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The conditions are examined under which interference effects should be observable in the superposition of
two light beams derived from independent sources. The quantum-mechanical description of these effects
differs from the classical description principally in that it is necessarily based on expectation values of the
light intensity at one or more space-time points. It is shown that pure states of the radiation 6eld which are
not energy states give rise to interference effects, but in that case the two beams cannot meaningfully be
described as statistically independent. For a realistic description mixed states have to be introduced, when
the expectation value of the intensity gives no indication of interference effects. On the other hand, the in-
tensity correlation at two space-time points is a periodic function of the separation of the points and indi-
cates the presence of transient interference effects. The effects become readily observable only when the
average photon occupation number of each cell of phase space is appreciably greater than 1, and this ex-
plains why laser beams were needed for the experimental observations. It is pointed out that, even in these
experiments, each photon may be regarded as interfering only with itself.

1. INTRODUCTION

' 'T has been known for years that spatial interference
~ ~ effects may be obtained by superposition of two
independent beams of microwaves. ' Later it was shown

by Forrester, Gudmundsen, and Johnson, s in a very
ingenious experiment, that the mixing of two incoherent
light beams of slightly different frequencies also gives
rise to beats. With the development of the optical maser
which produces highly degenerate photon beams' in the
visible, such beat experiments became relatively easy
to perform and a number have been carried out. 4 '
More recently it has also been shown by Magyar and
Mandel' that interference fringes may be observed by
superposing two quite independent laser beams.

While such effects are readily understandable in
classical terms and have been so explained, ' their
explanation in terms of quantum mechanics is perhaps
less obvious. For quantum mechanics is concerned with
the evaluation of expectation values. Now these inter-
ference effects are transient and have certain unpre-
dictable features. For example, the positions of the
fringe maxima and minima are unpredictable by deGni-
tion for incoherent beams. Thus the ensemble average
of the radiation intensity shows no periodic variation
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with position or time, and indeed is not particularly
relevant to the description of a single short-time ob-
servation. Moreover, in the course of discussing con-
ventional interference experiments with coherent light
beams, Dirac has said" that " each photon then
interferes only with itself. Interference between different
photons never occurs. " While this statement does not
refer to or deny the possibility of observing interference
in the superposition of incoherent beams, it has never-
theless sometimes been interpreted in this sense.
It,: In the following we shall discuss the transient inter-
ference experiments in quantum-mechanical terms. "As
it has been customary to make observations with
receivers depending on the photoelectric effect, such as
photomultipliers, photoelectronic image tubes, and
photographic plates, the key "observable" in our dis-
cussion will be the photon-annihilation operator"
A&+'(r, t) at the space-time point r, t corresponding to the
complex classical Geld."We shall see that, despite the
fact that the transient-interference experiments involve
only the measurement of intensity, which is a second-
order field quantity, the observations are only described
by certain fourth-order correlation tensors. This is
because the simultaneous measurement at two or more
points plays an essential role in the recognition of inter-
ference fringes. Our treatment will automatically in-
clude the description of light "beats" between inde-
pendent beams, but we shall not emphasize this aspect.
Although the Gnal description bears a formal similarity
to the theory of the Hanbury Brown-Twiss effect, in so
far as it is in the form of an intensity correlation, the
effect discussed here is, of course, experimentally very
different.

"P. A. M. Dirac, Quantum 3Iechanics (Clarendon Press,
Oxford, 1958), 4th ed. , p. 9.

"See also H. Paul, W. Brunner, and G. Richter, Ann. Physik
12, 325 (1963).
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QUANTUM THEORY OF INTERFERENCE EFFECTS

2. INTERFERENCE BETWEEN LIGHT BEAMS
IN PURE STATES

Although pure quantum states do not adequately
describe the experimental situation, we shall start by
considering pure quantum states. In order to show the
analogy with the classical description we shall first
examine the simplest case of a "coherent" radiation
field12 ""in an eigenstate

I vk, .) of the photon annihila-

tion operator a», . for photons of momentum Ak and

spin s (s= 1, 2). It is probably true to say that a laser
beam of one-cavity mode can, to a first approximation,
be described as being in such a state. Consider the super-

position of two such polarized plane beams in different
states

I vk, ,) and Ivk, ), when the combined field will be
described by I vk, „vk.„)= I

v», ,) I
vk, ).

