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C. E. HURWITz AND A. L. MCWHORTER

Lincoln Laboratoryt and Electrical Engineering DePartment, irIassachttsetts Institttte of
Technology, Cambridge, Jtt/Iassachlsetts

(Received 2 December 1963)

An experimental and theoretical investigation is made of growing screw-shaped plasma density waves in'

a semiconductor bar subjected to parallel electric and magnetic fields. A particularly simple mode is used,
requiring only a thermal-equilibrium electron-hole plasma, low-recombination surfaces, and moderate fields.
It is shown that in extrinsic material the growth is spatial, corresponding to stable traveling-wave amplifica-
tion, while for nearly equal densities of positive and negative carriers the wave is absolutely unstable and
corresponds to the oscillistor phenomenon. Experimental observations of the waves were made in germanium
at and above room temperature for frequencies from 20—400 kc and with electric and magnetic fields from
25—60 V/cm and 0—11 kG, respectively. The growth rates and phase characteristics were found to be in
excellent agreement with theory and gain in excess of 35 dB/cm was obtained. At higher temperatures,
corresponding to nearly intrinsic material, evidence of instability was found in accordance with the theoreti-
cal prediction.

I. INTRODUCTION

ELICAL plasma density waves were originally
proposed by Kadomtsev and Nedospasov' to

account for an instability that occurs in the positive
column of a gas discharge in a longitudinal magnetic
field. Subsequently, Glicksman' suggested that a slightly
generalized form of this theory could explain the oscil-
listor effect in semiconductors. ' ' In its simplest form
the oscillistor is a semiconductor bar that exhibits
terminal voltage and/or current oscillations when an
electron-hole plasma is created by injection or light
generation and suKciently large parallel electric and
magnetic fields are applied. Further refinements of the
theory for semiconductors and experimental confirma-
tion of the helical nature of the oscillistor instability
have been provided by several other authors, ' "leaving
no doubt as to the correctness of Glicksman's basic
idea. However, the feature from which the oscillistor
takes its name, the terminal voltage-current oscillation,
has not been adequately accounted for up to now, nor
has it been determined whether the oscillation is caused

*Based on a thesis submitted by C. E. Hurwitz to the Massa-
chusetts Institute of Technology in partial ful6llment of the
requirements for the degree of Doctor of Philosophy.

t Operated with support from the U. S. Air Force.
' B. B. Kadomtsev and A. V. Nedospasov, J. Nucl. Energy 1,

230 (1960).' M. Glicksman, Phys. Rev. 124, 1655 (1961).
' I. L. Ivanov and S. M. Ryvkin, Zh. Techn. Fiz. 28, 774 (1958)

[English transl. : Soviet Phys. —Tech. Phys. 3 722 (1958)j.' J. Bok and R. Veilex, Compt. Rend. 248, 2300 (1958).
'R. D. Larrabee and M. C. Steele, J. Appl. Phys. 31, 1519

(1960).
6F. Okamoto, T. Koike, and S. Tosima, J. Phys. Soc. Japan

17, 804 (1962).' Y. H. Ichikawa, S. Misawa, and Y. Sasakura, Progr. Theoret.
Phys. (Kyoto) 27, 1277 (1962).' T. Misawa, Japan. J. Appl. Phys. I, 67 (1962).

T. Misawa, Japan. J. Appl. Phys. 1, 131 (1962).
M B.Ancker-Johnson, Proceedings of the International Conference

om the Physics of Semicondlctors, Exeter 196Z (The Institute of
Physics and the Physical Society, London, 1962), p. 141; Bull.
Am. Phys. Soc. 7, 496 (1962).

"P.Holter, Phys. Rev. 129, 2548 (1963).
"R.D. Larrabee, J. Appl. Phys. 34, 880 (1963).
"T.Misawa and T. Vamads. , Japan. J.Appl. Phys. 2, 19 (1963).

A1

by an absolute instability or a convective instability
with feedback ""

The present work indicates that the oscillistor in-
stability is an absolute one and that the terminal oscil-
lations can result from nonlinearities alone. The bulk
of the paper, however, is devoted to the theoretical and
experimental investigation of a completely different
aspect of these helical waves, that of traveling-wave
amplification. In this study, a preliminary account of
which has been given earlier, "a mode is utilized that is
much simpler than the one considered by previous au-
thors and which involves only the thermal-equilibrium
hole-electron plasma. In these other treatments the
growth was always assumed to be temporal, representing
instability, and the possibility of stable amplification
was not considered, perhaps because the high degree to
which the growth and propagation constants are in-
Quenced by the net difference in hole and electron densi-
ties was not fully appreciated. It will be shown that
using nothing more than a uniform bar of germanium at
room temperature with a low-recombination surface,
Ohmic contacts, and moderate applied electric and mag-
netic fields, controlled amplification of as much as 35
dB/cm can be achieved. In the limit of nearly equal
hole and electron densities (intrinsic material or material
with a high level of injected carriers) the helical wave
becomes absolutely unstable, corresponding to the
oscillistor situation mentioned above.
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Fro. 1. Right-handed helical perturbation for ~m~ =1. (a)
Perturbed-electron distribution indicated by dashed lines and
perturbed hole distribution by solid lines. "[After Hoh and Lehnert
(Ref. 21).j (b) Cross-sectional view showing charge separation and
resulting perturbed electric 6elds EI. Directions of carrier Aow
due to the combined effect of E& and Bo are indicated by the
vectors E&XBO. (c) and (d) Carrier density versus radius along
a horizontal diameter through the cross section of (b) for the
equilibrium-gradient mode and the surface-density mode, re-
spectively. Solid lines correspond to unperturbed distributions and
dashed lines to distributions altered by radial and azimuthal Rows.

"F.C. Hoh and B. Lehnert, Phys. Rev. Letters 7, 75 (1961).
2' F. C. Hoh, Phys. Fluids 5, 22 {1962).

II. PHYSICAL MODEL

A physical model of the growth mechanism of the
helical wave was developed by Hoh and Lehnert""
for the gas-discharge case. We will include an additional
part of the mechanism and modify the picture to apply
to semiconductors. The argument is begun by assuming
a small, quasineutral, screw-shaped perturbation of
positive and negative carriers to be superimposed on the
steady-state unperturbed distribution. The general
form, in cylindrical coordinates, would be F(r) exp(iree
—iks —i~) with F(r) determined by the boundary
condition at the wall; however, for the present argument
we consider only the lowest mode m=&1, as the full
mathematical treatment shows that this mode has the
lowest threshold for growth. The perturbation is shown
schematically in Fig. 1(a) for m and k having opposite
signs (a right-handed helix). The longitudinal electric
field Ep tends to separate the superirriposed positive and
negative screws axially, which is equivalent to a rotation
of one screw relative to the other, as shown in Fig. 1(a)
and in the cross-sectional view of Fig. 1(b). The result-

ing charge separation creates both an azimuthal and a
radial electric 6eld, E&~ and E&„respectively. The radial
field was neglected by Hoh and I ehnert but it is no less
important than the azimuthal Geld in the description of
the total growth mechanism. In the linear approxima-
tion these Gelds, together with the longitudinal magnetic
field 8p, act on the unperturbed distribution to produce
a radial and azimuthal Qow of particles, indicated in
Fig. 1(b) by the vectors RryXBs and Er,&&Be. If the
unperturbed distribution has a radial gradient, as it
does in a gas discharge or in the usual form of the oscil-
listor (due to the finite recombination of injected car-
riers at the walls), this flow is not divergenceless and
hence can feed particles from the main distribution into
the screw with the proper phase, thus producing a growth
of the perturbation. This may be seen more clearly in
Fig. 1(c), where the carrier density is plotted as a
function of radius along a diameter horizontally through
the cross section of Fig. 1(b). For the signs of Es and
Bp chosen, the Qow adds carriers to the assumed excess
in the region r&0 and removes carriers from the as-
surned deficit in the region r&0, thus enhancing the
perturbation.

When the inQux of particles is sufficiently large to
overcome the dissipative effects of diffusion and recom-
bination the helix will grow. It may thus be expected
that for a given value of electric Geld Ep there will be
a threshold value of magnetic field Bp, above which
growth is observed. There should also be an optimum
wavelength, for if the wavelength is too long the charge
separation and therefore the driving electric fields will
be too small, while for a very short wavelength the
diffusive effects will take over and dissipate the per-
turbation. If the sample or plasma column is long enough
that end effects are negligible, the wavelength should be
independent of the sample length. For the electric and
magnetic fields as shown in Fig. 1(a) the screw of
opposite sense will clearly be attenuated since the radial
and azimuthal Qows now reverse directions and tend to
destroy the perturbation. In general it may be stated'
that the helix which can exhibit growth is right- (left-)
handed for the electric and magnetic fields parallel
(antiparallel).

In a semiconductor a radial gradient of the unper-
turbed distribution can be produced in thermal equi-
librium by proper doping (e.g., by indiffusion or out-
diffusion of impurities), eliminating the need for a
steady-state injected or optically-generated plasma
with all of its inherent complications. Of course, the
radial gradients of the holes and electrons in this
"equilibrium-gradient mode" will be in opposite direc-
tions, producing a partial cancellation in the growth
process, but as shown in a calculation of the threshold
for this mode in Appendix A there can still be a net
buildup of the perturbation.

