottom of the conduction band.

Some specihc implications of Secs. II and IV are
discussed with respect to GaAs and CdTe in Sec. V. In
particular, it is predicted that the concentration of
simple vacancies in GaAs must be small, and certain
experimental evidence supporting this view is cited.
With respect to CdTe, it is pointed out that the assign-
ment of a level much below the conduction band to the
second ionization of a Cd vacancy cannot be correct.

Finally, in Sec. VI, we discuss certain effects of vacan-
cies on the solubility of impurities, in view of the above
calculations.

/'I

II. SINGLY IONIZABLE VACANCIES

I et us consider a binary compound semiconductor,
ME, into which we have introduced a large concentra-
tion of donors, D, at the temperature T. The pressures
of the various species in the vapor phase are fixed, par-
ticularly the pressures of N«& and X«~, pM and p~.
The only defects in the host crystal which we consider
are simple singly ionizable vacancies, an M atom vac-
ancy being assumed to be an acceptor while an lV atom
vacancy is assumed to be a donor. For simplicity, we
will analyze only the case of heavy doping in which the
concentration of ionized donors, D+, is large compared
to the concentration of ionized E vacancies, UN+, or
holes in the valence band, p. LThe calculations can easily
be extended to include V~+ by simply writing
(D"+V~+) in place of D+ throughout. $

It will be shown in Sec. III that self-compensation
by interstitial atoms rather than vacancies is essentially
equivalent and leads to similar results.

The charge conservation equation, which is sufficient
to describe the system' ' is given by

D+=I+VM,

where e is the concentration of electrons in the conduc-
tion band and V~ is the concentration of ionized M
vacancies. The competition between e and U~ in
maintaining charge neutrality is clearly the question
at hand.

The interactions between defects in equilibrium in a
nondegenerate semiconductor are given by the equa-

I

n VM/X, UM 1/g——M exp (Eg —E,/k T), (4)

where the right-hand side of Eq. (4) is an equilibrium
constant describing the ionization of an ionized 3f
vacancy to yield a neutral M vacancy and an electron
in the conduction band.

Combining Eqs. (1) and (4), we obtain immediately

n/D+ = 1/1+Q,

Q=gMVM/iV, exp(E, E~)/kT=—gMVM/N,

Xexp(E, E~')/k—T, (6)

where E, is the electronic bandgap and E~' is the ac-
ceptor level of the M vacancy relative to the valence
band.

Equations (5) and (6) are our central result. All the
quantities in Eq. (6) except VM, the concentration of
neutral M vacancies, "'are generally known with suf-
ficient accuracy (with:;:the possible exception of E~' in
some cases). We note that, except for the temperature,
T, only V~ is under experimental control. V~ will be
determined by the pressure of M'«& in the system, pM,
which can take on a range of values. The connection
between VM and pM is written' '

PM VM/EM =exp'/k exp (—AHM/kT), (7)

where E~ is the concentration of 3f sites in the lattice,
and where the right-hand side of Eq. (7) is an equilib-
rium constant referring to the process in which an atom
of 3/I is removed from the ME lattice and placed into
the vapor, the pressure of M~, ~ being maintained at
1 atm (standard state), leaving behind an M vacancy
in the lattice. The quantities 65~ and hH~ are defined
as the entropy and enthalpy of 3I vacancy formation,
respectively. Note that we have Dot assumed that M~, ~

is the only species in the vapor phase but are simply
using pM as a convenient measure of the chemical
potential of M in the system.

Inasmuch as we wish to calculate the minimum extent
of self-compensation, we must estimate the minimum
value of VM and, therefore, the maximum value of pM.
Clearly pM must always be less than the value associated
with the presence of a pure condensed phase of M
(generally M«~ in cases of interest). ' For temperatures

tions of Fermi statistics

e=X, exp(Ep —E,/kT), (2)

VM /V—M gM
——exp(Ep Ez—/kT), (3)

where E, is the density of states near the bottom of
the conduction band (given in terms of the electronic
effective mass and T), E~ is the Fermi level, E, is the
energy at the bottom of the conduction band, V~ is
the concentration of neutral M vacancies, E~ is the
acceptor energy level associated with an 3f vacancy,
and gM is a degeneracy factor (generally we assume
gM