Suppose that the intensity is to be measured at the
space-time point r, t. We make a Fourier expansion of

the photon annihilation operator in the Heisenberg
picture

A&+&(r, t) =g a», ek, , exp[i(k r—ckt)],
k, e

where the ak, , are a set of complex orthogonal unit
vectors satisfying

&k, s ' &k, s' &s,s' ~

The expectation value of the total intensity I(r,t) at
r, t summed over all polarizations is then

(I(r t)) = (v»', ' vk, I
A& l (r t) A ~+& (r 1) I v», v», )

kIsI '
&k2&2

kl 411 k2 82

x exp{i[(k2 kl) 'r —c(k2 ~1)t])

X(vk', 2'ivk, s I 12»1,21 ts»2, 22 I vkvk', s2i') 1,t

and, on introducing the eigenvalues vk. ..,. of uk. ..,. belong-

ing to Ivk, ,,), we obtain,

(I(r f))= I", I'+ I»,"I'+»{v»,.*vk' 'ek, 'sk, .
Xexp[i(k' —k) r—c(k' —k)t]). (3)

Provided the unit polarization vectors ak, , and ak, , are
not orthogonal, and provided k&k', this relation shows

a sinusoidal variation of intensity I(r, f) as r and t vary. "
If the angle between k and k' is small, the interference
fringes point in the direction normal to both k and
k' —k, and will remain steady for a time short compared
with 1jc(k'—J2). In longer time intervals, a constant
drift of the pattern across the field, at the rate
c(k' —12:)/22r fringes per second, will be observed. In this
case there are no random fluctuations and the result is

exactly the same as that which would be obtained by
describing the two beams by complex classical strictly

1' R. J. Glauber, Proceedings of the Third Quantum Electronics
Conference, Paris, 1963 (to be published).

"R.J. Glanber, Phys. Rev. Letters 10, 84 (1963).

periodic wave amplitudes" V(r, t) and V'(r, t) with

V(r, f) = vk, ,ek, .exp[i(k. r—ckt)],
v'(r, t) = vk „ak „exp[i(k'.r—ck't)7.

(4)

The example is an especially simple and favorable one
and leads to fringes of 100% modulation if Ivk, , l

= Ivk, , I
and sk„* ek, .=1.

Consider now the superposition of two more general
radiation fields in pure states I {Gk,,)) and

I
{Fk,)),

where
l{F», })=IIIF», )

k, s

I {Gk, })=IIIG..),
k, e

~k12S1 ' ~k22S2
kl181 k2 &2

xexp{i[(ks—ki) r—c(4—ki)t])

x({G»,2)i{F»,2) Its»1, 21 ti»2, 22I {Fk,.}i{G»,2}) (6)

Now ak, , is the operator of the combined Geld and
therefore

&»2, 2I{F». ) {G», ))—IF»2,.2)I{F»,~»2,"))l{G»,})
if ks $2 is a mode of

I {F»,,)),
=

I {F.. ))IG....') I {Gk,.~». ,.,})
if k2, s2 is a mode of

I {Gk,,}),
(7)

=0 otherwise,
where

IF»1 ')=~k. IF», )
IG.. ')=~»..IG»,.).