However, except for this calculation, we will be con-
cerned with an even simpler mode of semiconductor
operation requiring no unperturbed radial gradient at
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all, merely a sufficiently low surface recombination.
In this Inode, called here the "surface-density mode, "
growth occurs because the radial and azimuthal Qows
can pile up or deplete the carriers at the surface in the
proper phase, as illustrated in Fig. 1(d). The role of the
dc-electric and magnetic fields in producing the Qow

is the same as before. Experimentally the surface-
density mode is easier to achieve than the equilibrium-
gradient mode, and also the mathematical theory for
the surface-density mode can be formulated with fewer

approximations.
In addition to the growth properties, the motion of

the wave can also be ascertained from the physical
model. As is well known, a quasineutral density per-
turbation under the inhuence of an applied electric
field Eo propagates in the direction of minority carrier
drift with a velocity v&=p, Eo, with p„the ambipolar
drift mobility, being given by

where ms and ps are the equilibrium densities of elec-
trons and holes, and p, and p~ are their respective
mobilities. Thus, the helix performs a bodily translation
with the ambipolar drift velocity zd. In addition, there
is a rotation of the helix due to diffusion and conduction
of carriers across the magnetic field. (Another mecha-
nism for rotation, due to the radial ambipolar electric
field, also exists when the unperturbed carrier distribu-
tion has a radial gradient. ) The total motion of the helix
is composed of these two parts. For extrinsic semicon-
ductors the translation will dominate, while for in-
trinsic semiconductors the ambipolar mobility is zero
and the motion is therefore purely rotational. Discus-
sion of the direction of rotation will be postponed until
the next section where the necessary mathematical
expressions are derived. It should be noted that because
of the nature of a helix both motions when viewed in any
cross-sectional plane produce a rotation of the carrier
density and field patterns about the axis."

The ambipolar drift of the helix also plays a crucial
role in distinguishing instability from stable growth. A
detailed discussion is presented in the next section, but
to complete the physical picture the basic ideas are
outlined here. Three fundamental processes govern the
change in amplitude of the perturbation with time at
any point in space: the growth mechanism previously
described, diffusion, and ambipolar drift down the bar.
Above threshold the growth is enough to overcome dif-
fusion, but for a su%ciently large drift velocity the dis-
turbance is swept away, growing as it moves. At any
point in space the perturbation remains bounded in
time, and the result is simply a spatially growing wave.
However, if the ambipolar drift velocity is very small
the perturbation may build up faster than it can diffuse

"The contribution of the drift motion to this rotation. was first
pointed out by Okamoto et alt. (Ref. 6).

and drift away. At a point in space it may then grow
temporally, corresponding to an absolute instability.
Clearly the first case is pertinent to extrinsic semicon-
ductors, and the latter to semiconductors with nearly
equal electron and hole densities and to gaseous plasmas.

It should also be mentioned that Gurevich and Ioffe'4
have proposed a very similar mechanism which can
lead to growing density waves in thin semiconductor
slabs. In their model a steady-state density gradient
and electric fields are set up either by illumination of
one surface or by the Hall effect. Then the addition of
a wave-like density perturbation creates a perturbed
electric field through charge separation in the steady-
state electric and magnetic fields. As in the case of the
helical wave, this perturbed field acts on the unper-
turbed distribution to produce a carrier fiow in the
correct direction to enhance the perturbation. The ap-
plied electric and magnetic fields perform different
functions in the chain of physical argument, but the
fundamental process of coupling an unperturbed density
gradient with a perturbed electric field to achieve
growth is basically the same as for the helical wave.
Experimental observations of instability under condi-
tions similar to those considered by Gurevich and Ioffe
have been reported"" and may well be explained in
terms of their model.

III. MATHEMATICAL THEORY

Kith the preceding physical picture in mind, we now
formulate a quantitative mathematical description of
the helical wave in the surface-density mode. The
equilibrium-gradient mode is considered in Appendix
A. Using the equations of motion and continuity for
electrons and holes, the dispersion relation governing
the growth and propagation of the helical wave will be
derived. From this equation will then follow both the
threshold conditions and the growth and phase con-
stants for stable growth as well as the threshold for
instability.

Consider a cylindrical bar of semiconductor, long in
the s direction so that end effects may be neglected. The
bar is assumed to be uniform and in thermal equilibrium
and therefore to contain a uniform density eo of elec-
trons and ps of holes with ms ps= ED Xg, w—here %r, —
and X~ are the densities of ionized donor and acceptor
impurities, respectively. Under the assumption that the
times and distance of interest are much larger than the
mean free times and paths of the free carriers, we may
write the following equations to describe the behavior of

24L. E. Gurevich and I. V. Ioffe, Fiz. Tverd. Tela 4, 2641,
2964 (1962} [English transl. : Soviet Phys. —Solid State 4, 1938,
2173 (1963)$."S.Nakashima and Y. Miyai, J. Phys. Soc. Japan 18, 1219
(1963).

6 S. 5akashima and Y. Xoguchi, Japan. J. Appl. Phys. 2, 307
(1963l.
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where

and

aei/at= D.V'rEi tJ,.EO(am, /az), —(9)

Pa= jgegh(+0 pp)7/(+OPe+ po»)
(10)

D = (rIOP.Do+ potI aD.)/(+otI +porn)

are the ambipolar mobility and diffusion constant,
respectively.

To obtain the normal modes for the problem, the
perturbations n & and f& are Fourier analyzed in cylindri-
cal coordinates (r,P,z) in the form

n~= Xq(r) exp(ioot —iks —i~),
g ~

——4~(r) exp(ioot —ikz —imp), (11)

the carriers under applied electric and magnetic fields:

J,= eqtJ, E+qD,v'e tJ„J—,xFt, (1)
Ja= pqt oE qD—arIp+t oJI,XB, (2)

an/at= (1/q)v J,+y, (3)

aP/at= —(1/q)T Jo+y, (4)
v' E= —q(e —p)/o. (~)

The subscripts e and h refer to the electrons of density
e and holes of density p, respectively; p is the mobility,
D is the diffusion constant, y is the net rate of bulk
generation (which in the absence of trapping is the same
for both carriers), 0 is the dielectric constant of the
semiconductor, q is the magnitude of the electronic
charge, J is the current density, and E and 8 are the
electric and magnetic fields, respectively.

In order to effect a considerable simplification in the
mathematics it will be assumed throughout that the
square of the Hall angle for each carrier is small; i.e.,
that p, ~,'8'((1. Under this assumption and also assum-

ing that the self-magnetic helds are negligible with
respect to the applied uniform magnetic field 80, Eqs.
(1)—(4) may be combined to yield

arI/at= re, V' E+IJ,,E V'n+D, V'rt

+,;E (~~xs,), (6)
and

ap/at= —ppoV' E—»E Vp+DoPp
+t 'E (~pXBO) (7)

The bulk generation term has been omitted as it is a
simple matter to reinsert it if desired near the end of the
calculation.

Equations (6) and (7) are now linearized for small
perturbations about equilibrium by writing

rt= ep+rtg, p= pp+pi, E=Eo VPg, (8)—

where the subscripts 0 and 1 refer to the equilibrium
quantities and their perturbations, respectively. As-

suming quasineutrality (i.e., e~= p~, but PQ~WO)&
eliminating P& from the linearized equations, and re-
stricting ourselves to the particular case of interest where

Eo and 80 are both in the s direction, we have the famil-
iar ambipolar continuity equation for e&,

4~(r)=Ac~I (Pr)+coI (kr). (17)

To complete the solution, the boundary condition at
the surface r= a of the cylinder must be applied. These
conditions have the form

—(1/q)I.,(a) = (1/q)», (u) =se, (a), (18)

where J„(a)and», (a) are respectively the radial
components of the electron and the hole current at the
surface, s is the surface recombination velocity and
e&(a) is the excess carrier density at the surface. From
(1) and (2), for Ep and I30 in the z direction and for
p, ~'Bo'&&1, we have to first order in the perturbation
quantities

t.&0 W~'l——I.,= epp, !

q 5 ar r ay)
tj.+0 arri)

I (»)
Car r ay/

and

(Wi ~&oa4xl
!-» = —p»l +

q Sar r alai

(a~i I o&o a
+ I (2o)

Car r ay)
Substituting these expressions into (18) and introduc-

ing the solutions (11), (12), and (17) into the resulting
equations we obtain two linear, homogeneous equations
for the coeKcients cJ and c2. The dispersion relation
relating the frequency co and propagation constant k
is obtained by setting the determinant of these equations
equal to zero. The result, after inserting the value of A
from (15) and performing some algebraic manipulation,

and (9) is solved for IV~(r), the radial part of e~, with
the result

X~(r) = c~I„(Pr), (12)

where I„(Pr)is the modified Bessel function of the first
kind of order m, c& is an arbitrary constant, and

P'=—P ((u —p. Epk) /D.7+k'. (13)

The potential +,(r) is obtained from the continuity
equations (6) and (7), which after linearization and for
Eo and 80 in the s direction may be combined in the
form

V'iP, +A V'e, =0,
where

Epk(t .+t a) D. Da-
A= —i + . (1$)

(+ope+ popo) (p —k ) rtope+ potI a

Therefore,

f~= Artq+a solution of Laplace's equation. (16)

The appropriate solution of Laplace's equation is a
modified Bessel function I (kr), and as a result
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is the following equation:

(~PM'EoBo/D. )Lk/(0' —k') j
&(LPI '(Pu)I (ku) —kI (Pa)I '(ka) j
+aPkI '(Pa)I '(ka) im—prrBOPI '(Pa) I (ka)

+L (sa/D, )—imp, BpfkI„(Pa)I '(ka)
impair—BO(s/D )I (Pu)I (ku)=0 (21)

where p„the ambipolar mobility, is as defined in (10),

pH Italo 0 (pOPIa 'nop )/(nop +poach) (22)

is the mixed conduction Hall mobility, and

p '=nop P.p (p.+p )'/(nop. +pop )' (23)

is a quantity with the dimensions of mobility squared
which appears also in the theory of transverse magneto-
resistance. In obtaining (21) use has been made of the
definition (10) of D, and, consistent with the earlier
approximation p„gBp(&1, a term in Bp' has been
dropped.

This dispersion relation (21) is rather complex and
extremely difficult to treat as it stands. Besides being
transcendental, it contains both ~ and k in the argu-
ments of the Bessel functions (through the quantity P).
Fortunately, for much of 'the region of interest it is a
reasonable approximation to expand the Bessel func-
tions in Taylor series to obtain an algebraic equation
for or and k. In the section on experimental results some
numerical solutions of (21) will be presented which indi-
cate the range of validity of these expansions. Further,
since we are dealing with the surface-density mode, it is
expected that surface recombination will have to be
small in order to obtain growth. Therefore, we make the
approximation that s«D, /a and neglect the terms in-

volving s. In addition, it is assumed that bulk recombi-
nation is also suKciently small so that 7 &«a'/D„which
makes it unnecessary to reinsert the bulk recombination
term. In Appendix 3 the modifications due to recombi-
nation are taken into account and it is found that for
the experimental situation of interest the correction is
negligible.