——2 for a singly ionizable level). An equivalent
description is given by the mass action formalism. ' '
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several hundred degrees centigrade below the maximum
melting point of MS, or lower, the maximum achievable
value of ps' is fairly well approximated by that associ-
ated with M&il, Psr ", for most cases of interest. We
will confine our calculations to such temperatures that
p~-=p~-v and simply point out that the results will

represent a lower bound to the degree of self-compensa-
tion at other temperatures where piu(p~ 'i', e.g. , the
maximum melting point. We write,

ps' '&= exphSsf 'u/k exp( —AH~ 'u/kT) (&)

and obtain, finally, from Eqs. (6)—(8),

kTleQ '"=E, Ed' ~—rd+DHsr "
+T(DSsr AS' 'i')+—kT ln(gsrlVsr/1V, ) . (9)

Thus, with Eqs. (5) and (9) we can calculate the
maximum relative concentration of free carriers that we
can introduce into ME(, ) at the temperature T. If T
is suf6ciently large, these carriers will be equal in
concentration to the "uncompensated" donor impuri-
ties present. If the temperature at which we measure
the conductivity is much less than T, some of these
carriers may "freeze out. " The extent of this "freeze-
out" is determined largely by the energy level associated
with the donor impurity (for the case of singly ionizable
vacan, cies only). We will not be concerned with this
"impurity limitation" on the accessable carrier con-
centration and conductivity but merely state that Eqs.
(5) and (9) allow us to calculate the maximum relative
concentration of uncompensated shallow impurities
(virtually all ionized at temperature T) that can be
introduced into MÃ(, ).

III. CALCULATION OF RESULTS) KC1,
Zn Te, CdTe, AND GaAs

We now apply Eqs. (5) and (9) to p-KC1, m-ZnTe,
ri- and p-CdTe, and e-GaAs. The energy bandgaps,
E„are available in the literature. ' ' The energy levels
of the compensating vacancies, E~' are available for
p-KC1 (F center) "e-ZnTe)" e-CdTe)' and p-CdTe.
No data are available on E~' in GaAs and we will

simply assume 8&'= 0 in this case to put an upper bound
on the extent of self-compensation.

The enthalpy of compensating vacancy formation,
AH~, is available as such only for m-CdTe. ' The en-
thalpy of formation of interstitial Cd atoms in p-CdTe

4 J. E. Eby, K. J. Teegarden, and D. B. Dutton, Phys. Rev.
116, 1099 (1959).

5 R. H. Bube and E. L. Lind, Phys. Rev. 105, 1711 (1957).
6 D. Larach, R. E. Shrader, and C. F. Stocker, Phys. Rev. 108,

587 (1957).' H. Tubota and H. Suzuki, J.Phys. Soc. Japan 16, 1038 (1961).
s D. DeNobel, thesis, University of Leiden, 1958 lunpublished).

M. D. Sturge, Phys. Rev. 127, 768 (1962)."J.C. Gravitt, G. E. Gross, D. K. Benson, and A. B. Scott,
J. Chem. Phys. B7, 2783 (1962).

"M. Aven and B. Segall, Phys. Rev. 130, 81 (1963).
~ M. R. Lorenz and B. Segall, Phys. Letters 7, 18 (1963).

is reported, however, according to the equation

lcd/+cdpod exp AS—cd /k exphHcd /kT, (10)

where I~d is the concentration of interstitial Cd atoms.
It is, in practice, impossible to distinguish between
interstitial Cd atoms and Te vacancies by electrical
measurements. ' If we reinterpret the data in terms of
Te vacancies and use Eq. (7) (with M= Te) in place of
Eq. (10), it is easy to demonstrate that the "equivalent"
enthalpy of Te vacancy formation is given as

DHT, ——AHcgT, —DHc,d~,

where ~H«T, is the standard molar enthalpy change
for the reaction

CdTe &, &

——Cd«l+ Te «& .

d,H«T, is essentially twice the cohesive energy per
gram-atom of CdTe~, ~ and is available in the litera-
ture. "'4 On the basis of such reinterpretation, we have
obtained ~T, for the calculation appropriate to
p-CdTe. It is apparent that, for our purposes, no signi-
6cant difference exists between interstitial atoms and
vacancies and that the available data can always be
interpreted without error in terms of vacancies, as
above.