We can therefore express (6) in the form

(I(r, f)& = Q [(F„,'I F, ,')+(G„,'I G, ,')
k, s

+ p p e»1,s1*' e»2, 22

k12 ~l/k21 f12

xexp{i[(ks—ki) r—c(ks—ki)t])
X [(F».,.,'I F.. .)(F..., I F2.,..')
y(G„„'IG„„)(G„., I G„.,')
+(F», 'IF», )(G», IG", )
+(Gkl 21 I G»1 il)(F»2 ii2 I

F22 i2 )].
"See M. Born and E. Wolf, Pr222c2ples of Optscs (Pergamon

Press, Ltd. , London, 1959).

and {F»,.},{G»,,) are to be interpreted as the set of all
Fk,„Gk,, To avoid the necessity of symmetrizing the
state of the combined field, we assume that

I {F»,,) ) and

I {G»,)) do not share any common k, s modes. This
would be the situation if two plane light beams inclined
at a small angle were superposed. The expectation value
of the total intensity of the combined field at r, t is

(I(r, t)) = ({G»,,},{F»,}I
At-~(r f) A&+&(r, t) I

X {F»,,), {Gk,.))
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Comparison with Eq. (3) shows that in general the
intensity (I(r,t)) will vary almost periodically with r
and t, and an interference pattern will be seen to remain
steady for time intervals short compared with the
reciprocal effective frequency spread 1/cAk. Neverthe-
less, there are situations encompassed by Eq. (9) in
which no interference at all appears to be observable.

Consider the case where IFs, ,) and IF~,,'), and also

IGq, ) and IGq, '), are orthogonal so that the scalar
products (Fq, , IFq, ,') and (Gq, , IGq, ,') vanish. Then
evidently there are no periodic terms in (9). Such a
situation would arise if IFq, ,) and IGq, .) were eigen-
states

I eq, ,) and
I m~, ,) of the number operator, for then

IF, .)=a, ,.le, ,.)—(~, .)'& Ie,„—1),
IGg, .')=ag, , lm„, ,)= (mg, ,)'~simp, ,—1),

and Eq. (9) reduces to

(I(r,t))= P(mg, ,+my, ,). (10)
k, s

Thus if the two light beams to be superposed are in
states of the type I {nq,,)) and

I {mz,,)) having well-

deGned numbers of photons, the expectation value of
the light intensity gives no indication of interference.
While it is, of course, very unusual for the number of
photons in a beam to be well defined, the same con-
clusion will hold also for ensembles of different number
states. Uncertainty in the number of photons is not
sufhcient to ensure the appearance of periodic terms in

the expression for (I(r,t))."Superficially this appears to
be a situation having no classical analogy, for there are
always terms in the classical expression for the light
intensity resulting from the superposition of two light
waves Vt(r, t) and Vs(r, t) which are not orthogonally
polarized. However, from the general correspondence
between the quantu~ mechanical and semiclassical
descriptions of the Geld ""it follows that the ensemble
of classical V(r, t) functions corresponding to energy
states consists of members having completely random
phases. Sudarshan' "has given an explicit expression
for the "probability distribution" p((», ,)) of the com-

plex Fourier components {»,,) of V(r, t) in. terms of the
density matrix p({ez,,)(rsvp, ,')) in the energy repre-
sentation. It follows from this that, for a diagonal
density matrix corresponding to an ensemble of energy
states,

p((ms, ,}(es, ))ng, , !

p((» ))= &
2w(2~, )!Iv, I

271]

xexp(l», I') 3I». I, (11)

"See also W. Pauli, I7aldbaeh der Physr'k (Edwards Brothers,
Inc., Ann Arbor, Michigan, 1950), 2 ed. , Vol. 24, part 1, . 211.

"E.C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963 .
' See also E. C. G. Sudarshan, Proceedings of the Symposium

on Optical Masers, Polytechnic Institute of Brooklyn, 1963 (to be
published)."C.L. Mehta and E. Wolf (to be published).

"L.Mandel, Phys. Letters 7, 117 (1963).

which shows that the phases of the (»,,) and hence of
V(r, t) are uniformly distributed over 0 to 2v.. We shall
see in the next section that the expectation value of
I(r, t) always vanishes under these conditions, so that
the explanation of the observed transient interference
effects calls for the examination of a different quantity.

