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The inelastic transverse form factor for electromagnetic excitation of the giant resonance is discussed and
calculated on the basis of several difkrent models. Particular attention is paid to the Brown theory of
the giant resonance, which is reformulated here in such a way that no free parameters are left over, i.e., all
parameters are determined from other experiments. Numerical calculations are carried out for C'~ and com-

pared with the 180' electron scattering experiments and with photoabsorption data. It is found that the
Brown theory successfully predicts the dip in the squared form factor and the shift in the resonance energy
as the momentum transfer is changed, both of which are observed experimentally, and neither of which is
predicted by the collective models for the charge motion of the giant resonance. More detailed comparison
with the experimental data allows us to distinguish between different versions of the Brown theory, and it
is found that the no-free-parameter results are consistent with all the experimental data considered. Results
for all the models considered are presented and discussed.

I. INTRODUCTION

'HE nature of the giant dipole resonance has long
been an interesting question in nuclear physics.

Experimentally, it is known that the giant resonance
exhausts most of the sum rule for electric dipole matrix
elements. It is the dominant element of structure in
low-energy nuclear physics and this is why it has
received so much attention both experimentally and
theoretically. Goldhaber and Teller' proposed that the
giant resonance represents an oscillation of the neutrons
against the protons in the nucleus. Such a model gives
an electric dipole matrix element equal to the sum rule
value, but is incapable of explaining the more detailed
features of the giant resonance, such as its splitting into
several peaks."Kilkinson4 realized that if one sums
the individual particle transition strengths in an oscil-
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' M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).
2%. C. Barber and W. R. Dodge, Phys. Rev. 127, 1'746 (1962).

See also %. C. Barber and %. R. Dodge, Contributions to the
Kurlsruhe Photonucleur Conference 1NO (Erstes Physikalisches
Institut der Universitht Heidelberg, Heidelberg, 1961), p. Al'.

3 N. %. Tanner, G. C. Thomas, and E. D. Earle, Proceedings
of the Rtttherford Estates International Conference, 3fanehester,
1W1, edited by J. B. Birks (Academic Press Inc., New York,
1961),paper C2/30.' D. H. Wilkinson, Physics 22, 1D39 (1936);Phys. Rev. Letters
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lator potential, or oscillator potential with a spin-orbit
force, then one again hnds a transition strength which
exhausts the dipole sum rule. The difhculty in this case
is that stripping experiments, and calculation of con-
6guration energies from neighboring nuclei, show that
these single-particle states lie too low in energy to
explain the appearance of the giant dipole resonance
in the region 15—25 MeV. Brown and his collaborators
here pointed out that if one regarded the resonance
state as made up of a linear combination of particle-hole
states, then the residual particle-hole interaction being
of opposite sign to the particle-particle interaction, and
hence reptdsi~e would tend to drive the resonance
states up in energy. Several calculations of energy levels
and relative dipole strengths in C" and 0"have been
carried out on the basis of this model by Brown and his
co-workers' 8 and an intensive application of the
particle-hole idea to other states and other nuclei has
been undertaken by Gillet. ' A detailed intermediate
coupling calculation on odd-parity states in hght nuclei

5 G. E. Brown and M. Bolsterli, Phys. Rev. Letters 5, 472
(1959)' G. E. Brown, L. Castillejo, and J. A. Evans, Nucl. Phys. 22,
1 (1961).' N. Vinh Man and G. E. Brown, Nncl. Phys. 29, 89 (1962).

s G. E. Brown, L. Castillejo, and J. A. Evans, Contributions to
the Karlsrif'he Photonucleer Conference &60 (Erstes Physikalisches
Institut der Universitit Heidelberg, Heidelberg, 1961), p. B4.

V. Gillet, thesis, Universite de Paris, Saclay, 1962, C.E.A.
Report No. 2177 (unpublished}.
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carried out earlier by Elliott and Flowers" also shows
that the residual interactions raise the energy of the
dipole states. The resultsfor the T=i, J =1 statesin0" turn out to be very similar in the two calculations.