For simplicity we consider here only the lowest
order

~
nt

~

= 1 mode as this mode has the lowest thresh-
old for growth. In Appendix C the general m mode is
considered. Expanding the Bessel functions, we keep
only the first two terms of the Taylor series, which will

be valid as long as P'a and k2u'&&20. Substituting the
expansions in (21), neglecting terms in P'k', and elimi-

nating P' by means of (13) we obtain for the simplified
dispersion relation:

k'u'f3+ 2i(p, ,—pa) Bo j+i(a'/2D. )
X (~—p&ok)L3 —i(3pe+p. )Boj

+(&~ E.B./D. )k"+49+'(.. ")B.j. (24)-
Threshold Conditions

As discussed in Sec. II, it is expected that for a given
electric Geld there should be a critical magnetic Geld

k,2= 4/3a', (26)

and also the threshold value of EpBp. For ease in com-
paring theory with experiment, the latter is written as
an expression for the threshold magnetic held Bp„
which is then a function of Ep.

6k,D
Bp.= ——

~Pm ~p
(27)

with (m~ =1.
The critical frequency f, is obtained from (24).

Since at threshold Ep Bo ' from (27), we must con-
sider two limiting cases in order to remain consistent
with the assumption p, , g Bp(&1. For extrinsic material,
such that

( (no —po)/(no+ po) ~))p, , PBO2, all terms except
the one involving p, are neglected, so that

f,= (1/2~)p,Eok, . (28)

For intrinsic or nearly intrinsic material, where

~
(no —po)/(no+pa) [«p. ,a'Bo', only the terms in p, ,i,BO

are retained, with the result

f,= —(20nzD, /9~a') (p,—pg)BO, . (29)

Equation (28) corresponds to the translation of the
helix at the ambipolar drift velocity (p,EO), while (29)
corresponds to the rotation of the helix due to diffusion
and conduction across the magnetic field. In the inter-
mediate case

( (np pp)/(no+ p—o)
~

=p, q'Bp, the total
motion is composed of both translation and rotation;
however, a correct expression for f, cannot be obtained
in the approximation p, , ~'Bp.'((1.

From (26) it is evident that just the magnitude of
k. is determined. This is simply a consequence of the
fact that for a wave of the form exp(igt —iks —i~)
only the relative signs of k, m, and M are significant.
We will choose the signs of k, and m to make f,)0 in
(28) or (29) and to satisfy (27). The resulting signs of co,

k, and m for various directions of Ep and Bp and for dif-
ferent types of material are listed in Table I. We have
assumed p, &py, . The sense and motion of the helix may
be deduced immediately from this table.

In agreement with the predictions of the physical

and a critical frequency at which growth is first ob-
served. At this point, which we shall call the threshold,
the frequency ar and propagation constant k are both
real, corresponding to neither growth nor attenuation.
Therefore, at threshold the real and imaginary parts of
(24) may be separated and co eliminated between the
resulting equations. Neglecting terms of order p„h2Bp'
compared with unity the result is

3k'a'+ (p~'EOBD/D )ka'+4= 0 (25)

It is evident that only the product EoBO enters (25).
Since we seek the minimum value of the applied Gelds
for which growth is first observed we minimize the
EpBp product with respect to k. In this manner we ob-
tain from (25) the threshold value of k, denoted by k, :
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TAsLK I. Relative signs of or, k, and m for helical wave
of proper sense to permit growth.

Directions of
Bp and Bp

n-type
material

P-type
material

Intrinsic
mater 1al

Zp&0 Bo&0
Zo&0 Bo&0
Bp&0 Bp&0
g~p &0 Bp)0

ca)0 k&0 m&0 co&0 k&0 m&0 ca&0 k)0 m&0
co&0 k &0 m&0 co&0 k&0 m&0 ca&0 k &0 m&0
c0&0 k &0 m&0 ca&0 k &0 m&0 c0)0 k &0 m&0
c0 &0 k &0 m &0 ca &0 k &0 m &0 ca )0 k &0 m &0

model, the helix that can exhibit growth is right-
(left-) handed for Bp parallel (antiparallel) to Ep,
irrespective of the type of material. In each case the
screw of opposite sense has no threshold and is always
attenuated, as will be seen in a subsequent calculation
of the growth constant. In any cross-sectional plane,
the direction in which the helix appears to revolve about
its axis is independent of the direction. of Eo and reverses
sign with a reversal of Bo. Further, for a given Eo and
Bo this direction of apparent revolution is the same for
g-type and intrinsic material and is in the opposite
direction for p-type material.

(p,Ep)')&ppD, (30c)

the square root in the quadratic formula can be ex-

panded in a Taylor series. In performing the expansion
we retain real terms to first order and imaginary terms
to second order. Further, we choose the root correspond-

ing to the negative square root; the other choice leads
to k =IJ, Ep/2D, which by (30a) is much greater than
unity and is thus not self-consistent with the earlier
Bessel function expansion. Actually the full transcen-
dental dispersion relation leads to an infinite number of
other roots, which presumably correspond to strongly

Growth and Phase Constants

Having established that a threshold for growing-
helical waves does indeed exist and having calculated
the critical fields, wave number, and frequency, we

now examine in detail the functional behavior of the
propagation constant of the waves both above and
below threshold. In particular we will consider suf-

6ciently extrinsic material that the waves exhibit only
stable spatial growth. The question of instability will

be taken up in detail later and it will be seen just how
extrinsic the material must be to assure stable growth.

We seek solutions of the dispersion relation in the
form of traveling waves, excited at a specific frequency
and varying spatially. Therefore, ~ is considered to be a
real variable and k is allowed to become complex, i.e.,
k=k,+ik;, where k, is the phase constant and k;
the growth constant. The wave will then travel with

phase velocity voq ——~/k„and will vary in amplitude as
exp(k, s). Equation (24) is now solved directly for k,
and for material suKciently extrinsic that

p,Ep))D /a, (30a)

~
(np —pp)/(so+ po) ~)&pe, a'&0', (3ob)

and

&phase= &group =Pa+0 r (33)

confirming our earlier assertions that for extrinsic ma-
terial the wave translates with the ambipolar drift
velocity.

We see further that the'wave will grow spatially
(k;)0 for waves traveling in the direction of increasing
s and k;(0 for those propagating in the opposite direc-
tion) when

2I3o/8o & (flf )+(f.lf) (34)

and the wave of opposite sense is always attenuated.
Actually the existence of a value of k; of the correct

sign for growth is not sufficient to prove that the solu-
tion corresponds to a growing wave; it might also be
an evanescent wave, such as in a waveguide beyond
cuto6. However, the experimental results confirm the
fact that (32) is a true growing wave solution, and we
need. not investigate this point further.

Instability

In the earlier discussion of the physical model for
the helical wave it was reasoned that for suKciently
small ambipolar drift velocity a disturbance could grow
temporally rather than spatially, resulting in instability
as opposed to stable growth. We shall now derive this
result mathematically by developing a quantitative
stability criterion for the surface density mode of
operation.

Stability criteria and the important distinction be-
tween convective growth and absolute instability in
systems with growing wave behavior have been dis-
cussed by several authors. ""The problem is essentially
one of determining the response of the system to a spa-
tially and temporally bounded, but otherwise arbitrary,
excitation. If the response (which may be any physical
quantity of interest) is bounded as t —+ oo then the system
is stable, and it is absolutely unstable otherwise. As-
suming that only one dimension need be considered and

damped modes. For the correct root we have

k= ( /p E ) i(8—D,/3a'IJ, ,E,)j1+'( a/— ,E,)'
+(&a pH&o/4p D )]~ (31)

A considerable simpli6cation of this result may be
achieved through the use of the previously derived
expressions (27) and (28) for the threshold frequency
and magnetic field. The propagation constant k =k,+ik,
is then

8D, 1- fBo l fqo
+i —2

I I
1 . (32)

3a'w. Eo- f.&o. &f.&

Eq~ati~n (32) corresponds to the helical wave of proper
sense to permit growth, as given by Table I. The
propagation constant for the wave of opposite sense is
obtained by simply reversing the sign of the term
(2f8p/f. Bp.)

Since k„))k;,we have from (32)
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@(z,t) = e'"'da& dk,
cz cr D(k, o))

(35)

where D(k, co) =0 is the dispersion relation for the sys-
tem under consideration. The Laplace contour C~ runs
in the lower half of the co plane, below all singularities
of the integrand, i.e., —~—is&co & ~—iv, where v is
a large positive number. For convenience we have set
s=ico in the conventional Laplace formulation. The
Fourier contour Cp is as usual along the real k axis. For
positive t the co-integration contour is c1.osed by a semi-
circle at in6nity in the upper half-plane, and the k
contour is closed in the upper or lower half-plane when
the region of interest is for s&0 or s)0, respectively.

In general the integrals in (35) will be dificult and
several authors'~" have proposed techniques for ob-
taining the stability information without explicitly
evaluating these integrals. However, for the simplified
helical-wave dispersion relation (24) for the surface-
density mode, the integrations in (35) can be performed
directly to investigate the behavior of $(s,t) for large l.
From the physical model presented in Sec. II it is ex-
pected that instability will be possible only for nearly
equal densities of positive and negative carriers, so for
simplicity we set eo ——po in most terms of (24). How-
ever, we do not set p, ,=0, and thereby retain the very
important terms involving the quantity (No —po). This
turns out to be equivalent to neglecting terms of the
order of (eo po)/(iso+—po) with respect to unity, but
not with respect to quantities of order p, ~80, which are
much less than unity. This level of approximation will

be maintained throughout the calculation. In several
places we shall neglect to set no po purely to preser—v—e
the form of particular terms and to aid in their identi-
6cation later; however, it is to be understood that the
following calculations are correct only for eo= po.

