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Electron Spin Resonance on Interacting Donors in Silicon
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The value of the exchange integral J between pairs of donor centers in silicon has been investigated by
looking at the ENDQR spectrum of phosphorus-doped silicon in a range of concentration of the order of
8&(10'6 per cc. The microwave Geld is saturating the cluster electronic line. The line shape of these ENDoR
lines gives an unambiguous determination of the sign of this exchange integral which turns out to be anti-
ferromagnetic. It is also possible to determine an order of magnitude of J and to have an idea about its dis-
tribution for two samples. We are able to understand all the features of the ENDoR spectrum at least in a
qualitative way by calculating all the energy levels using a second-order perturbation calculation. A line
coming from an ionized phosphorus center, weakly coupled to a pair of neutral phosphorus is also identiGed.

external magnetic 6.eld; we have three electronic sub-
levels M, =+1,0, and —1. Each of these sublevels has
a fourfold nuclear degeneracy, partially lifted by the
hyperfine couplirig and the nuclear Zeeman energy.
The energy level of the singlet state crosses one of the
triplet sublevels for a certain value of the external held
(Fig. 2). As the hyperfine coupling has matrix elements
between singlet and triplet states, in the vicinity of the
crossing, there will be large change of energy levels
and wave functions. By studying with the ENDQR
technique, the structure of the nuclear sublevels, and
the magnitude and the sign of J will be determined.
The microwave field at 9206 Mc/sec is saturating the
cluster electronic line, therefore we select nuclear spins
of pairs of exchange-coupled phosphorus nuclei (Fig. 1).
In a given sample, there is a distribution of values of J
due to the random distribution of phosphorus centers.
We have been able to determine the value of J which
has the largest probability for two samples with different
phosphorus concentrations.

I. INTRODUCTION

'HE substitutional donors like phosphorus or
arsenic at low concentration in silicon give rise

to a paramagnetic resonance spectrum' ' of 2I+ 1 lines,

1Q6
FIG. 1. Electron-reso-

nance spectrum of phos-
phorus-doped silicon;
8X10"P/cm' at 1.3 K.

) I / &I"
II. THEORY

1. First-Order Perturbation Theory
of Energy Levels

We assume that the overlap of the wave functions
belonging to two neighboring phosphorus atoms, leads

FIG. 2. Energy lev-
els of the system of
two electronic spins
in the static mag-
netic Geld coupled by
the exchange inter-
action. a J' R. C. Fletcher, W. A. Yager, G. L. Pearson, A. N. Holden,

W. T. Read, and F. R. Merritt, Phys. Rev. 94, 1392 (1954};
R. C. Fletcher, W. A. Yager, G. L. Pearson, and F. R. Merritt,
Phys. Rev. 95, 844 (1954).

2 G. Feher, R. C. Fletcher, and E. A. Gere, Phys. Rev. 100,
1784 (1955).' C. P. Slichter Phys. Rev. 99, 479 (1955).' A. Abragam unpublished lectures). llaynefic f'I'eld
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where I is the nuclear spin of the donor (I=st for
phosphorus). When the concentration of centers is
above 6&(10'6 per cc, new lines appear between the
(2I+1) lines of the low-concentration spectrum (Fig.
1). Slichter' gave an explanation for the occurrence of
these satellite lines. When two centers are close, there
is an overlap between the wave functions of the two
electrons, giving rise to an exchange integral, which

may be written as hJs~ s2, where s~ and s2 are the
electronic spins of the two electrons. We limit ourselves
to phosphorus donors from now on. The spectrum is
analyzed by diagonalizing the Hamiltonian for a system
of four spins —,', two electronic spins s~, s2 and two
nuclear spins Ii and Is. If the value of I is larger than
the hyperfine interaction A,4 the total electronic spin
defined by ~S~'= ~st+ss~' is. nearly a good quantum
number. We have two electronic states; a triplet S=1
and a singlet S=O.