The enthalpy of vacancy (P center) formation in
KCl has not been reported. Data are available, however,
as to the concentration of Ii centers as a function of
potassium pressure, PK, at one temperature (697'C)."
In particular, the concentration of Ii centers is reported
to be proportional to pKs ", rather than the expected
linear dependence. We may handle these data in several
ways, with slight variation in the calculated results.
Firstly, we arrive at the minimum value of Vc, & by
extrapolating the reported data to a value of pK
consistent with the highest possible value of poi
(pot '), an extrapolation of perhaps a factor of 10",
and use Eq. (6). Secondly, we may assume a linear de-
pendence and carry out the same extrapolation with a
resultant difference of a factor of 10' (fewer vacancies).
Finally, in a fashion equivalent to the linear extrapola-
tion, we may estimate the standard molar entropy
change appropriate to the removal of a C1 atom to the
vapor as half the standard molar entropy change of the
reaction.

KC1(,) =K(g)+ Cl(s),

plus a small contribution due to the presence of the
vacancies, ""which we somewhat arbitrarily estimate
as 4 e.u."On the basis of our estimate of the total
entropy change, we use Eq. (7) and the data mentioned
above to calculate AHci. Use of this calculated value in
Eq. (9) leads, as expected, to essentially the same result

'30. Kubaschewski and E. L. Evans, Metallurgical Thermo-
chemistry (Pergamon Press, New York, 1958).' D. R. Stull and G. C. Sinke, Advan. Chem. Ser. 18 (1956)."C.Z. van Doom, Phillips Res. Rept. Suppl. 4, 23 l1962)."R.A. Swalin, Phys. Chem. Solids 18, 290 (1961).
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as the linear extrapolation, and is probably the most
reliable method.

No thermodynamic data on vacancy formation is
available for either ZnTe or GaAs. We may, however,
follow Swalin" and write

II~——AH ~+—.E„~2E„g—E„ (14)

where ha~@ is the standard molar enthalpy change for
the reaction

(15)M1V(, i N(——g)+E(g) .

"N. F. Mott and M. J. Littleton, Trans. Faraday Soc, 34, 485
(1938).

'8 V. J. Lyons and V. J. Silvestri, J. Phys. Chem. 65, 1275
(1961).

' D. T. F. Marple, Phys. Rev. 129, 2466 (1963)."3.Segall, M, R. Lorenz, and R. E. Halstead, Phys. Rev. 129,
2471 (1963).

E„h is the cohesive energy per gram-atom and E, is a
"relaxation" energy associated with the vacancy. Eq.
(14) is based on the assumption of constancy of bond
energy and may be expected to apply to covalent
crystals. An equation of the same form can actually
also be derived. for ionic crystals. ' If we put the data
for n-CdTe" into the form of Eq. (14), we find E,/AH~~
=0.24. Similarly, for Ge,"E,/AHAB+ E,/2E, » ——0.19. ——
We will assume that Eq. (14) applies to both ZnTe and
GaAs. Further, we will assume that E,/DHiir~ has the
same value for ZnTe as for CdTe. For GaAs, we will
assume a value of E,/DH~z midway between that of
CdTe and Ge, i.e., E,/AH~~=0. 21, and use the data
of ~+Oaxs

The enthalpies and entropies of vaporization LEq.
(8)), are available for all the elements involved. "

For each case, we take the temperature, T, to be
s|:veral hundred degrees centigrade below the maximum
melting point of the host crystal in order that the
maximum value of p~ be reasonably accurately de-
scribed by p~ '&.

The entropies of vacancy formation, 65~, are gener-
ally unknown. The over-all entropy term in Eq. (9),
(65~ 65~'"), is clearly the st—andard molar entropy
change that occurs upon transfer of one mole of M atoms
from MS(, ) to M(~), leaving 3f vacancies in the crystal.
This must be given by approximately minus half the
standard molar entropy of formation of MX(, ~

from
the solid elements ( 2 e.u. ) plus the standard molar
entropy of fusion of 3E&,& ( 3 e.u. for most elements)
plus a contribution due to the "excess" entropy of the
vacancies' ' " (which is 4 e.u.)." We therefore take
(65~—65~ 'i') as 9 e.u. in each case.