Equation (24), after rationalization of the leading
term, may then be written in the form (assuming
p, aoBo'«1 as usual):

D(k,~) = (k—ko)' —n(~ —~o) =o, (36)
where

ko= ~IJepaEoBo/6D, +—if' /4D,
+I .~.(I . ~a)Bo'/9D. ]Eo, (3»)

~o= (ms .~—aE—o'Bo/6) t u./D.
5IJ go(p po)Bo /3D ]+ 38D,/3a
+ (v Eo)'/8D. p~'Eo'Bo'/18D—.]. (37b)

n= Jm(p, , p—q)Bo 3—i]/6D, — (37c)

Focusing our attention on the Fourier integral of
(35) in the k plane, we see that only contributions to

that end boundaries are suKciently far removed so that
rejected waves are of no significance, it can be shown
that for the purposes of determining the stability it is
sufficient to investigate the response p(s, f) to a 8-func-
tion excitation in space and time:

e
—ikz

the integral will be at values of k=k(co) such that
D(k, co) =0. As the notation implies, these values of k
depend parametrically on co, where ~ assumes all values
on the Laplace contour CI.. Referring to (36) it is clear
that there will be two lines of zeros of D(k,co) in the k
plane, corresponding to the two solutions

where
kg(~) =ko&$n(u —~o)]'

oo = (o (Cr,) .

(38)

(39)

Since CI. is below all singularities of the integrand in the
co plane, we may immediately conclude that the two
lines of zeros do not cross the real k axis and that all of
the zeros are simple. Further, using (37c) and (38) in
(36) and recalling that v may be an arbitrary large
positive number, it is clear that k+(~) corresponds to the
line of zeros in the upper half k plane, and k (a&) to that
in the lower half-plane.

Since the zeros of D(k, a&) are simple, the poles of the
integrand at k=k+(cv) are also simple and the integral
over k can be evaluated using the theory of residues.
For s&0 the contour is closed in the lower half-plane
enclosing the line of zeros corresponding to k=k (~).
The solution for s&0 proceeds analogously and will
not be detailed. We may thus write for the response:

exp(ioo/+i'((u —(oo)]'~')
y(s, t) = exp( —ikos) ck). (40)

c, [n(~—~o)]'"
The integral in (40) may be evaluated directly from a
table of Laplace transforms, ' with the result

1 . 8
y(s, t)= exp i~or —i—ikos ~.

(nt)'I' 4t
(41)

Writing Mo=(oo„+zoo' we immediately conclude that
the system will be stable or absolutely unstable de-
pending on whether coo; is positive or negative.

It therefore follows from (37b) that a long semicon-
ductor bar with a low-recombination surface and with
applied parallel electric and magnetic fields Eo and 80
will be stable (&uo;&0) when

(p, Eo)'+ (8D./a~3)'& ( 'I m'EoBo)' -(42)

and will exhibit absolute instability when the inequality
is reversed.

We may now make a plausible identification of the
terms of (42). The quantity p,Eo is simply the ambipolar
drift velocity. The term (8D,/a&3) is in the form of a,

diEusion velocity and is a measure of the effective veloc-
ity at which carriers diffuse out of the helix. To aid in
the identi6cation of the last term we note that the
earlier results on the threshold for growth may be put
in a form similar to (42). From (26) and (27) we may
write that growth will obtain when

(-',p~'EoBo)'& (8D./aU3)'. (43)

"See, for example, R. V. Churchill, Operational 3Iathemutics
(McGraw-Hill Book Company, Inc. , New York, 1938), p. 328.
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The right-hand term is again the square of the eGective
diffusion velocity. Since it is diffusion which must be
overcome to obtain growth, we may conclude that the
left-hand term is the square of the effective velocity at
which carriers are driven into the helix by the combined
action of Ep and Bp corresponding to the growth
mechanism.

With these identifications in mind we may write the
three quantities in (42) as rig tP 'vd'ff and vsrowth',

respectively. From (42) and (43) it may then be stated
that the helical wave will exhibit stable traveling-wave
arnplification when

&drift ~&diff +&growth +&diff
2 2 . 2 (44)

Jto, min = 3tJ a/2ttsr

below which there can be no instability regardless of the
value of Ep. The instability threshold value of Bp also
decreases monotonically with Eo and although (42)
predicts no corresponding minimum Ep for instability,
there presumably is such a minimum due to saturation
of the growth term when p, J,Bp))1. The terms which
lead to this saturation have, of course, been neglected
throughout the calculations.

Finally, we may calculate the frequency and wave
number at which instability is first predicted, i.e.,
when coo, ——0 and (42) becomes an equality. These
quantities are just orp„and kp„, respectively, and are
given by (3'1a) and (37b), where Es and Bs are the in-

and will be unstable when the first inequality is
reversed.

Although the above discussion is based on a plausible
and not rigorously justified identi6cation of terms in
(42) and (43), we see that (44) leads us to essentially
the same conclusions reached. by physical reasoning.
That is, when the flow of particles due to the growth
mechanism is sufficiently strong to overcome dif-
fusion, a disturbance will grow but will be swept away
from its point of origin and spatial growth will result.
Further, when the flow is sufficient to overcome both
diffusion and drift, the disturbance will build up tem-
porally at its point of origin, resulting in instability.
It is not clear, however, why the above expressions in-
volve the squares of the various velocities. Although
these velocities are actually complex vectors, and some
components will therefore be in either or both time and
space quadrature, no explanation of the form of (44)
has yet been obtained on this basis.

Several further interesting conclusions may be drawn
from Eqs. (42)—(44). For rtoW po the threshold for growth
is lower than that for instability, and consequently as
Bp is increased for fixed Ep the system passes successively
from attenuated waves to stable growing waves to
instability. For tte exactly equal to pe, however, there is
no region of stable gain and above threshold the system
is immediately unstable. The instability threshold value
of Ep decreases monotonically with increasing Bp, but
there is a minimum value of Bp given by

stability threshold values and are related by (42) with
the inequality sign replaced by an equal sign.

IV. EXPERIMENTAL PROCEDURE

In order to provide quantitative verification of the
theory presented in the preceding section, a long, uni-
form cylindrical semiconductor sample was required
with accurately known carrier densities and mobilities
and with bulk and surface recombination sufficiently
low that rb))a'/D, and s((D,/a. Further, it was neces-
sary that the longitudinal electric Geld, pulsed to avoid
heating, be applied by means of truly Ohmic contacts in
order not to alter the uniform equilibrium carrier dis-
tribution. Finally, a means of exciting and detecting
the helical wave without altering the number of minority
carriers was required.

The samples were fabricated from high-quality, un-
compensated e-type germanium with a room-tempera-
ture resistivity of about 30 ohm-crn and a bulk lifetime
of 1400 psec. Accurate values for the carrier densities at
each temperature of interest (290—360'K) were com-
puted from the value of rt P=N~ N—„=3.16)—&1 0",

obtained by Hall measurements at 77'K, plus the
reported value's of the rtP product In o.rder to ensure
that the net donor density was given correctly by the
usual expression ND N~ —(R—Irq)

——', where RIr is the
Hall coefficient, the measurements were made with a
magnetic 6eld of 20 kG oriented in a (001) crystal-
lographic direction. " Further, the Hall sample had a
length-to-width-ratio of 6 to prevent shorting of the
Hall 6eld by the end contacts. "The uncertainty in the
resulting value of ND N~ is estimat—ed to be &3jo.

Carrier-drift mobilities were obtained by scaling the
reported" lattice mobilities at 300'K according to the
experimentally obtained" power law appropriate to each
carrier for lattice scattering; i.e., tt, = (3900)(T/300) ' "
and tea= (1900)(T/300) "' This computation was felt
to be fully valid in view of the fact that in high-quality
uncompensated germanium, lattice scattering is com-
pletely dominant in this temperature range. ""Further,
the measured resistivities at each temperature (using
voltage probes and electric fields of about 0.05 V/cm
to avoid complications due to contacts) agreed well
within experimental error with the values calculated
from the above densities and mobilities.

Samples of both square and circular cross section
were used. The samples were first lapped and then
etched to final size to remove all damaged surface layers.
Dimensions after etching were approximately 25 mm
long&&1 mm diam for the cylindrical samples and
25)&1&(1 mm for those of square cross section. To
comply with the requirement of the theory, the samples
should be much longer than the attenuation length of

"F.J. Morin and J. P. Maita, Phys. Rev. 94, 1525 (1954).
29 W. M. Bullis and W. E. Krag, Phys. Rev. 101, 580 (1955)."C.Dunlap, Ae Irdrodccctcorc to Serlecomdttctors (John Wiley k

Sons, Inc. , New York, 1957), p. 186.
"M. B. Prince, Phys. Rev. 92, 681 (1953)."F.J. Morin, Phys. Rev. 92, 62 (1954).
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any reverse wave so that the presence of the ends can-
not be communicated to a signihcant portion of the bar.
Since it is not known theoretically if a reverse wave does
exist and if so what its properties are, the sample
length was arbitrarily made approximately ten times
the threshold wavelength )see Eq. (26)]. Experi-
mentally, no signi6cant effects due to end boundaries
were observed.

The etching procedure was quite complex and has
been described in detail elsewhere. "Using this procedure,
which was concluded by protecting the surfaces with
silicone oil, it was possible to achieve and maintain
surface recombination velocities which were regularly
less than 50 cm/sec and often as low as 20 cm/sec.
These values of s were computed'4 from the lifetime of
injected carriers, measured by decay of photoconduc-
tivity for each sample, and the similarly measured bulk
lifetime of the original crystal.

The relatively high-resistivity material and strong
electric 6elds (20—60 V/cm) precluded the use of the
usual methods for making Ohmic contacts. Metallic
soldered, plated, or alloyed contacts always gave p+rt
or e+e junctions which interfered with the Qow of
carriers. Depending on the direction of current Row a
P+rt contact injected or extracted holes while an rt+n

contact excluded or accumulated them. Sandblasting
the surfaces near the contact to recombine an excess
or make up a deficit of minority carriers failed because
the electric held swept the carriers through any practical
recombination-generation region much faster than they
could diffuse to or from the surface.