The degeneracy of the triplet state is lifted by an
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FIG. 3. Second-order shift of
energy nuclear sublevels in the dif-
ferent triplet and singlet electronic
states (not to scale}. The good
wave functions in zero-order ap-
proximation are noted beside each
level. We assume an antiferromag-
netic coupling lower than u, .

to a coupling between their spins hJs~. s~. The total
Hamiltonian will be written in frequency units. '

K Ve($1s+$2s)+Jsl's2+A (sl'Ii+82'I2)
+&r (It,+Is,), (1)

where v, and vg are the electronic and nuclear Larmor
frequencies, respectively. J is the exchange coupling
value which has been measured in cycles per second. '

To a first approximation, taking into consideration
only the erst two terms of the Hamiltonian (1), the
total electronic spin is a good quantum number:

(S['= tst+ss~' and S,=$r,+$s,

define good quantum numbers.
The Zeeman electronic Hamiltonian removes the

degeneracy of the triplet state 5= 1 and gives the three
following electronic states:

~Tt) M =+1' )Tp), M =0; ~T t) M = —1.
The singlet state jS), S=O is diamagnetic. In the

spin multiplicity 5=1, s& and s2 may be replaced by
S/2. This gives for the Hamiltonian of the whole
system:

X= v.S,+4tJ+-,'A S.(It+Is)+ vr (It,+Is,) . (2)

In lowest order, the energy of (2) will be given by

Esr, ,„,———,
'J+r,M.+-,'AM, (mt+ms)+ vr (mt+ms) .

5 From now on, we assume a positive value for J.We shall see
further that this hypothesis will be verified.

In the Hamiltonian (1), v, and A are positive quanti-
ties and vr is negative for a positive nuclear moment as
that of P". The first-order energy levels are shown in
Fig. 3. The electronic transition frequencies AS=0,
AM„= ~1, Am&= Am2=0 are the following:

v= v.+-,'A (m, +m, ) .

The electronic resonance spectra exhibit two lines at
frequencies v.&~A which are not observable, due to the
lines of the isolated donors and a line at the frequency
v, twice as intense corresponding to mt+ms 0——

We use the same considerations for clusters of three
phosphorus atoms in the spin multiplicity S= ~ which
is completely symmetric with respect to the three spins
st, ss, and ss. We obtain for this case st ——ss ——ss ——

s S.
The only electronic frequencies are v, %-',3 and v,&~A.

The two eigenstates of spin S=—', give electronic
resonance frequencies which vary from one cluster to
another giving rise to a continuous background as has
been shown by Abragam. 4

The only discrete lines for four-atom clusters are v„
v,~~A, v.&&A. A line at frequency v, broadened by
hyperfine interaction with Si" spins appears only for
clusters of an even number of phosphorus atoms.

At a temperature of 1.3'K the electronic resonance
spectrum shows lines at frequencies v.&~A which
merge almost completely in the background line. We
conclude that the number of four-atom clusters is
negligible in the samples (I"ig. 1).
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2. Second-Order Perturbation Theory
of Energy Levels

There are nondiagonal mat'rix elements of the hyper-
fine structure Hamiltonian Kv=A(Ii si+Ip. sp) be-
tween different triplet states and between singlet and
triplet states. The Os component of the total spin
F.=S.+It.+I» and the total symmetry of wave
functions with respect to interchange of two atoms are
good quantum numbers. We defined a total parity
number P as negative when the sign of the wave function
changes by simultaneous permutation of the two
electronic spins and the two nuclear spins. The per-
turbed states will be classified according to the two good
quantum numbers as indicated in Fig. 3.

The coupling of nuclear spins in every electronic level
gives three symmetric triplet states ~ti), ~tp), and ~f—i),
and an antisymmetric singlet state Is). The even-
interaction BC~ couples states which have same quantum
numbers E, and the same total parity. This is true for
any order perturbation calculation.

Starting with the eigenfunctions of zero order (Fig.
3), we obtain immediately the nondiagonal matrix
elements from which one can obtain the shift of energy
levels.

We present the calculation of the shift for triplet
states ~Ti) and ~Tp). We deduce shifts of iT i) levels

by exchanging v, in —v, in the formula.
(a) i Tr, ti). This state is not coupled with any other

state triplet or singlet because
~
Tt, ti) is the only state

with Ii,= 2 and there is no change in its energy beyond
the first-order value.

(b) (Tr,4) and ~Tr,s). ~Ti, tp) is coupled to ~Tp, fp) and

~
Tr,x) to ~S,tr) by the nondiagonal matrix elements

There are no diagonal matrix elements for any of these
states,

(Tr, to iKv i Tp,4)=A/2,

(T„s
~ X„~S,~,)= —A/2.

The second-order shift of the state
~
Ti,s) is

E=A'/4(v, +J),
and that of state

~
Tr, tp) is

E=A'/4v, .

(c)
~
Ti Li). This state is coupled to

~
Tp, tp) and ( S,s).

Its shift is

A'/4v. +A'/4(v, +J) .