One of the most powerful tools available for eluci-
dating nuclear structure is inelastic electron scattering.
The interaction of electrons with nucleons is well known
and therefore, by varying the momentum transferred
to the nucleus at a fixed energy loss, one can map out
the Fourier transform of the transition charge and
current densities and hence the charge and current
densities themselves. This gives one much more de-
tailed information about the nature of a state than does
just the total photon absorption width, which is just
one number, for example. In this paper we shall study
the question of what one can learn about the nature of
the giant dipole resonance through the use of inelastic
electron scattering. In Sec. II we give a brief review of
inelastic electron scattering and also discuss the relation
to photoabsorption. In Sec. III we give a discussion of
the Brown theory in terms of wave functions and a
"Tamm-DancoG' approximation. While this discussion
is merely a reformulatiort of the Brown theory, it does
help one to understand a little more clearly, we feel,
such things as the nature of the approximations in-
volved, what force is to be used, how one is to experi-
mentally identify the unperturbed configuration ener-
gies and the relation to the intermediate-coupling
calculations. It also allows one to easily keep track of

all the phases involved, which in a calculation such as
this is a nontrivial matter.

Section III contains a detailed discussion of the
calculation of the energy matrix and electron scattering
matrix elements in the Brown theory. The electron
scattering cross section based on the Goldhaber-Teller
model has been calculated in a previous paper. "The
cross section given by the Steinwedel-j'ensen hydro-
dynamical model is discussed in Appendix A. One of
the major conclusions of the present work is that the
various models give completely diferent inelastic form
factors. In Sec. IV an application to C" is carried out
and the results for the transverse electric dipole form
factors are compared with the recent results of
Goldemberg e$ a/. ,""who look. at electron scattering
in the backward direction with the 75-MeV Mark II
linear accelerator at Stanford. A second conclusion of
the present paper is that the Brown theory gives very
characteristic form factors which are quantitatively in
agreement with the experimental results both as to
shape and magnitude. Similar results have been ob-
tained for 0" and will be discussed in a forthcoming
paper. "Section V contains a discussion and summary.

II. INELASTIC ELECTRON SCATTERING

The cross section for inelastic electron scattering
from the ground state to a discrete excited state is given
in Born approximation, with the neglect of nuclear re-
coil and the electron mass with respect to its energy, by

do k2 Sxo.'- 1
I (Jrll~~(q) IIJ') I'

dQ kt h4 &=o2J;+1
1

+l'r(e) Z (l(JIIIT~ *(q)IIJ~) I'+l(JrllT"'(q)IIJ~) I') (l)
J=t 2J;+l

kt and k, are the initial and final electron wave numbers, tl'= (ks—kt)' and 6'= ti' —(ks —kt)' are the three- and
four-momentum transfers and 8 is the electron scattering angle. We further have

h4 8
Pr, (8)=—2k,ks cos'—,2'

(2)

V, (0) =

The multipole operators are given by

2kgk2 8 8
sin' — (k&+ks)' —2ktks cos~

2 2

Mzsr(q) = dxp&(x) jz(qx) &zjr(&.),

1
Tqsret(q)=- dxLjz(x) (VXjz(qx)IJJ'1 (&.))+q'jz(qx)I/J1 (fl )'pN(x)j

g

(3)

T&u 's(q)= dxLpN(x) (&Xjz(qx)IJzt (0 ))+jJ(qx)IzJt (0 )'jN(x)].

'0 J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London) A242, 57 (1957)."J.Goldemberg, Y. Torizuka, W. C. Barber, and J. D. Walecka, Nucl. Phys. 43, 242 (1963)."F.H. I ewis, Jr., J. D. Walecka, J. Goldemberg, and W. C. Barber, Phys. Rev. Letters 10, 493 (1963}."F.H. Lewis, Jr. (to be published).
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ep"(x), ej"(x), ep"(x) are the nuclear charge, current, and magnetization density operators, and

y","(a)=g (ZmnIZuitr) v,„(a)e,

are the vector spherical harmonics. "The operators Tz~et(q) and Tz" 's(q) are exactly thesame operators which
describe the emission and absorption of rea/ photoes, only in that case one has a relation between the momentum
transfer and the energy loss, AcIqI =DE—=Ef;. The total integrated photoabsorption cross section to a discrete
level can be given in terms of these same operators by (see Appendix 8)

(Ac) 1 (Eg;) ( (Ef;)
0 b.(E)dE=(2w)'~ p ~f ~'"I

I ~' + I ~g &' 'I
Er 27+1 z Ehc& ~ Ehc&

We shall be concerned with the reduced matrix elements
of the various multipole operators as a function of q
and will refer to these as the inelastic form factors. One
can thus get one po~nt on the transverse form factors
from photoabsorption. The transverse and longitudinal
form factors can be separated experimentally in electron
scattering by doing experiments at 6xed q but diferent
8. In the backward direction one has Vz(w) =0 so one
sees just the transverse form factors.