The examples represented by Eqs. (3) and (10) are
extreme cases of Eq. (9), in which the interference
effects are maximum and zero. The reasons for this can
be understood from the nature of the measurements
that are made, for the "observable" corresponding to
the measurement is represented by the annihilation
operator. The eigenstates of this operator are the
"classical" states

I (», ,})leading to strong interference,
which are not significantly affected by the measurement.
Number states, on the other hand, are transformed into
orthogonal number states through the measurement,
and are therefore most strongly affected. Other states
would be expected to lead to intermediate results.

3. INTERFERENCE BETWEEN STATISTICALLY
INDEPENDENT BEAMS IN MIXED STATES

Although the foregoing discussion gives some insight
into the conditions under which interference effects are
observable, and shows that the fringes are expected to
remain steady only for time intervals short compared
with the reciprocal frequency spread, it does not
adequately represent the situation in practice. For the
light beams found in nature are never in pure quantum
states. This statement is true even for laser beams,
where the number of heavily populated quantum states
may be quite small. The introduction of ensembles of
states has an important consequence, for, as we shall
see, the calculation of the expectation value of the
intensity no longer furnishes any evidence at all of
interference effects.

We shall represent the two Gelds to be superposed in
the basis formed by the eigenstates I{»,,}) of the
annihilation operator A&+&(r,t), where (v~„) stands for
the set of all », , I (vq, ,},(»,.')) will be the basis states
of the superposed Geld, which we shall describe by a
density operator p in the "diagonal" Sudarshan
representation' "

p((», .),(»..')) I (»..),(»,.') )

X((»,.'),(",,) I

«' (",,)«'l(",.'). (»)
As before, we suppose that the two Gelds do not have
any common k, s modes, in order to avoid the symmetri-
zation problem. In the

I (»,,) ) representation the space
of the (»,,) is the phase space of the Geld." If we
suppose that the original two beams are derived from
statistically independent sources, then

p({»,,),{vq,,')) =p((», ))p'({»,')), (13)

and p factorizes into the product of two independent
operators.
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(I(r,t))= Tr[pA& '(r, t) A~+&(r, t)],

Consider now the expectation value of the total urements of intensity we have"
intensity at (r,t) summed over all polarizations. This is
given by (I(ri,ti)I(r, ,tz))= Tr[pA (ri, ti)A' '(rz, tz):

XA &+~ (ri, ti)A&+& (rz, tz)], (19)

and from (12) and (13),

(I(r, t))=» p({»,.})p'({»,.'})
I {»,},{», '}&

X({vi...'},{ei, ,}I
A&—

&(r, t) A~+&(r, t)

Xit&'&{ei, ,}8&'&{i~i,,'}. (14)

Now in the expansion of (14) we may formally make the
substitution

where the colon signifies the scalar product between the
first and third, and the second and fourth factors. Kith
the help of (12) and (13) this becomes

(I(ri, ti)I(rz, tz) &

p({», })p'({»,.'})
I {»..}{»,.'})

X({zi,,'},{z~,.}IV' '(ri, ti)V' '(rz t2):

XV&+&(r,,ti)V&+&(rz, tz)d&'&{zti. ..}it&'&{iti, ,'}. (20)

= [V*(r,t)+V'*(r,t)]({e„,'},{e„,}I, (15)

where V(r, t) and V'(r, t) are complex classical wave
amplitudes, " which are the eigenvalues of A&+&(r, t)
belonging to

I {»,,}& and
I {»,,'}&, respectively. {»,.}

and {»,,'} are the Fourier components of V(r, t) and
V'(r, t). On using (15) and its conjugate in (14), we find

(I(r,t))= ([V*(r,t)+V'~(r, t)] [V(r,t)+V'(r, t)])
= (V*(r,t).V(r, t))+(V"(r,t) V'(r, t))