3. Line Shayes and Frequencies of
Nuclear Transitions

(a) The coupling with the rf field inducing an
electronic or nuclear transition is an operator propor-
tional to

ox(sr, +sp.)+P(Ir,+I„).
The selection rules for electronic or nuclear tran-

sitions are thus ~F,=&j, AI'=0. With a perturbation
like si,+s&, or I»+I» the total parity is preserved.
The allowed transitions are shown in Table I and Fig. 3.

(b) From Table I, it appears that nuclear lines are

Fro. 4. (a)—Theo-
retical dependence
on J of the zNDOR
frequency in the
group —,'A+ vI and
estimate of J distri-
bution in dashed line.
(b)—Experimental
line shape for sample
B.

A A~I (AI ~y' ~+PI
Endor frequency

$amp)e 8
t

ajar

b
Cej Ol)

Endor frequency

(d)
~

Tp, fp) and
~
Tp,s). The same method as that of

Sec. 2(b) does not remove the degeneracy between the
two states in second order. To that order both states are
shifted by the same amount,

E=A'/4J.

(e)
~
Tp, 4) &+d ~Tp, Li). The shifts are respectively

A'/4v, and —A'/4v, . This computation is only valid
under conditions: A(gv„J, v,—J, v,+J. It is not valid
at the crossing of energy levels. This restriction is im-
portant as we shall see further.
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Fig. 5. (a)—Theo-
retical dependence
on J of the Ermol
frequency in the
group —,'& —vl and
estimate of J distri-
bution in dashed
line. (b)—Experimen-
tal line shape for
samples A and B,
respectively, shovr-
ing the frequency
gap.

population of one of the states with mt+ms ——0 and
the electronic signal varies. By sweeping the radio-
frequency v we reach all the nuclear frequencies
possible. ' For a given v the change of the electronic
signal is very likely proportional to the number of
clusters having the nuclear frequency transition v. For
instance, if we look at the ENDOR frequencies vz+ (A'/
4v,)& (A'/4J), the spectrum reproduces the distri-
bution of the values of A'/4J in our sample.

2 Experimental Tet:hnique

The frequency of the electronic spectrometer is
stabilized by a Pound discriminator on an external
cavity. We use a constant-level symmetric detection. ~

All these experiments have been done at 1.3'K and
because of the length of the electronic relaxation time,
the dispersion mode is observed. The signal-to-noise
ratio for the ENDOR signal on clusters varies between
3 and 5. We use two samples of phosphorus-doped
silicon from Merck;

Sample A: E=8&&10"P/cc p= 0.110-cm,

Sample 8: %=6&&10's P/cc p=0.130-cm.
split into three groups, two whose frequencies in first
order are sA —vz and sr A+ vz, and one whose mean
frequency is near the Larmor frequency of a bare
phosphorus atom. We assume now J&0. The values
of the coupling constant are distributed in the clusters
with a distribution function P(J) normalized to unity
when J is varied from zero to infinity. It is assumed to
have a maximum for a value J=J~.

The srA+vz grouP includes two frequencies. One is
J-independent srA+ vz —(A'/4v, ), the other is J-de-
pendent —,'A+ vz —LA'/4(v, +J)j. The distribution of
J produces a distribution of the latter frequencies (Fig.
4). The —,'A —vz group always includes one J-independent
frequency line. The others show a singular energy
denominator for J= v,. Thus, a second-order pertur-
bation-frequency treatment is no longer valid for such
clusters. However the frequencies of these clusters
(J~v,) far from srA —vz, are not observed. It is im-
portant to notice that there is a forbidden frequency
band of width A'/4v, in the sA —vz group. Such a
phenomenon does not occur in the srA+vz group as-
suming an antiferromagnetic coupling (Figs. 4 and 5).
The

~
vz

~
group includes two lines whose frequencies are

J-dependent (Fig. 6).

III. EXPERIMENTAL

I. Principles of the Exjperiment

A microwave field at the frequency v, =9206 Mc/sec
is applied. The populations of the electronic levels
corresponding to the nuclear sublevels mr+ms ——0 are
therefore equalized. Then a rf field of frequency v in
the vicinity of one of the nuclear-transition frequencies
is also applied. This field produces a change in the

3. Experimental Results

Taking for the phosphorus nuclear Larmor frequency
the value ~vz~ =5.67 Mc/sec and for the hyperfine
constant the value' A=117.53 Mc/sec, the nuclear-
frequency transition calculated in a erst-order approxi-
mation is given by rsA —vz=64. 11 Mc/sec, —,'A+vz
=53.09 Mc/sec, and

~
vz ~. A typical second-order

correction is given by A'/4v, =0.375 Mc/sec.