III. BROWÃ THEORY OF THE GIANT RESONANCE

In this section vre shall describe a procedure which is
merely a reformulation of the Brown theory. Hopefully,
one can gain some further insight into the theory and
into the nature of the approximations involved. The
nuclear Hamiltonian is given by

H=Q T(i)+ p v(i, j).

We will assume that v(ij) is a nonsingular potential
vrhich its lour™energy nucleon-nucleon scattering. This,
of course, does not allow us to account for nuclear
saturation. We vrill find, however, that most of the
matrix elements of the potential involved in our cal-
culation can be identi6ed with energies of neighboring

nuclei, which vre shall take from experiment. We vrill

thus be left with single particle-hole matrix elements
of v(ij) and it is known, at least in doubly magic+2
nucleon nuclei, ""that the singular nature of the po-
tential does not drastically change the two-particle

energies and wave functions.
Ke shall deal only with nuclei which have doubly

closed j shells. For the ground state of such nuclei we

will use the simple shell model wave function (we shall

take nuclei with 2 shells, as in C~ as an illustration,
the results are immediately generalized). We write

Ce"«"(1, , 2»,)=— — Q(—1) PQ;, t(1)P;, rt(2) P;,t(»,)y;,g(»,+1) P;,g(2»,)], (6)
((2»')'F' "

where the indices on the single-particle wave functions are nz;, and m&, the third components of angular momentum
andisotopic spin. Weassume the single-particle wave functions areeigenstatesofl', s', t', j', j„andt, .Thesingle-
particle states don't have to be speci6ed any further than this for the purposes of our present discussion. The
operator 1/((2», )!)"Pz(—1)~P where», —=2jo+1, is theusualantisymmetrizationoperatorcontaining a sum
over all permutations of the 2S;,particles with a sign equal to the signature of the permutation. This wave function
is antisymmetric, normalized, and an eigenstate of J', J„T', 7, all with eigenvalues 0. Similarly

Ce"'&'(1,2, 2»)= Q (—1)&P[g;t(1) P;t(~;)P;g(1V;+1) ~ ~ (P;g(2»)].
((2»).)'" ~

The ground-state wave function is then taken to be

0'p= C'p= Q(—1) P[CP'""(1 2X;,)CP"(2F;,+1 A)].
((2»)'F'((2»o)')'" (~'F' ~

This wave function is normalized, antisymmetric and has J=T=O. %e vrill attempt to describe the giant reso-
nance electric dipole states by taking linear combinations of states of single-particle excitation which have un-

"A. R. Edmonds, Angcdar 3lomentum in QNaatum Mechamics (Princeton University Press, Princeton, 1957). We nse Edmonds'
notation.

»J. F. Dawson, L Talmi, and J. D. Walecka, Ann. Phys. (N. V.) 18, 339 (1962).
16 J. F. Dawson and J. D. Walecka, Ann. Phys. (N. Y.) 22, 133 (1963).
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perturbed configuration energies (to be identified later) lying closest to the observed value of the giant resonance
energy. A single hole in the jo shell for example can be written as

( 1)k-)lo

C 1 """') '(1 2X —1)= Q (—1) EL) 2(1) [lt 1] .
lf. )(2$ —1)]

((2X;,—1)!)'"2

where the state P, z, has just been omitted from the product wave function as symbolized by the heavy brackets.
This wave function has J'= jo(jo+1), J,=2)20, T'=

2 2, T,=ho, as is easily veri6ed. Note that an extra phase
(—1) "0 must be added to achieve this. A particle-hole state of definite j can now be constructed by taking

4 J2rgri)r2 (" '» ) (no'01» '(1,2, 21v;0) = 2 P (j 12)iij 0212 lj ij oJMz)
((2llrl —1)!)~ mOXO mlil

&&(2l 12l ol2 2T~r) 2 (—1)'~l:C-010'"0"'" '(1 2&"00 1)4—-2.1"""'(2&00)] (1o)
((2&)0) 'P' ~