+(v (.,t)).(v'(.,t))+(v '(.,t)&. (v(.,t&), (16)

where (V*(r,t) V(r, t)) denotes the ensemble average
dered by

(V*(r,t) V(r, t))

V*(r,t) V(r, t)p({z„,,})d&'&{ei,,}. (I/)

Now if we make the usual assumption that the
ensemble of states is such that the phases of the
complex amplitudes V(r, t) and V'(r, t) are uniformly dis-
tributed over 0 to 2zr, then (V(r, t))= (V'(r, t))=0 for all

r, t, and the third and fourth terms in (16) vanish. The
equation then reduces to

(I(r t))= (V~(r t) .V(r t))+(V'*(r t).V'(r t))
= (I,(r,t))+(I,'(r, t)&, (IS)

which is the sum of the two partial mean intensities.
This expression gives no indication at all of interference
effects and is, of course, the basis for the usual state-
ment that such effects appear only when there is at least
partial coherence between the beams. "

In attempting to give an explanation of the transient
interference effects that have been observed with inde-
pendent light beams, we recall that the detection of a
patterN implies the observation of intensity at several
space-time points. We are therefore led to examine the
correlation of intensities at two space-time points rj, t~

and r2, t2. If all polarizations are included in the meas-

Of the sixteen terms resulting from the expansion, eight
contain the factors (V)= (V')=0, and two contain the
factors (V(ri, ti)v(rz, tz)&= (V'(ri, ti) V'(rz, tz)) =0, or their
complex conjugates. These terms therefore vanish, and
(21) reduces to

(I(r„t,)I(r„t,))
= (I„(ri,ti)I„(rz,tz))+(I,'(ri, ti)I,'(rz, tz))

+(I„(r„ti))(I„'(rz,tz) )
+(V*(ri,tl)'V (ri tl)v (rz, t2) v(rz, t2))

+(I„'(r„t,))(I„(rz,tz) &

+(V'*(r„ti) V(ri, ti)v*(rz, tz) V'(rz, tz)&, (22)

where I„(r,t) and I~'(r, t) stand for the partial intensities
of the two separate beams at r, I,. The fourth and sixth
terms in the expansion in general lead to an almost
periodic variation of the correlation with

I
rz —ri I

and
t2—t&, provided the two beams are not orthogonally
polarized.

To simplify the discussion let us suppose that the
light is in the form of two quasimonochromatic (i.e., the
spread hk is much less than the midwave number ko),
polarized, plane beams. Then it can be seen at once from
the Fourier expansion

V(r, t) =g ni, ,ei, , exp[i(k. r—ckt)],
k, e

(23)

that, over a range I
Ar

I
small compared with 1/d k, and

over a time interval At small compared with the
reciprocal frequency spread 1/chk, "

V(r+hr, t+At) =V(r, t) exp[i(ko Ar ckoAt)] (24)— .

If, in addition, the polarization is the same for all k, s

IIy u»ng Eq. (15), together with the same assump-
tions as previously, we are led by a similar argument to

(I(ri,ti)I(rz, tz))
= ([V'(ri ti)+ V"(r„ti)][V*(r„4)+V'*(r„t,)]:

X[V(ri,ti)+V'(ri, ti)][V(r2 tz)+V'(rz, tz)7&. (21)
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Fourier components, we may write

V(r, t) = a P vq, , expLi(k. r—ckt)]
R, s

= sV(r, t)

(I(r„t,)I(rs, ts))= (I„'(ra,ts))+(I„' (r~, t&))

+2(I~(r& t&) )(I~'(r&, t&) )(1+cosLkp8
~
rs —ry

~ j}. (26)