The problem was solved by use of the arrangement
shown in Fig. 2. Only one end of the bar is labeled but
the other end is identical. The p+ contact carries only
the hole current and the parallel n+ contacts carry only
the electron current. The series resistors are much larger
than the contact resistances. Thus, by adjusting the
variable resistor in series with the p+ contact, the rela-
tive electron and hole currents can be set to precisely
the values required to maintain the thermal-equilibrium
carrier distribution. The large resistors make the setting
independent of the electric field, but of course the vari-
able resistor has to be readjusted for each temperature
of operation. With respect to fabrication, excellent
contacts were formed by alloying In+1/2% Ga and
Sn+5% Sb spheres to the sample followed by electro-
lytic etching. "

Excitation and detection of the waves were accomp-
lished by means of pairs of small e+ probes attached to
the surface of the sample (see Fig. 2). These re+re junc-
tions conduct majority carriers (electrons) freely but
are impervious to the flow of minority carriers (holes)."

Thus when a pair of probes (such as aa') is driven

'3 C. E. Hurwitz, MIT Lincoln Laboratory Technical Report
No. 320, 1963 (unpublished).

n W. Shockley, Electrons and Holes in Semiconductors (D. Van
Nostrand Company, Inc. , New York, 1950), pp. 318—325.

'5 A. K. Jonscher, Princip/es of Semiconductor Device Operation
(G. Bell and Sons, London, 1960), pp. 142—144.

n+ PROBES (a,a, ....,g )

4mm+

p CONTACT

—-/~ii, ,p'

l
I-Iok

cONTACTS

Fzc. 2. Sketch of cylindrical sample, showing
Ohmic end contacts and n+ probes.

"W. Shockley, Etectrons and Holes in Semiconductors (D. Van
Nostrand Company, Inc. , New York. , 1950), p. 308.

"M. C. Waltz, in Transistor Technology, edited by H. K.
Bridges, J.H. Scaff, and J. N. Shive I',D. Van Nostrand Company,
Inc. , Princeton, 1958), Vol. I, pp. 3t|5—380.

with an ac signal source, the electric 6eld produced
causes the holes to move back and forth in synchro-
nisrn, perturbing the carrier distribution and initiating
the wave. Actually, the linearly polarized excitation
just described excites both the ms=&1 modes, but as
discussed in the last section, one mode will always decay
while the other can grow. By using two sets of probes
(aa' and bb', for example) which are 90' apart around
the circumference and driving them with two signals
90' out of time phase, one or the other of the circularly
polarized modes may be excited preferentially.

The use of the n+ probes in detecting the helical wave
niakes use of the fact that the electron quasi-Fermi
level (QFL) is constant through the st+st junctions. The
open-circuit voltage between two probes then gives the
difference between the electron QFL's just beneath the
surface at the two points. However, for small signals
the perturbed electron QFL is linearly related" to the
perturbations in the density and potential, i.e.,

y,~=lt ~
—(kT/tt)(rtt/rtp).

Therefore, all information pertaining to the amplitude
and phase characteristics of the waves may be obtained
by measuring p, q with st+ probes. Of course, it is also
necessary that the contacts be impervious to the Row
of holes in order to prevent their generation or recombi-
nation in the junctions.

These probes were fabricated by bonding 0.002-in.
Sb-doped Au wires to the sample with pulses of current. "
To assure that the two probes of a set (c and c', for
example) were aligned on the same cross-sectional plane
of the sample, an electrical null technique was used to
locate them. "All probes were checked for proper opera-
tion by using them to measure known changes in the
electron QFL produced by illuminating the sample with
penetrating light. "This test was also correlated with the
current-voltage characteristics of the probes.

A diagram of the arrangement for the above-described
excitation and detection of the waves is shown in Fig. 3.
The phase shifter and probe driver provided signals 90'
out of phase from low-impedance sources. The input
impedance of the detecting and measuring circuits was
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Fxo. 3. Experimental arrangement for exciting and detecting
helical waves. The differential amplifier may be connected to any
desired set of probes.

su%i.ciently high to provide "open circuit" conditions up
to frequencies in excess of 500 kc.

The completed sample, mounted in a jig, was at-
tached to a holder which permitted rotation of the
sample in a vertical plane for accurate alignment
parallel to the magnetic field. This arrangement was
mounted between the poles of an electromagnet which
was rotatable in the horizontal plane to complete the
alignment of sample and Geld. The sample and lower
part of the holder were immersed in a bath of silicone
oil which was maintained at a constant, controllable
temperature. A thermocouple mounted on the jig next
to the sample read the actual temperature. In this
manner the temperature could be set and held to within
&0.1'C of the desired value.

V. EXPERIMENTAL RESULTS AND COMPARISON
VfITH THEORY

The basic experiment consisted of applying parallel
dc-magnetic and pulsed-electric Gelds to the sample,
exciting the wave with a signal source at an appropriate
set of probes, and then observing the excitation in
magnitude and phase as it traveled down the bar.

Many samples of both square and circular cross sec-
tion were fabricated and examined experimentally. All
exhibited spatially growing waves whose properties
agreed qualitatively with the predictions of the physical
model and the mathematical theory. However, due to
the involved fabrication procedure and the finite-
failure rate at each step (a full set of properly operating
e+ probes was particularly difFicult to achieve), only
two samples, one square and one circular, were judged
to fully meet the requirements discussed in the previous
section and therefore to be suitable for accurate quanti-
tative measurements. As will become evident in the
following discussion, the agreement between experiment
and theory is suKciently good that although results for
only two samples are reported, the theory can be con-
sidered completely verified in the region of stable growth.

The Gnal dimensions of these two samples were 1.16
mm diam by 25.4 mm long for the cylindrical sample
and 1.02&&1.02&&25.4 mm for the one of square cross
section.

The temperature of operation proved to be a particu-
larly valuable parameter to vary as it provided a test
of the functional dependence of the wave properties on
the equilibrium carrier densities without the need for
many samples of varying resistivities. In fact, by raising
the temperature it was possible to pass from the ex-
trinsic region in which stable spatial growth is observed
to nearly intrinsic material where some of the considera-
tions of instability and the oscillistor are of interest.

The extremely low yield of good samples precluded
the use of sample geometry as another variable. The
dependence on sample radius seems well enough con-
Grmed by the general quantitative agreement of all
measurements, but the question of how long is a "long"
sample and the length dependence of the threshold in
samples comparable in size to a wavelength would still
be of interest. Except where otherwise stated, the data
to be presented refer to the sample of circular cross
section, for in this case there is no ambiguity as to the
value of radius to be used in the theoretical expressions.

s
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FIG. 4. Oscilloscope
traces showing 90'
phase diBerence be-
tween signals at
probes gg' and 6'.
Set (a) corresponds
to 80 parallel to E0
and (b) to Bo anti-
parallel to E0. Verti-
cal scale: 5 mV/div.
Horizontal scale: 10
psecjdiv.

Helical Waveshaye

The helical nature of the wave was conGrmed by
exciting the sample at probes aa' and observing the
relative phase of the resulting signals at probes 6' and

gg . (See Fig. 2. The electric field is positive from left
to right. ) The resulting waveforms are shown in Fig. 4,
and we see that for Bo parallel to Eo the signal at gg'
led that at ff' by 90' and lagged by 90' when Bo was
reversed. The traces shown are for threshold, but the
same phase relationship was found for all Gelds and
frequencies. Adding to this result the fact that the phase
and group velocities are in the direction of the electric
field (see next section) it is clear that we do indeed have
a helical wave, traveling in the direction of ambipolar
drift, which as predicted is right- (left-) handed for
Bp parallel (antiparallel) to E&.

Further, when a circularly polarized excitation was
provided by driving probes aa' and bb' with signals 90'
out of time phase, only the polarization direction cor-
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responding to the predicted screw sense produced a
growing wave. The opposite excitation produced only
a strongly attenuated wave. That is, for excitation in
the sense a ~ b' ~ a' ~ b the wave grew (for fIelds
above threshold) for Bs parallel to Ec and always de-
cayed when Bo was reversed. For excitation in the sense
a —+ b —+ a' —& b' the converse was true. These results
are in full agreement with the predictions of the physical
model, Eq. (32) and Table I.
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Pro. 5. Phase constant k, (left-hand scale), computed from
measured phase difference between probes dd' and ff' (right-hand
scale), versus f/Ec, for several temperatures and electric fields.
Points are experimental; curves are theoretical, calculated from
Eq. (32).

For a wave of the form expLio&t —i(k,+ik;)z+i&7 the
phase difference EC between two points differing in s
by hz at the same instant of time and same value of It

is simply
AC = —k„As.

Thus the measurement of the relative phase of the signal
at two sets of probes, such as dd' and ff', gives directly
the phase constant k„.In Fig. 5 we plot —AC, the
amount by which the phase at 6' lags that at dd', and
the resulting value of k„asa function of j/Es for several
temperatures and electric fields. The probe spacing ds
in this case was 0.8 cm. Since the probes were several
wavelengths apart there was always an uncertainty of
2' in the absolute phase diGerence as related to that
measured. However, for the extrinsic case we assume
that we have a simple wave so that the extrapolated
value of AC is zero for ~=0. Therefore, to each set of
experimental points (at a given temperature) we have
added an appropriate multiple of 2m. For each set of
points the required translation was always 2' and e
was just that integer required to make k„=2/a&3 at
threshold, in agreement with (26).

The measured values of AC and therefore k„were,
within experimental error, independent of magnetic
field over the range 0—11 kG for all temperatures except
67'C and above, but in the latter range exhibited a very
slight dependence at the lowest frequency and highest

I I I I I

0.02 0.04

RECIPROCAL ELECTRIC FIELD I/Ec {cm/V)

0.06

Fio. 6. Critical magnetic Geld Bo, versus 1/Eo for several
temperatures. Points are experimental; curves are theoretical,
calculated from Eq. (27).

magnetic fields. The theoretical curves were calculated
from (32) and agreement is excellent. The slopes of the
straight lines are just p,/2rr and therefore, as predicted,
mph vga p p, Eo, the ambipolar drift velocity. Values
of k„obtained by numerical computation from the full
dispersion relation (21) were insignificantly different
from those given by (32).