The degeneracy factor, g~, is taken as 2 for all cases
and the concentration of available M sites, S~, is
calculated from the densities of the host crystals, which
are easily available.

The density of states, X„is calculated from the tem-
perature, 1, and the appropriate effective mass, m*,
which is available for n-CdTe ""' p-CdTe' (with

some uncertainty) and n-GaAs. " We will take m* for
g-ZnTe as identical to that of e-CdTe and that for
p-KC1 as equal to the free-electron mass.

Finally, the only implicit temperature dependence in
Eq. (9) that we consider is that of the bandgap, E,.
Estimates of this dependence are available for CdTe' "
and CdAs." The value for ZnTe is interpolated from
data for CdTe, CdSe, and ZnSe."The value of (8E,/BT)
for KC1 is arbitrarily estimated as —10 ' eV/'C.

The inputs for Eq. (9) are given in Table I, excluding
(65~—65~ ")=9 e.u. =3.9X10 ' eV/'C and g~ ——2.

The results of the calculation based on Eq. (9) and
the data in Table I are presented in Table II, along with
data on E, and E„h.It is clear from the above discussion
relating to the data in Table I that the results in the
second and third columns in Table II are reliable only
as to order of magnitude. Nevertheless, we may draw
certain Arm conclusions from these results:

1. There does exist a self-compensation "boundary"
such that certain compounds, falling beyond the
"boundary, " cannot be doped by any equilibrium pro-
cess to have appreciable electronic conductivity, e.g.,
the alkali halides. A rough rule of thumb for determining
the position of the self-compensation "boundary" is
given by the ratio of the bandgap, E„ to the cohesive
energy per gram-atom, E„h,. essentially complete self-
compensation occurring for values of this ratio much
above unity while little self-compensation occurs for
values below 0.5. The expected trend from ionic to
covalent compounds is observed.

2. The II-VI compounds constitute a class in which
considerable self-compensation may be expected to
occur (E,/E, .i,= 1). Nevertheless, the calculated degree
of self-compensation by singly ionizable vacancies for
these compounds is rot sufFicient to explain the well-
known difFiculty of obtaining, for example, appreciable
conductivity in n-ZnTe or p-CdS. Similar results are
expected for compensation by simple singly ionizable
interstitial atoms Lsee discussion of data in Table I for
p-CdTe and Eq. (14)$. We conclude, therefore, that
some other limitation on the accessible carrier concen-
tration and conductivity in II-VI compounds must be
involved. There may, of course, be impurity limitations
related to solubility or position of energy levels within
the electronic bandgap. There may also be other
"natural defects" involved, e.g., impurity-vacancy
pairs, etc. A particular possibility that we will consider
in more detail is the presence of doubly ionizable va-
cancies, of which both ionization levels fall within the
electronic bandgap.

IV. MULTIPLY IONIZABLE VACANCIES

In the general case, we designate the concentration
of 3f vacancies, which have been ionized to a charge of

"C. Hilsum and A. C. Rose-Innes, Semiconducting III-V
Compounds (Pergamon Press, New York, 1961)."R.H. Bube, J'hotoconductkity of Solids (John Wiley A Sons,
Inc. , New York, 1960), p. 237.
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TABLE I. Inputs for Eq. (9).

Compound

p-KCl
n-Zn Te
tz-CdTe
P-CdTe
n-GaAs

T {'K)
970

1500
1250
1250
1250

&u(I')
{eV)

8 038, c

1.36& e ~

1.02'
1.02'
0 95g,e

@A
(ev)

2.40h
0 05~
0.15'
0.02'
0,00.

d H~
(eV)

6.208
3.438
3.20'
3 37'
5.81'i

EHM 'p
(298'K) (eV)

1.36b m

1.21
1.07
1.86m
2.76

(cm ')

1.38X10"
1.83X10"
1 55X 1022

1.55X10"
J..01X1022

lV, (cm s)

1 50X 102o 8

1.03X10» '
7.76X 10"f

3 49X 1 0» f,~,1

4.12X10'

lr See Ref. 17.
1 See Ref. 18.

e See Ref. 20.
f See Ref. 8.

' See Ref. 11.
i See Ref. 16.