Of course (25) and (26) describe a correlation function
which is not measured directly. But it is not diKcult to
see that a periodic spatial correlation implies that the
members of the ensemble of I(r,t) functions must them-
selves be spatially periodic. Thus, if we make a spatial
Fourier series expansion of I(r,t) in the receiving plane
in the direction in which modulation is expected, and
write

I(r, t)=A++ B„c o(sn rP+ n), (27)

where the phases u are independent and uniformly dis-
tributed over 0 to 2~, to ensure that (I(r,t)) is inde-

pendent of r, then

(I(r,,t)I(r„t))
BB

= (A')+p p Leos(npr, +mpr, +n„+n„)
n ~ 2

+L'ns(eflr, —mPr, +,—„)j)
= (A')+-,' Q(B„')cosnp(rg —r,) . (28)

Comparison of (28) and (26) then shows that

(8„')=4(I,)(I„')o„,„,
(A') = (I.')+(I.")+2(I.)(I.'),

It follows that, provided the two space-time points r&, t~

and rs, ts are su%ciently close that
~
rs —r&~&&1/4k and

~
ts —tq~ &&1/cAk, where &k is now the total spread over

both incident beams, we may simplify (22) to read

(I(r„t,)I(r„t,))
=(I.'(r t ))+(I."(r» ))

+2(I,(ri,4))(I,'(ri, ti))(1+ )
a* a'~'

&&cosL(kp kp ) ' (1's—ry) c(kp —kp )(ts—ty)$} . (25)

This form of the equation is directly applicable both to
the beating and interference experiments. It allows the

spacing and the expected visibility of the fringes to be
calculated when the statistical properties of the beams
are known. Note, however, that the positions of the
fringe maxima and minima are not given by Eq. (25),
and indeed are in general unpredictable. If we make the
ultimate simplification and suppose that the two beams
have the same spectral distribution, are inclined at a
very small angle 8, and are polarized in the same way,
then

with
m=k, e/p,

so that each member of the ensemble of I(r,t) should
show some modulation at the same spatial frequency.
However the exact modulation amplitude and the
positions of the maxima are not predictable, since the
phase angles o,„are randomly distributed.

Finally it should be noted that the absolute values of
(I„),(I„'),etc. , in Eqs. (25) and (26) play an important
role. For simultaneous measurements of the interference
pattern at two or more points in space cannot be use-
fully carried out unless there is an appreciable proba-
bility that two or more photons will arrive in the region
of the pattern in a time of order 1/chk. ss Thus, although
the relative modulation amplitude in Eq. (26) may be
independent of intensity, the absolute moduIation
amplitude in a measurement obviously depends on the
number of photons received. Now, the average number
of photons in the same spin state fa11ing on a coherence
area in a coherence time (i.e., in 1/chk) is the average
occupation number per unit cell of phase space, or the
degeneracy parameter 8 of the light beam. ' If interfer-
ence effects are to be observable, it is clearly important
that 6 should be appreciably greater than i. This
explains why such effects have remained unobservable
with incoherent light beams from familiar thermal
sources" for which 8 is usually below 10 '.

4. CONCLUSIONS

We have seen that partly predictable interference
effects arise in the superposition of two light beams,
even if they are derived from completely independent
sources. When the radiation field is in a pure state which
is not an energy state, the expectation value of the
intensity shows a periodic variation with position which
does not change significantly in a time short compared
with the reciprocal frequency spread. In particular, for
"coherent" states which are eigenstates of the annihila-
tion operator" Al+l (r,t), the result is exactly the same as
that obtained by a classical treatment of the problem. s

However, in that case the two beams cannot meaning-
fully be described as being incoherent or statistically
independent. For a realistic description of the experi-
mental situation ensembles of states have to be intro-
duced, when the expectation value of the intensity gives
no indication of interference effects. On the other hand,
the intensity correlation at two space-time points is a
periodic function of the separation of the points and
indicates the presence of transient interference effects.
The effects become readily observable only when the
average photon occupation number per unit cell of
phase space is appreciably greater than one, and this ex-
plains why laser beams were needed in the experiments.