A'
l&zl+r, y4Ve

Endor fi ezluency

Sample A ~~ ~e,

40s ~

l ~ ~

~%h~~~I ~4h~WN~~~~~A ~Qh N%g++%~~
~~ 840@54QQ Q~aMS&&&M! 00&@&MQ&aQQ

Endor 8 equency

Fzo. 6. (a)—Theoretical dependence on J of the ENDQR frequency
in the group ) vz). (b)—Experimental line shape for sample A.

s G. Feher, Phys. Rev. 114, 1219 (1959).
r G. Feher, Bell System Tech. J. 26, 449 (1957).
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The ENDOR line in the vicinity of v= —,A —v& shows
two peaks separated by a frequency gap of the order
of A'/4v. . This fact shows without any ambiguity that
the singlet level crosses the group of M, = —1 sublevels
and the coupling is antiferromagnetic (Fig. 5).

The line for M,.= 1 sublevels shows only a broadening
(Fig. 4) coming from the different possible value of
the second-order shift A'/4(v. +J).

The ENDOR line for the M, =O group of levels (Fig.
6) occurs at the frequencies v given by v=

~
vz~+(A'/

4v.)& (A'/4J).
As stated above, the shape of the line reproduces the

distribution of A'/4J. If we call Jv the value of J
which gives the maximum probability for A'/4J, we
deduce A'/2Jv by measuring the distance between the
maximum of the two peaks. For the sample A we find

A'/2Jv=0. 94 Mc/sec.

Knowing the distribution for A'/4J, it is possible to
deduce the function P(J), giving the probability of
finding a given J and in particular, the value J~ giving
the maximum value for P(J). The results are

Sample A: Jv ——15 000+3 000 Mc/sec,

Sample 3: Jv ——13 500&3 000 Mc/sec.

The shape of the two other lines can be discussed in
a qualitative way. Figure 5 shows the lines ~~A —vr for
the two samples; for the sample A the low-frequency
peak is more intense than the high-frequency peak.
The result is opposite for sample B.

Since the low-frequency peak corresponds to values
of J larger than v. and the other peak to values of J
smaller than v„ this result is consistent with the fact
that Jv is smaller in sample 8 than, in sample A (Fig. 5).

The width of the experimental frequency gap is
smaller than As/4v, ; the time constant due to electronic
saturation is probably reducing the experimental gap.

Coming back to the line at vz we notice (Fig. 6) the
two broad lines. The intensity of these lines is very
small in sample B. The width of the line, being of the
order of As/4Jv, is larger for sample 8 and is responsible
for the small signal.

IV. INFLUENCE OF IONIZED CENTERS

A very narrow line (10 kc/sec) occurring exactly at
the frequency

~
vz

~

is observed in the ENDOR spectrum
of both samples (Fig. 6). Feher' already noticed the
occurrence of this line in the ordinary ENDOR. spectrum
of a compensated sample and attributed it to an ionized
phosphorus center.

Assuming that there is an ionized phosphorus in the
vicinity of a cluster of two neutral phosphorus, there
always will be a small scalar coupling between the two
electronic spins and the ionized phosphorus nuclear
spin I'. We therefore add, to our Hamiltonian (1),
the term

81I 'sl+r18 ' s2+ vzls ~

This coupling comes because the wave function for
the two electrons localized around phosphorus 1 and 2,
has a small admixture of a wave function for an electron
bound to the phosphorus I'. This is an extension to a
system of three phosphorus and two electrons of the
calculation performed by Miller and Abrahams8 for
explaining the conduction of compensated sample.
Because the admixture is very small a& and a2 are much
smaller than A. This new term gives a contribution to
the energy spectrum, which is for a state M, (of the
triplet):

vrzN'+-,' (ur+as)m'M„
m' being the value of I,'.

As a~ and a2 are small this term does not inQuence
the electronic spectrum. But there are now ENDOR
lines corresponding to the selection rule dm'=&1, and
occurring at frequencies given by

v=
i
vzi+-', (az+as)M,

(we neglect second-order corrections). For M..=O a line
appears exactly at v=

~
vz~.

There are also ENDOR lines corresponding to value
of M, =&1, but they are not observed because there
is a distribution of a~ and a2 values.