Threshold Conditions

The threshold, by de6nition, is the point at which the
s variation of the wave 6rst changes from attenuation to
growth. At this point k;=0 and the signal at each set
of detecting probes must have the same magnitude. For
a fixed electric field, the threshold frequency f, and
magnetic 6eld Bo, were obtained by exciting the wave at
probes aa' and bb' and then slowly raising the magnetic
6eld while sweeping the frequency back and forth. The
6eld and frequency at which the signals at probes dd',
and ee', and 6' 6rst became equal were then the thresh-
old values. For properly operating probes these signals
became equal simultaneously. The signal at probes cc'
was usually slightly larger, presumably due to higher
modes which had not decayed sufficiently that near to
the excitation.

In Figs. 6 and 7 wt; have plotted the measured values
of f, and J3s, as a function of the applied electric field

Eo for various temperatures. The theoretical curves were
calculated from (27) and (28). Agreement is again very
good. The small deviations from theory of the values of

f, at the higher temperatures, lowest electric fields, and
highest magnetic fields are presumably due to the be-

ginning inhuence of the rotational contribution to the
frequency. At high magnetic fields, Bo, also begins to
deviate from theory due to breakdown of the assump-
tion p, ,q'80'((1. Note, however, that at moderate fields

the theoretical and experimental values of Bo, agree
very well at all temperatures. This is to be expected
since no assumptions concerning the relative carrier
densities were made in the theoretical calculation of
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Bo' As the temperature increases and (Ns —ps) —+0,
f, decreases rapidly, but Bs, quickly approaches a
limiting value which is independent of the magnitude
of ns and Ps, as may be seen from Eq. (27). However,
when the mobilities are decreasing functions of tempera-
ture, as is the case here, 80, reaches a minimum and
then increases slightly with temperature. Thus, as we
see in Fig. 6, the values of Bo, at 77'C are somewhat
higher than at 47'C.38
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FIG. 8. Growth constant k; versus B0 for two values of E0, at
T=27'C and f=f,. Points are experimental; solid curves are
exact theoretical solutions for p, , q'Bp «1, and dashed curves are
calculated from Eq. (32).

' Since all measurements were made with small signals, no
hysteresis eifects such as described by B. Ancimr-Johnson LAppl.
Phys. I.etters 3, 104 (1963)jwere observed.

Growth Constant

The exponential variation of the wave amplitude in
the s direction was conhrmed by measurement of the
relative signal magnitudes at probes dd', ee', and ff',
with excitation provided at aa' and/or bb'. More
precisely, as long as the excitation was sufficiently small
that the signal at any set of probes was less than 500 mV

peak-to-peak, the wave varied longitudinally as exp (k,s)
where k; is the growth constant. When the signal rose
above this level, saturation effects began to set in and
the linearized theory no longer applied. More will be
said about nonlinear effects in the next section; in the
present discussion we limit ourselves to the small-signal
linear region.

Figures 8 and 9 show the theoretical and experimental
variation of the growth constant k; as a function of Bo
for various temperatures and values of Eo. In all cases
the frequency was fixed at the threshold value f,
pertinent to the specific temperature and electric field.
The dashed curves are calculated from (32); the full
curves are the results of the exact (in the limit
Ii, s'Bs'((1) numerical solution of the full dispersion
equation, (21). The approximate solution is clearly ac-
curate only in the neighborhood of threshold (k, =0),
and deviates both above and below threshold where the

Eo= 50 V/cm
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FIG. 9. Growth constant k; versus B0 for several temperatures
at ED=SO V/cm and f=f, Points are .experimental; solid curves
are exact theoretical solutions for p, , yPBp «1, and dashed curves
are calculated from Eq. (32).

Bessel function expansions are no longer correct. The
experimental results agree very well with the theoretical
curves except at high magnetic fields where the assump-
tion p, , /, '80'(&1 becomes a poor approximation. Numeri-
cal solutions were not obtained for the higher tempera-
tures, but the excellent quantitative agreement between
experiment and theory at lower temperatures indicates
that the agreement should be equally good. Intermediate
values of electric field, omitted from Fig. 9 for clarity,
also gave quantitatively correct results.

Note the rapid increase of growth constant with tem-
perature in Fig. 8. The highest measurable value of k,
was about 4 cm ', corresponding to a gain of approxi-
mately 35 dB/cm. For growth rates above this value
the sample began to amplify appreciably its internal
noise to values comparable with the maximum signal
amplitudes obtainable under linear operation.
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The frequency dependence of the growth constant is
detailed in Figs. 10 and. 11, where for Es ——50 V/cm the
theoretically predicted and measured values of k; have
been plotted as a function of frequency at T=27'C
and T'= 37'C for three values of magnetic GeM: Bp(Bp„
Bp=Bp„and Bp&Bp. Again the dashed curves are
calculated from (32) and the full curves are the solutions
obtained by numerical computation. The inadequacy
of the simplified theory, except in the neighborhood of
threshold, is strikingly evident. Equally apparent is
the extremely good agreement between the experimental
points and the exact theory.

In Figs. 12 and 13 similar measurements of k; as a
function of 8, and f for the sample of square cross
section are presented. An eRective radius a=0.053 cm
was chosen in plotting the theoretical curves from (32)
in order to give the best fit to the experimental data.
This choice is very nearly the radius of a cylinder with
the same cross-sectional area as the sample. No numeri-

I.O

Z 0.5

~— 0
C9

z 0

M '

I-o + -0.5
z Z

W

+ -IO
C9

Eo= 50V/cm
Bo= 5.55kG

"I.5
0

I

IOO
1

200

FREQUENCY f(kc)

. I

300 400

1' 1G. 10, Growth constant k; versus f for 8p (8p, Bp Bp„
and Bp)Bp„atT=27'C and Lp=50 V/cm. Points are experi-
mental; solid curves are exact theoretical solutions for p, f,'Bp'«1,
and dashed curves are calculated from Eq. (32).

cal solutions were obtained for this case but, in light
of the results for the circular sample, the behavior at
frequencies and Gelds above threshold would presum-
ably be in agreement with the exact solution. The
gross disagreement at low frequencies, which is more
than could be accounted for by the exact theory, is only
an apparent one. It is due to the fact that linearly
polarized (two-probe) excitation was used rather than
the circularly polarized (four-probe) excitation employed
for all measurements on the cylindrical sample. Exami-
nation of (32) shows that for f(f, and Bs(Bs, the
right- and left-handed helices have comparable attenua-
tion rates. Since both are excited approximately equally,
the measured value of k; will be some combination of
the two. This identical discrepancy was later noted on
the cylindrical sample, but was eliminated by using
four-probe excitation. Because the square samples were
by then of little interest, no attempt was made to redo
the earlier measurements.
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FIG. 12. Growth
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An eRort to measure directly the functional behavior
of k; for the helix of screw-sense opposite to the one
exhibiting growth was made by simply reversing the
rotation direction of the four-probe excitation, while
maintaining the fields in the same direction. However,
due to the fact that four points cannot give a perfect
exp(+) distribution, a sufficient amount of the grow-

ing wave was excited to completely obscure the
measurements.

Along this same line an attempt was made to excite
the next higher ~rtsi =2 mode by connecting a and
a' together and b and b' together, and then driving
the resulting two terminals with the signal generator.
Such an arrangement should preferentially excite the
~nz~ =2 mode. However, again due to the imperfect
excitation, enough of the

~
m~ = 1 mode was excited to

drive the sample into strong nonlinear behavior and
saturation before the higher

~

m
~

= 2 mode threshold
could be reached.

Finally, it should be mentioned here that the growth
constant was found to be an extremely sensitive func-
tion of the angle between Bp and Ep. Figure 14 illustrates
this behavior. The value of k; falls oB so rapidly that
at an angle greater than &3' the strong attenuation
made measurements impossible. The reason for such a
striking sensitivity to a very small transverse compon-
ent of magnetic Geld is not known. In terms of the physi-
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cal model it would seem that the only effect of such a
6eld is to exert a weak transverse force on the carriers,
slightly altering their distribution and setting up a
small Hall field. Mathematically, the introduction of a
transverse component of So complicates the problem
considerably by destroying the azimuthal symmetry.
It might be possible to effect some simplification by
introducing the transverse component of 6eld as a
perturbation. However, such a calculation has not yet
been attempted and the effect remains unexplained.

Nonlinear Effects and Current Oscillations

As stated earlier, when signals at the probes reached
approximately 500 mV peak-to-peak, saturation began
to set in, indicating the onset of nonlinear behavior. The
probes farthest down the bar (in the direction of Ep)
saturated first as expected, since the ampliGed signal
is largest there. Further increase of the signal level by
raising of the excitation or growth rate successively
saturated the level at earlier probes, with the signal
reaching a limiting value of about 1.5 V peak-to-peak
at all probes. At temperatures of 47'C and above, the
gain for large enough magnetic fields could be made
sufhcient to saturate at least the last probes of the sample
on ampli6ed internal noise. The spectral characteristics
of this noise were quite unusual and will be the sub-

ject of further discussion in connection with current
oscillations.

Two important effects were noted in conjunction with
the onset of strong saturation, namely a marked increase
in the dc sample resistance and appearance of oscillations
in the terminal sample current. In Fig. 15 the measured
dc resistance of the sample is plotted as a function of
increasing magnetic field (and hence increasing growth
rate). The point at which the resistance begins to in-

crease over its equilibrium value coincides with nearly
full saturation at the farthest set of probes (ff'). Cur-
rent oscillations, shown in the inset of Fig. 15 begin to
come into evidence at the same point.