Finally it might be asked whether the eftects discussed
here in any way contradict the statement of Dirac'0

+ Cf. also L. Mandel, J. Opt. Soc. Am. 52, 14Q7 (1962).
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quoted in the introduction. The answer is that they
clearly do not. Any "localization" of a photon in space-
time implied by the photoelectric measurement auto-
matically rules out the possibility of knowing its mo-
mentum, and with it the possibility of assigning the
photon to one or other beam Lcf. the symmetry of

Eqs. (7) and (15)].Just as in conventional interferome-

try, each photon is to be considered as being partly in
both beams, and "interferes only with itself. "In princi-
ple at least, the result of the experiment should be un-
changed if on the average only one photon at a time
were to traverse the interferometer.
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Simple Model for the Superconductivity of Lanthanum and Uranium*
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Department of Physics, Uttiversity of Califorlia, Sart Diego, La Jolla, Calzforrtia

(Received 30 September 1963; revised manuscript received 18 December 1963)

It is postulated that La and U have a narrow f band above, but very close to, the Fermi surface, An ex-
change interaction, antiferromagnetic in sign, between electrons in the f band can lead to nonzero occupa-
tion of the f levels in a BCS-type wave function. This f-band condensation, through a weak coupling of the

f band to the conduction band, enhances a BCS condensation of the conduction electrons. There are two
energy gaps, for quasiparticle excitations in the two bands. The critical field at zero temperature is calcu-
lated, as is the transition temperature. The predicted isotope effect is extremely small. The ratio between
the transition temperature and the energy gap at T=0 depends on the numerical values of the parameters;
although this ratio is of order unity, it would not be expected to be too near the BCS value of 1/1.75.

1. INTRODUCTION

''T has recently been proposed by two of us' that
~ - Matthias' rule' for the superconductivity of the
transition metals be modihed as follows. The super-
conducting transition temperature T, is a smooth
function of the number of valence electrons, approxi-
mately symmetric about v=6, and with maxima at,
roughly, v=5 and n=7. Matthias had suggested the
existence of a third maximum at n=3, due mainly to
the superconductivity of lanthanum LT,=4.9'K (hex. )
and 6.3'K (fcc)j. However, La is the only element in
Group III 8 of the periodic table which is a super-
conductor. Uranium (st=6) has an anomalously large
transition temperature ( I'K), and it has been sug-
gested' that the superconductivity of these two elements
arises from peculiarities of the band structure. La does
not have any 4f electrons, but the next element Ce has
one 4f electron; similarly U does not' have any 5f
electrons, but Np probably does. 4 For this reason it was
suggested that La and U have an f band above, but
very close to, the Fermi surface, and that virtual excita-
tion of electrons into the fband, together with exchange
interactions within the band, can strongly enhance the
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formation of a superconducting state. The object of the
present work is to investigate the suggestion quantita-
tively.

We will assume that there is an f band, of negligible
width, at an energy not much (in fact &t'tcoz&, the Debye
energy) above the Fermi surface. In the lanthanides
and actinides the exchange interaction between f elec-
trons is indirect (via s fscatterin-g); there is insufficient
overlap of f-electron wave functions onto the neighbor-
ing atomic sites to make an important direct contribu-
tion. The scattering of f electrons by s electrons leads
in second order to an f finteraction' o-f the form

Hrg= ——,
' d'r, d'r, J(r; r)tr(r;) tr(r;), —

where we postulate' J(a))0, ct= interatomic distance,
and where o(r,) is the spin density of the ith electron.
We will extract from Hff the "pairing" part. Other
interactions postulated are the usual s-band (phonon-
mediated) pairing force, and a weak interband pairing
force.

Using a BCS' ansatz, we will minimize the free
energy. In the absence of any interband coupling, a
condensation into the f band can occur (if J is large
enough) but the conduction-band excitation spectrum
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