The important point is to notice that only lines
corresponding to the SI,=O level of clusters are ob-
served. There is undoubtedly phosphorus ionized near
isolated neutral phosphorus, but their ENDOR fre-
quencies are given by v=

~
vz~+saM„M, =&sr and

are not observed. We observe only ionized phosphorus
coupled to clusters of two neutral phosphorus, this
point is also proved by the following experimental fact.

Now we saturate the electronic line v= v, &srA (Fig.
1) and look at the ENDOR spectrum. The narrow line
at

~
vz~ appears but its intensity is half the intensity

of the
~

vz~ line observed when we saturate the v= v.
line. It is known that a cluster of two has an electron
spectrum with lines at v=v, +~A which are not ob-
served because they are masked by the large signal
coming from isolated phosphorus, the intensity of
these lines is one-half the intensity of the v= v, central
line. So the narrow v= ~vz~ line observed when we
saturate the electronic lines at v= v,&~A is not due to
the ENDOR spectrum of isolated phosphorus but to the
ENDOR spectrum of clusters of phosphorus.

By comparing the intensity of the narrow v= vr
line and the intensity of the broad line near vI
(coming from neutral phosphorus) it should. be possible
to get quantitative informations about the degree of
compensation of the samples.

V. THEORETICAL ESTIMATE OF THE
EXCHANGE ENERGY

The Hamiltonian of the two-electron system is given
by
K(1,2) = T(rr)+T(rs)+ V;(r1)+V;(r1)

+V'(rs)+ V (rs)+ V(rr, rs),
' A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).
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FlG. 7. Results of the computation of J as a function of the
average distance between two neighboring donors. The experi-
mental value of J for sample A corresponds to an average distance
of 110A., assuming a=25 X.

where r~ and r2 are the coordinates of the two electrons,
T(r) is the kinetic-energy operator, V;(r) and V, (r)
are the attractive potentials due to phosphorus nuclei
at sites i and j. In our spin. Hamiltonian (1), J is
defined as the energy difference between triplet and
singlet spin states '

where IT) is the total wave function for the system,
antisymmetric with respect to the orbital variables,
symmetric with respect to the spin variables in the
triplet spin state. The opposite is true for IS).

The orbital part of the one-electron wave function,
taken from the effective-mass theory" may be written
at a site i:

where p„(r) is a Bloch function corresponding to the
wave vector of the p valley, and F„(r) is an envelope
function satisfying the wave equation in the effective-
mass approximation:

—@2+y2 22 —1/2

+—
8

F„(r)= (2rasb)
—"'exp—

the s axis being parallel to the wave vector corre-
sponding to the value p. In silicon a and b are"

a= 25 A, b= 14.2 A.

According to our definition of the exchange energy,
J takes the following form'.

(rl)iPj(rl) 4'j (r2) V(r2)4''(r2)dr11Er2

g2

(r1)1tj(rl) I r1 r2I 'ipj*(r2)ip (r2)dridr2. '

Kp

P. W. Anderson, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1963), Vol. 14.

"W. Heitler and F. London, Z. Physik 44, 455 (1927)."I. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
"W. Kohn, in Solid State Physics, edited by F. Seitz and D.

Turnbull (Acadeiruc Press Inc., ¹wYork, 1957), Vol. 5.

Since U(r2) is an attractive potential the first term is a
positive one, the second is negative. If one neglects the
anisotropy of the envelope function within a given
valley, the estimate of J is simple. But one should
notice that each term of the latter expression is smaller
than the one obtained by using a pure hydrogenic wave
function because there is destructive interference
between parts of the wave functions coming from
different valleys.

Utilizing Eq. (II 17), Eq. (II 18), and (paragraph)
IV of Ref. 8, we evaluated J (as function of the distance
between phosphorus centers) assuming an, isotropic
envelope function and taking for the radius a=25,
20, or 15 A (Fig. 7). We find that the positive theo-
retical value of J agrees with the experimental results.
The average distance between centers is easily deduced
from the concentration of centers, and we And that the

experimental value of J is larger than the theoretical
prediction, even if we use a=25 A for the radius. If we

believe in the impurity concentration measurements by
conductivity at room temperature, this fact seems to
indicate that the average distance between donors is
smaller than the average distance deduced from the
concentration, by about 20%. This may be due to a
nonuniform concentration of phosphorus donors. It
has been suggested that impurities tend to concentrate
along dislocation lines. "

VI. CONCLUSION

The method we described can only give information
if the exchange integral is larger than the hyperfine
coupling A, otherwise no electronic line at the frequency
v. appears in the spectrum. There is also an upper limit
because when J becomes larger than kT and hv„. there
are very few electrons in the triplet states. If we remark
that J varies very rapidly with the distance, our
method is only valid in a narrow range of concentration.
At high concentration, another limit appears. The
electronic relaxation time becomes shorter, and the line
dificult to saturate.