The sample resistance change is a graphic manifesta-
tion of the onset of nonlinear behavior. The perturbed
carrier density e& has now become comparable with the
equilibrium densities 1sp alld pp, and the carriers are
strongly bunched into the traveling helix. Although the
total number of carriers in the sample has not changed,
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FIG. 14. Growth con-
stant k; versus angle
between Eo and Bo.

this bunching has produced a net increase in the resist-
ance. The expected order of magnitude of this resistance
change may easily be calculated. When strongly
bunched, the carriers will be. concentrated near the
surface of the sample in a helix with pitch 2s./k and an
effective radius approximately equal to the sample
radius u. Most of the current will Row between the ter-
minals in this helical path. Both the increased path
length of the current and the reduced component of
the electric field in the direction of current Qow then
act to increase the total sample resistance over the
equilibrium value. It is a simple matter to show geo-
metrically that the path length is increased by a factor
of approximately (1+k'u')'is, and that the component
of electric field along the helix is also smaller than the
applied Ged by the same factor. Thus, with the onset of
strong bunching the sample resistance may be expected
to increase until it is about a factor of (1+k'a') larger
than the unperturbed value. From (26) k'a'=4/3, so
the resistance should approach a value about 2.3 times
larger than that for no bunching. The measured values
shown in Fig. 15 are in qualitative agreement with this
estimate.

On the basis of the linear theory no terminal VI
oscillations are predicted. Since all time-varying quanti-
ties vary as expLirpI —iks —imgj, re/0, the density
integrated over a cross section is independent of time
and hence there can be no oscillation of the total re-
sistance. Glicksman's assertion that standing waves,
set up by rejections at the contacts, can give rise to
terminal oscillations' is clearly incorrect since the den-
sity still varies sinusoidally with p and t and the inte-
grated density again vanishes. One must therefore in-
voke nonlinearities or nonuniformities as the basis of
the observed oscillation. Misawa' has proposed that
mixing in of the m=0 mode due to deviations from
circular symmetry, such as nonuniformities or trans-
verse components of magnetic Geld, could account for
the behavior, and this possibility cannot be ruled out.
In fact Okamoto et al. ' have observed that certain
oscillistor samples show current oscillations only in the
presence of a small transverse component of magnetic
field. However, the above experimental observations
that oscillations are present in extremely uniform
cylindrical samples with strictly longitudinal 6elds, and
that the onset of current oscillation is always associated
directly with the onset of nonlinear behavior, provide
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quite conclusive evidence that large-signal nonlinearity
is in itself sufhcient to account for terminal oscillations.

The fact that current oscillations were observed in
the region of stable amplification, requiring only that the
gain and excitation be sufficiently large to reach satura-
tion, shows further that instability is not required to
obtain such oscillations. In this region the oscillations
were essentially sinusoidal at the frequency of excitation,
until very strong saturation occurred and some higher
harmonic content became apparent. At temperatures
below 67'C when the gain was raised sufficiently high
to saturate the sample on its own noise, the resultant
small current oscillations exhibited a similarly noisy
frequency spectrum. However, at 67'C and above, fur-
ther increase in the magnetic 6eld resulted in a rapid
narrowing of the frequency spectrum of both the signals
at the probes and the current oscillations, until the fre-
quency was nearly monochromatic and roughly equal
to the threshold frequency. One might conceive of a
situation in which the strong excursion into nonlinearity
might produce a substantial narrowing of the bandwidth
for amplification; however, it seems more satisfying to
picture the cause as the onset of an instability and the
consequent buildup of oscillation at a specific frequency.
Indeed just such an instability was predicted from the
theory for nearly intrinsic material (i.e., at high
temperatures).

Unfortunately, as discussed earlier in connection with
the instability theory, a region of stable growth pre-
cedes the onset of instability in extrinsic material. The
resulting amplification of noise in anything but very
nearly or absolutely intrinsic material drives the sample
into saturation before instability is attained, so that the
linear theory is no longer valid. Such was the case in all
of our measurements, even at the highest temperature
(87'C). We may, however, make the following qualita-
tive observation. For the 30 ohm-cm germanium used in
the measurements, and for Ep=60 V/cm and Bo 11——
kG, the maximum values available with the present
arrangement, Eq. (42) predicts that instability will be
attainable for temperatures above 60'C. We note also
that the rapid narrowing of the frequency spectrum of
the ampli6ed noise with increasing 6elds was observed
experimentally only at temperatures above about 67'C.
These two facts lead one to the plausible conclusion that
this spectral narrowing is the result of the onset of
instability and the resulting buildup of oscillations in
a narrow band of frequencies; however, further quanti-
tative veri6cation of the theory would certainly be
desirable.

Just how close to intrinsic the material must be to
reach the instability threshold before nonlinearity oc-
curs may be seen by returning to Eq. (37a) and solving
for the growth constant ko; at the point of instability.
Neglecting the term p,IJ,I,BO' which will almost always
be negligible, the result is

ko' (Ij~p/4D )= (gEp/4kT)P(ep —pp)/(eo+po)j ~

I io. 15. Average
sample resistance ver-
sus 80. Inset is oscil-
loscope trace of termi-
nal current oscillations
which begin at the
point indicated. Verti-
cal scale: 10 mA/div.
Horizontal scale: 200
psec/ de.
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Experimentally it was observed that saturation began
to set in when k;= 4 cm ', and in order to keep p, , F80(&1.
so that the theory correctly applies, the minimum value
of Ep for instability is about 25 V/cm. Therefore we
need to have

The Oscillistor

The above prediction and probable observation of
absolute instability in a semiconductor bar, with nearly
equal densities of electrons and holes and subjected to
sufficiently large parallel and magnetic fields, leads
naturally to a discussion of the oscillistor, for it is under
precisely these conditions that the effect is observed. '—'
It was shown experimentally that large signal nonlinear-
ity could give rise to terminal VI oscillations and, of
course, the instability can provide the mechanism for
the rapid buildup of large signal behavior in the form
of a strongly bunched helix of carriers.

Unfortunately the oscillistor effect as it is usually
observed and reported in the literature presents such
a complicated experimental situation that quantitative
comparison with theory is prevented. The attainment
of nearly equal carrier densities by double injection
into a relatively pure bar of semiconducting (long
p-s-m structure) leads not only to radial gradients of the
carrier distribution but also to substantial longitudinal
variations in the steady-state densities and electric
6eld."Such variations are not taken into account by
the theory and to do so would hopelessly complicate
the mathematics. Further, oscillistor samples are usually
made with relatively low surface recombination, and
as a result growth is probably due both to the steady-
state density gradient and to some piling up of carriers
at the surface.

Notwithstanding these complications, the essential
features of the instability mechanism remain the same,
and one would predict the occurrence of an absolute
helical instability under the conditions pertinent to the

oo M. A. Lampert and A. Rose, Phys. Rev. 121, 26 (1961).

(q/kT) i (no —po)/(+o+po) i
&0.64 V,

which for 30 ohm-cm germanium requires T)100'C.
An easier method would be to start with much purer
material. For SD—/~&10" cm ' the threshold could
be reached while still in the linear region at room
temperature.
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oscillistor eRect. This result coupled with experimental
confirmation of the helical nature of the eRect'""
provides conclusive verification of Glicksman's pro-
posal of a helical instability as the basis of the
phenomenon.

Finally, it should be pointed out that for the gaseous
plasma the unperturbed densities of electrons and ions
are always equal and there is no ambipolar drift of
the helical perturbation. There will therefore be no
region of stable growth and, as assumed by Kadomtsev
and Nedospasov' and Hoh and Lehnert 2'» only helical
instability is possible.

VI. CONCLUSION

It is evident from the excellent agreement between
experiment and theory that the treatment of Sec. III
provides an accurate description of the properties of
helical waves in the approximation p. '8'(&1. Further,
all observations, except the unexpectedly strong de-
pendence of the growth rate on the angle between the
electric and magnetic fields, are consistent with the
physical model presented in Sec. II.

Although the work was devoted almost entirely to
the surface-density mode of operation, it is clear that
the general arguments and results may be carried over
to more complicated situations, such as the equilib-
rium-gradient mode or the case of an injected plasma.
In addition, although germanium was the only material
studied, other semiconductors and perhaps semimetals
should exhibit growing helical waves for wide ranges of
fields and frequencies, and in fact, oscillistor behavior
has been observed in silicon and indium antimonide. '"
Unfortunately, in most materials surface and bulk
recombination will produce such strong damping of the
waves that growth may be dificult to achieve.
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APPENDIX A: THRESHOLD CONDITIONS FOR
EQUILIBRIUM GRADIENT MODE

We again consider a cylindrical sample of radius a,
long in the s direction, but now assume that the equi-
librium carrier densities no and po are graded in the rad-
ial direction. These gradients could be produced, for
example, by the outdiffusion of impurities (consider
donors to be specific) in which case no and po would be

of the form40

no(r) =noJo(err),

po(r) =n's/no(r) =po/Jo(nr),
(A.1)

where n; is the intrinsic density. For simplicity we con-
sider the case of weak gradients (n'a'(2); no and po

may then be written as

no(r) =no(1 —n'r'/4)

p, (r) =po(1+~'r'/4) .

1 a
Pspo(r)V'il'r —yoni (r+0 )

1 Bf

Bnr Bnr) Bpo(r) Bgr—ph ~0~ ~o~ P a +Dopant
ar as f Br Br

1 Bn, 1 Bpr Bpo(r)
+lra flo~or +ps mls- =0. (A.7)

rgb r ojp Br

4' The problem is analogous to that of heat Qow from a cylindri-
cal rod. See H. S. Carslaw and J. C. Jaeger, Coednctioe of Heat
sn Solids (Oxford University Press, London, 1959), Ch. VII.

We further assume that the surface recombination
velocity s is large (s= oe), in order to avoid considering
an admixture of the equilibrium-gradient and surface-
density modes. As usual it is assumed that the bulk
lifetime ro))a'/D, and that the squares of the Hall
angles p, ,~'80'((1.