I See Ref. 9.
"See Ref. 10.

a See text in Sec. III.
b T is above the critical. temperature of Ci~ so that C].2(s) is the condensed phase of interest rather than C12(I). We will neglect the small e&ect of this

however.' See Ref. 4, m See Ref. 13.
d See Refs. 5—7.

TABLE II. Results from Eq. (9).

Compound

p-KCl
Q-Zn Te
e-CdTe
p-CdTe
m-GaAs
CdS
Zns

Q I min

2.12X108
3.09X 102
3.23X10
8.70X10'
1.70X10 3

(I'l ' /P
or

4.71X10
3.22X 10-3
3.00X 10
1.15X10

0.998

Eg (298'K)
(eV)

7Q8

2.20b
1.5P'
1 50o
1 .43ti

~~~MN —2~coh
(eV)

6.70'
4.51'
4.20e
4.20"
7.35'

Eg/E„s

2.61
0.97
0.72
0.71
0.39
0.94
1.22

a See Ref. 4.
b See Refs. 5—7.

& See Ref. 8.
d See Ref. 9.

e See Refs. 12 and 13.
f See Refs. 16 and 13,

—i as V~ ' and follow Sec. II in writing a charge
neutrality equation,

N

m+QiVsr '=D+ (16)

where E is the highest charge state to fall within the
bandgap. We also write an equilibrium constant for
ionization of a vacancy in the ith charge state,

Certain general features of Eqs. (18) and (20) should
be noted. We see that the eR'ect of the second ionization
level of the vacancy only becomes significant in Eq. (20)
if the doping level is such that the Fermi level rises above
the second ionization. energy level Lsee Eq. (2)$. If we
attempt to dope the host crystal so heavily that the
Fermi level does rise above the second ionization level
of the acceptor vacancy, we see from Eqs. (1) and (20)
that the situation is soon reached in which

where g, Is a degeneracy factor and E&,. Is an energy
level describing the ith charge state of the vacancy. As
before, If, is the energy at the bottom of the conduction
band. It follows from use of Eq. (17) in Eq. (16) that
Eq. (5) still applies, with Q given by

It is clear that Q~&&1 for the higher bandgap II-VI com-
Pounds (see Table II). Further (gtD+/2gsQtiV', )'Is&1.
It follows that the Fermi level in the II-VI compounds
cannot be pushed closer to the bottom of the conduction
band than half the energy separation between the
second ionization level of the acceptor vacancy and the
bottom of the conduction band. In other words, shallow
impurities will be completely compensated by a combi-
nation of singly and doubly ionized vacancies in a
II-VI compound if the second ionization level of the
compensating vacancy falls within the bandgap.

Even if the Fermi level does not rise above the
second ionization level of the acceptor vacancies, these
levels will still contribute to the temperature dependence
of the carrier concentration. If the donor impurities
are suKciently shallow, the position of these second
ionization levels will entirely determine this tempera-
ture dependence. However, as long as Qt»1, "freeze-

N ( Q i s—1

Q=Qt I+&('g'/gt)l —
I

Ex,i

XexpL(1/kT) Q (E, EA,)j, (1g)— .

2=2

where

Qt=grVsrP ~ exp(E. EA )/&T (19)

as in Eq. (6).
For the II-VI compounds, it is believed that N = 2

and we write, for these compounds,

Q= Qt(1+ (2gs/gr) (n/iV, ) exp(E, —EA,/&T)) . (20)

mV~ —'+'/1V, Vsr
—'=g, t/g; exp(EA, E,/kT), (17) .—~/&, =exp(EF E,)/kT= (gtD+/—2gsQtS. )' '

Xexp (EA,—E,/2k T) . (21)
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out" of carriers onto these levels cannot push the Fermi
level higher than the maximum value discussed above.
Complete compensation of impurities by a combination
of singly and doubly ionized vacancies will then always
occur as long as the energy level of the added donor
impurities is shallower (closer to the conduction band)
than the second ionization level of the vacancies. If the
energy level of the donor impurity is sufficiently deep,
the donors will not be completely compensated, but
cannot then contribute appreciable conductivity.

V. SPECIFIC IMPLICATIONS: GaAS, CdTe

The magnitude of the concentrations of vacancies in
GaAs is of interest because it has been suggested that
the concentration of some natural defects can be quite
high ( 10"/cm')."The estimated value of the energy
of vacancy formation used in Sec. III, however, leads
to the conclusion that the total concentration of simple
vacancies, neutral or ionized, must be low. In particular,
the maximum concentration of neutral Ga vacancies
(under the maximum pressure of As) is calculated to be

10"/cm'. If the Ga vacancies were shadow acceptors,
the total concentration of Ga vacancies could hardly
exceed 10"/cm' in a crystal of GaAs grown from an