The possibility of measuring J is directly related to
the presence of the hyperfine coupling term; without
it, the exchange term and the Zeeman term commute
and the frequencies are not affected by the exchange
term. It is the small coupling by the hyperfine energy
of the triplet and singlet levels which allows measure-
ment of J. The effect of exchange on the energy spec-
trum is very small except when the crossing occurs.
By a second-order perturbation calculation we are able
to explain the shape of the experimental ENDOR

spectrum and to determine the sign and the magnitude
of J.

We have explained the occurrence of an ENDOR line

'3 D. K. Wilson, Ph.D. dissertation, Rutgers University, New
Brunswick, ¹wJersey, May 1963 (unpublished).
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coming from an ionized phosphorus center weakly
coupled to a cluster of two neutral phosphorus atoms.

Pote added irt proof D.r. J. J. Pearson. made a calcula-
tion of J without neglecting the anisotropy of the en-
velope function. The results will be published in a
separate article.
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Peierls Stress anfI Creep of a Linear Chain*
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The Frenkel-Kontorova dislocation model is modi6ed by replacing the sinusoidal substrate force by one
which is piecewise linear. Exact solutions are found for the static con6guration and for the Peierls stress,
o.z. Good agreement is found between these values of 0-z and those obtained previously for a two-dimensional
Rosenstock —Newell model. The atoms of the linear chain are then considered in random motion correspond-
ing to thermal equilibrium and under an applied stress 0 &O.z. The time required for motion of the dislocation
from one position of stable equilibrium to an adjacent one is computed by means of a rate-theory formulation
adapted to the present type of problem in which the positions of all the atoms in the chain are required to
vary in passing over the potential barrier. The theoretical transition times for an in6nite chain are compared
with analog computer results for a six-atom chain and reasonably good agreement is found.

I. INTRODUCTION

l
'HE rate of dislocation creep over the Peierls

barrier has been studied in connection both with
low-temperature creep' and the Bordoni peak. ' Because
of the complexity of the phenomenon, it is necessary to
make various assumptions of a mathematical and
physical nature when treating a realistic model of the
process.

The purpose of the present work has been to construct
a simple dislocation model which is amenable to analy-
sis with few additional assumptions. It is hoped that the
results of this idealized analysis may provide insight
into the nature of the real process, and that the mathe-
matical techniques employed may be applied to more
realistic models.

The dislocation model considered here is a modifica-
tion of the Frenkel-Kontorova one-dimensional model'
with the sinusoidal substrate force replaced by one
which is piecewise linear as in the two-dimensional
treatment of Sanders. ' For this model it is possible to
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modi6cation of the Frenkel-Kontorova model from the static
viewpoint only.
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obtain exact solutions to the difference equation de-
scribing the static con6guration under app1. ied stress and
to derive an exact expression for the Peierls stress, 0-~

(Sec. 2). The values of or computed here agree surpris-
ingly well with the results of the two-dimensional
calculations. 4

In order to study the dislocation creep rate, the atoms
of the model are then considered in random motion
corresponding to thermal equilibrium and under an
applied stress 0-(a~. The problem of determining the
rate at which the dislocation passes from one stable
equilibrium position to an adjacent one is in the general
class of problems considered in rate theory. '%'e present
here (Sec. 3) a derivation of the pertinent rate formula
ab initio which is somewhat different from the usual one
and is particularly adapted to the present type of
problem in which the positions of all the atoms in the
chain are required to vary in passing over the potential
barrier.

For the infinite chain dislocation model it is possible
(Sec. 4) to calculate explicitly all the quantities entering
into this rate formula. The theoretically predicted values
of the frequency of transition of the dislocation from
one equilibrium position to an adjacent one are found
to be in order-of-magnitude agreement with analog

'H. Eyring, J. Chem. Phys. 3, 107 (1935); C. Wert and
C. Zener, Phys. Rev. 76, 1169 (1949); C. Wert, ihid 79, 601.
(1950).A paper which came to our attention after this manuscript
was submitted is G. H. Vineyard, Phys. Chem. Solids 3, 121
(1957), which also develops the pertinent rate formula from the
viewpoint of Sec. 3. We have retained the present discussion,
which differs somewhat in emphasis, for the sake of completeness.