In equilibrium the continuity equations (6) and (7)
become, denoting equilibrium values by the sub-

script 0,

no(r)lJ8&' Eo+lraEo 7'no(r)+D, V'sno(r)

+p,'Eo L|7no(r) XBo]=0, (A.3)

p, (r)p, V.E,+-l „E,V'p, (r) D,V p,(r)—
—pa'Eo' p'po(r) XBo]=0. (A 4)

The magnetic field Bo as bdore is in the s direction,
whereas the electric field Eo, in addition to the applied
s component Eo„now has a radial arnbipolar com-

ponent Eo, due to the density gradients. With equi-
librium densities as given in (A.2), Eqs. (A.3) and (A.4)
may be readily solved for Zo„with the result (assuming

T,=Tp, ——T)
Eor = (n'kT/2q)r (A.S)

Following the solution for the surface-density mode,
the continuity equations are linearized about equi-
librium and quasineutrality is assumed. We then have

8's] 1 8
lI, ,no (r)Ppr+ p,n, — (rEo„)——

Bt t' 8'r

Bnr henri Bno(r) 8/1
+&.( Zo„yZ„)—l, +D,V"n,

ar as ) ar ar

1 an, 1 aP, ano(r)
+lre 73o~or +He 73o =0, (A.6)

rBQ r BP Br
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Due to the presence of terms arising from the equi-
librium gradients, the equation for e& may not be de-
coupled as in the surface-mode solution (9).The coupled
equations (A.6) and (A.7) are difficult to treat so,
following the Kadomtsev and Nedospasov' treatment
of the very similar gas-plasma case, we solve the prob-
lem only approximately in the following manner. The
perturbations are Fourier analyzed as in Eq. (11) and
only the lowest ~rrt

~

=1 mode is considered. It is now
assumed that iVi(r) and 0'i(r) have the approximate
form

where we have employed the definitions (10) of p,
and D.

At threshold co and k are real and (A.13) may be
separated into real and imaginary parts. Elimination
of cv from the resulting two equations yields

n'Eo:Bok rtopop. ph(p. ' ph')—
(Pro+ k')'+ =0. (A.14)

2Da (rtope+Poph)

Minimizing the product Ep Bp with respect to k we ob-
tain the threshoM conditions:

Xi(r) =ciJi(rctir),

+i(r) = csJi(Air),
(A.8) k.s =Pis/3 =4.89/tt', (A.15)

where Piet is the f'trst zero of Ji, equal to 3.83, and the
c's are constants. Note that Ni(ct) =0, as required by
the assumption s= oo. Equations (A.2), (A.5), and (A.8)
are substituted into (A.6) and (A. 7) and the resulting
equations are averaged over r by multiplying them by
rJ,(P,r) and integrating with respect to r."

Ke thus obtain the following two algebraic equations
for cq and c2'.

ci{2D,(ks+Pis) —n'(kT/q) (1+R)+&T2(or+ p Eo*k)

+- (kT/q) p:B.j}+cn.p {2(k+~ )(Q-1)
+n'(1 —R)—sp, Bon'}=0, (A.9)

c,{2D„(k'+Pis)+n'(k T/q) (1+R)+iL2 (co—p hEo, k)

+n'(kT/q) ph'Bo}+cspoph{2(k'+pi') (Q+1)
+n'(1 —R)+sphBon'} =0, (A.10)

where

rJo(fir) Jr(Prr)dr

and

32Pisk, D.(rtoPe+POPh)' 1
Bo.= — —. (A.16)

3trtn' rtopop. ph(p. ' ph') Eo—

The result, as expected, is very similar to that for the
surface-density mode. The fact that Bo, appears to
become infinite when p, =p~ is a consequence of the
fact that the equilibrium gradients of sto and Po are in
opposite directions, producing a partial cancellation of
the growth mechanism. In the simple approximation
(A.2) used here these gradients are exactly equal and
opposite, so that the cancellation appears to be com-
plete when p, =p, q. In an exact solution this cancellation
would be substantial but not complete.

The threshold frequency is obtained from (A.13)
where, as discussed in the derivation of (28) and (29)
for the surface-density mode, we take care to remain
consistent with the assumption p, ~'80'((,1. We then
have for [ (sto Po)/(rt—o+Po) ~))pe, h'Bo',

f.= (1/2rr) p.Eo,k, (A.17)

Q==(-/4) rsJ'(P, r)dr

rJi'(Pir)dr

rJr'(Prr)dr . (A. 12)

which, as before, corresponds to the translation of the
helix with the ambipolar drift velocity in extrinsic
material.

For intrinsic material,
~

(rto —po)/(sto+ po)
~
&&p, h'Bo',

The integrals (A.11) and (A. 12) are readily evaluated, 4'

with the result R=O and Q=ns/12Pis.
Equations (A.9) and (A.10) are a pair of linear homo-

genous equations in c~ and c2. The dispersion relation is
obtained by setting the determinant of the equations
equal to zero. Under the assumptions n'«Pie and

p, ~'Bo'((,1, we then have, after some straightforward
algebra,

(rtop +PoPh) (Pl +k ) +n Eo Bokp Ph(mop Poph)
—n coBO(rtope +poph )+in Bopeph(kT/q)(Pis jks)
X(rtoph+Pop )+sn Bo(P1 +k )( o stDPh+Poph D )

+i2 (pi +k') (stop. +Poph) (or P.Eo.k) =0, (A. 13—)

n'Bo. kT .pP(hrtoph+pop. )

2sr q Sop +Poph

rtop. Dh+PophD.
(A.18)

rtoP. +poPh

The first term is the rotation due to the built-in ambi-
polar field Eo„and the second term arises from the
diffusion and drift of carriers across the magnetic field.
Equation (A.19) may be simplified considerably by
using the Einstein relation D, , h (kT, , h/q)p, , h, assum-——
ing T,=Th T, and by setting ——rto ——Po, since (A.19)
applies to the nearly intrinsic case. Then

4' See Refs, 1 and 22 for discussion of the validity of this
approximate method.

4' G. N. Watson, A Treatise on the Theory of Besset Fttnetions
(Cambridge University Press, London, 1958)r 2nd ed. , pp. 132—138.

Plo! Ir'T

fe= pephBOc.
2x

(A.19)
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APPENDIX B: EFFECT OF SMALL SURFACE
AND BULK RECOMBINATION

Equation (9) with the inclusion of the bulk term is

t9Ãy Bsy
=D V'ms p~—o

Bf Bs
(8 1)

and

4 sa 3a' )
3a' 3D. 8D.r bl

6kD, sa) 1
Bo.= — 1+

AM' 3D.)Ep

(8 4)

(8.5)

f,= (1/2m) p,Epk, ,
Bp pp

))Pe, hBQP' (8.6)
&0+po

20mD, p 2sa
(p.—pa)BQ.

I
1+

9~a'

where 7 has been replaced by (N —ep)/ro=sy/ro. Re-
combination has been assumed to take place without
trapping so that a single bulk lifetime rb may be used
for both carriers. Such a treatment is fully satisfactory
for germanium at and above room temperatures. In the
Fourier analysis (11), e e'"' so that (8.1) can be
written in the form

(i~+ 1/r 0)rc& D.V'N1 ——
pQEQ (ali/as) . (8.2)

Bulk recombination may therefore be included simply
by replacing Qp by (co—i/r )pin (24).

To indude surface recombination we proceed from
(21) exactly as in the derivation of Eq. (25), but now
retain the terms involving s. As a result for small bulk
and surface recombination, (25) is replaced by

3k'ao+ (pM EQBokap//D ) (1 sa/D, )—
+4(1+sa/3D, )+3a'/2D, rb= 0, (8.3)

where second-order small terms involving (sa/D, )' and
(sa/D, ) (a'/D, r 0) and y, , o,'Boo have been dropped. Pro-
ceeding exactly as in the derivation of (26) and (22)
we have 6nally at threshold:

These corrections are less than the experimental error
and are therefore negligible.

APPENDIX C: THRESHOLD CONDITIONS FOR
GENERAL AZIMUTHAL MODE

In the dispersion relation (21) we again expand the
modified Bessel functions in Taylor series expansions
except that now we consider a general m instead of
m= &1.The case of m=0 can be treated and eliminated
at the outset. In (21), setting m=0 we have simply

uPkI p(Pa)I p(ka) =0. (C.1)

Therefore, at threshold

k '= 2 fez
I (I eel+1)/( I

xv I+2)a' (C.4)

2rm(I&I+2)D. k 1
(C.5)

ImfpM

From (C.5) it is evident that the m=1 mode has the
lowest threshold for growth.

Returning to (C.2) we have, following the derivation
of (28) and (29), the threshold frequency:

Bp

The magnetic field does not enter this expression at all,
so there is no threshold. The solutions therefore corre-
spond to damped or evanescent waves and need not be
considered further.

For mWO modes we keep only the first two terms of
the expansions and substitute them in. (21). Proceeding
as in Sec. III we arrive at the equivalent of (24) for
general m:

k'a'Ll~l (I~I+2)+i~(i~1+1)(~.—»)Bo5
+iLa'(~ ~E—ok)/2D. 5E I

~
I (I ~ I+2)

+im(fnz I+2)p~BQ irmfm
f p,—B05

+~&~E,B,kao/D. +2m'(
I
~I+1)

+2~I~I(I~I+1)( —»)Bo=0 (C 2)

Separating the real and imaginary parts of (C.2) for
real k and ~ and eliminating + from the resulting pair
of equations, we then have

I ml (I m I+2)k'a'+ (A@M'EpBp/D. )ka'
+2(lail+1) =0. (C.3)

'SP PQ
))p., a'Bo' (C.6)

SP PQ
((p „'Bp' (8 2) f,= (1/2m)waEokc

ap+Po

2nz( I UZI+1) (2 I ml+1)D,
(Ps PL)Bpc )

~(I~I+2)a'

No+ po

+0 Pp
((p„0'Bp'. (C.7)

~0+po

As expected, recombination, being a loss mechanism,
has raised the threshold fields. However, for the experi-
mental situation of interest: s=30 cm/sec, rp=1400
@sec, a=0.058 cm, and D,=60 cm%ec, the correction
to k, and f, is about 1.5% and that to Bo, is about 2.5%.