As-rich melt and doped to be degenerately e-type (at
the growth or equilibration temperature). This view is
supported by the well-known fact that GaAs can be
prepared either n or p-type at -the 10"/cm' level
without appreciable compensation. Thus under "nor-
mal" preparation conditions, the concentrations of
electrically active natural defects must be low, i.e.,
& 10"/cm'.

As regards CdTe, it has been suggested that the
second ionization level of the acceptor Cd vacancy is
0.6 eV below the conduction band. ' "It is, however, well
known that CdTe can be doped degenerately e-type. ' "
From the results of Sec. IV, it is clear that this contra-
dicts the assignment of the 0.6-eV level to the second
ionization level of the isolated Cd vacancy. This con-
clusion does not depend on the results of Sec. III but
simply requires that Q& not be much smaller than unity.
The experimental observation that substantial self-
compensation is observed in e-CdTe' demonstrates that
this requirement is met. There is, in fact, some support
for the estimated energy of vacancy formation in CdTe
used in Sec. III in that large concentrations of singly
ionized Cd vacancies can be introduced into p-CdTe. "

It would thus appear that the 0.6-eV level must be
assigned to some other center, possibly some complex
involving a doubly ionized Cd vacancy. " The second
ionization level of the isolated Cd vacancy in CdTe
must, in fact, be much closer to the conduction band
and may be the level recently observed by Iorenz

"J.Blanc, R. H. Bube, and L. R. Weisberg, Phys. Rev. Letters
9, 252 (1962).

e1 al.'4" in CdTe and some other II-VI compounds (all
of which can be doped heavily e type). The exclusion of
ZnTe (which apparently cannot be doped e type) from
this group is significant.

D/pg) V~=E(T), (22)

which refers to the process in which an atom of D(,)
"fills" an M vacancy to yield a neutral donor impurity
in the lattice.

The concentration of ionized impurity atoms in the
crystal, D+, is determined by the equilibrium constant
for the ionization of a neutral impurity to yield a free
electron.

eD+/X, D = (1/g&) exp (ED—E,/k T), (23)

where g~ is a degeneracy factor and E~ is the energy
level associated with the donor impurity.

It follows, from Eqs. (5) and (23), that

~'= P1/(1+Q) j(V. D/g&) exp(Ea —E,)/kT) . (24)

At constant p~ and T, D is proportional to V~ ac-
cording to Eq. (22). On the other hand, according to

'4 M. R. Lorenz and H. H. Woodbury, Phys. Rev. Letters 10,
215 (1963).

"M. R. Lorenz, M. Aven, and H. H. Woodbury, Phys. Rev.
132, 143 (1963).

VI. SOLUBILITY EFFECTS

Inasmuch as an impurity must reside on either an M
site or an Ã site in Sf'(,),we expect that the solubility
of impurities in binary compounds must, in general, be a
function of the stoichiometry of the system, i.e., the
concentration of vacancies. In Sec. II, we have a situa-
tion in which the concentration of added donor impuri-
ties in ME(, ) is held fixed. Under these circumstances,
it was pointed out, the maximum relative amount of
uncompensated donor impurities will occur in a system
in which the concentration of compensating acceptor
vacancies is a minimum. What is generally held constant
in the laboratory, however, is, to a first approximation,
the thermodynamic activity of the added donor impuri-
ties. As a consequence of the dependence of the solu-
bility of the impurities on the vacancy concentration,
it is not necessarily true, then, that the maximum total
concentration of uncompensated impurities will occur
in a system in which the concentration of acceptor
vacancies is a minimum.

For, example, let us consider a compound semicon-
ductor MÃ(, ), which is brought into equilibrium at the
temperature T with a total constant activity of added
donor impurities, i.e., the partial pressure of atomic D(,)

is held constant at a value pD. These impurities are
presumed to reside on 3f sites in the host crystal for
this system. The pressure of M(, ) is again designated
p~ and we assume, as in Sec. II, that only singly ioniz-
able acceptor M vacancies need be taken into account.

The concentration of neutral donors, D, in the host
crystal is determined by the equilibrium constant. ' '
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Eq. (6), Q is also proportional to Vsr at constant T. We
see, therefore, that the total concentration of free
carriers, e, is a maximum when V~ is a maximums,
despite the fact that the relative amount of uncompen-
sated donors, n/D+, is a minimum under the same condi-
tions. When Q))1, as in the II-VI compounds (see Sec.
III), the total concentration of free carriers is essentially
independent of Vsr. Thus, as psr is varied in these sys-

tems, only the concentration of compensated donors
varies.

It should be noted that the situation is entirely dif-
ferent if the donor impurities reside on Ã sites rather
than M sites. Under such circumstances, the solubility
of the impurities is maximized and the degree of self-
compensation minimized when V~ is minimized, i.e.,
when PM is maximizsed.
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Theory of the Optical and Magnetic Properties of the Self-Trapped
Hole in Lithium Fluoride*
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Using a semiphenomenological method, the energy and wave functions of a self-trapped hole (U& center)
in LiF are obtained as a function of the separation between the two F ions at which the hole is assumed
trapped. The lattice distortion energy due to the changes in Madelung, repulsive, and polarization energies
is calculated as a function of the totally symmetric displacement of the two participating F ions and six
positive ions adjacent to the F ions. This lattice energy is combined with the calculated energy for the
F2 molecule to obtain the total energy as a function of the distance between the participating F ions for
both the symmetric (Z,) and antisymmetric (Z„) states of the hole on the U& center. Only the energy curve
for the ground (5„)state exhibits a minimum in the expected region of F -ion separation. From the resulting
configurational coordinate curves, the optical absorption energy and width are computed and found to be
in order-of-magnitude agreement with experiment. Computed values of the experimentally known isotropic
and anisotropic hyperfine constants are used to assess the validity of our molecular wave functions, which
were obtained in a one-electron approximation.

I. INTRODUCTION
' "N recent years, a fairly detailed understanding of the
~ - F center in alkali halides has been achieved by con-
certed theoretical and experimental studies of its elec-
tronic structure. ' The F center consists of an electron
bound to a negative-ion vacancy, and is the simplest
of several "electron" color centers such as the M, E,
and P' centers. ' A series of "hole" color centers also
exists (V&,H, V&); these are characterized by optical
absorption bands lying at somewhat higher energies
than those of electron centers, are generally stable only
at low temperatures, and must be formed by high-energy
irradiation. The best understood of these, a center
which consists of a self-trapped hole, has been studied

* Supported in part by the National Science Foundation and in
part by a Grant (62—145) from the U. S. Air Force Office of
Scientific Research.

I See, for example, the review article by B. S. Gourary and
F. J. Adrian in Solid State Physics edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1960), Vol. 10.

'See, for example, J. H. Schulman and W. D. Compton, Color
Centersin Solids (Pergamon Press, Inc. , New York, 1963).

elaborately by Castner and Kanzig. ' Electron resonance
data have conclusively shown that this center is not
associated with a vacancy but instead resembles a
negative halogen molecule-ion with a hole shared be-
tween two adjacent negative ions. Two previous theo-
retical attempts4' have been made to explain the
stability of this self-trapped holes. Yamashita4 tried to
calculate the energy of the hole in KC1 as a function
of the displacement of the Cl—ions which trap it. He
could not obtain a minimum in the energy as a function
of this displacement but suggested that the repulsion
between the core electrons of the Cl ions, which he
had neglected, might provide a minimum in the energy
curve at half the usual distance between the ions in the
crystal. A subsequent attempt by Nettel' gave the
result that the energy of a hole trapped as a CI2 ion
in the crystal had higher energy than a chlorine atom

'T. G. Castner and W. Kanzig, Phys. Chem. Solids 3, 1.78
(1957); Nuovo Cimento Suppl. 7, 612 (1958).

J. Yamashita, work at the University of Illinois, 1958
(unpublished).' S. J. Nettel, Phys. Rev. 121, 425 (1961).