Note that we have now defined a definite order of coupling. The total basis wave function describing a given
particle-hole state is

010~~ r~ (nlill'l)(no(01'0) '(1 . . .A)—
((2». ) ')'" ((2&)!)'"(A ')"'

&&+ (—1) I [4g2r r2r ("l lo'l) ("0 0'0) (1 ' ' ' 2X' )C' 0(2X' + 1 ' ' 'A)]. (11)

To describe the giant resonance, we must have states of odd parity and so the particle states we mix in must have
opposite parity from the states in the hole-shell. These states lie fairly high ( 1 oscillator spacing or 15 MeV) in
nuclei. We now try to construct an excited-state wave function by taking linear combinations of the basis states
(we use the labels 1 for particles or 2 for holes).

(1.. .A) —Q (~2(nli»l) (n2)222) oxoJ2r re (nl (ill) (n2)202) (1.. .A)
ntlij1
nslu j2

If we try to solve the Schrodinger equation in this basis, we have

II+JMJTMz ~JMJTMz

and, inserting the above wave functions and using their orthonormality properties, we find

2 [(e l al ex') Eaux. ]a~P'=—o,
K'

(12)

(13)

where K stands for a pair (22111ji) (222t2j 2)
' Diagon. alization of this set of linear equations gives us the energy

eigenvalues E and sets of coefficients u~. We assume that the two-particle potential has the form

(r12)+2' (2 12)021'(22+2) (r12) &1' &2+2 (r12) (&1' 022) (21' &2) ~

One can now make a multipole expansion of this potential and then calculate matrix elements between the
appropriate wave functions using the identity

( 1 ci

P (—1) re, (1 . .A) I P O(i, j) l P (-1).x+2(1" A) I

E(A ()I 2
)(A!)'"

2'

—= (%(1. A)l g 0(i,j)lg (—1)~F2(1 A)). (16)

This allows one to separate the interactions into both direct and exchange core-core, core-shell ', shell '-shell ',
particle-core, and particle-shell terms. The first four of these are easily expressed in terms of reduced matrix
elements of the relevant multipole operator and direct and exchange radial matrix elements. "For the last term,
the interaction of the last particle and the shell ' which has the state —m2 —) 2 missing, one finds, due to the

"See, for example, J. P. Elliott and A. M. Lane, in Handbuch der Physik, edited by S. I'liigge (Springer-Verlag, Berlin, 1957), Vol.
39, p. 241.
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antisymmetry of the wave functions, an expression which contains a sum over all occupied m2) 2 states. If one adds
to this sum the term coming from the state —m2 —X2, one has a sum over all m2X~ and this gives a term diagonal
in (liji), the extra particle state, independent of J and T, and exactly of the same form as the first four terms
mentioned above. This additional term must then be subtracted to obtain the correct expression. These remaining
terms, which are usually referred to as the "particle-hole interaction" now contain the entire dependence on the
coupling, that is on J and T. The off-diagonal matrix elements of B only involve simple matrix elements of e.
Since T(i) is a single-particle scalar, it cannot contribute to the off-diagonal matrix elements as long as one of the
quantum numbers 1&j&l&j2 is changed. Actually, it turns out that in light nuclei, it is sufhcient to consider only
particle-hole states for which lij&(lpj&) completely characterize the states. This simplif)es things and we will
henceforth assume this to be true. The resulting expression, where the diagonal terms have been regrouped and
rewritten as the expectation value of H between appropriate wave functions is given exactly by

(gy&~ &~ (n l)x'jl') (m lPjPP')
~ i Hi +&~ && (ni4ji) (nslajP) &) —$), & $),) $. , $. , ( (+pi Hi +p)

+L(~-.""-iHi~ .""-)-(~.iHi~o)]+L(~- ~ '""-"-'iHI~ i '""-" ')-(~ iHi~o)])

(—1)""-"'(—1)""-"'(—1)j"-j'(j&'j)p&'jp'j)pp'i j,'j,'JMz)(j, jjp,j,jm, i j,j,JM&)
~1~1 ~1 ~1
myles tn2') g'

X (-,'l(1 Xp i', ,'TMr) (-', —X&-',l(p i
-,' —',TMr)i (jp —mp —l(p ji'mi'l(&'

i
()

ij p' jjpp' —7(p'j—ijrjl)ii)
—(jp —tÃp —xp ji'ter')(i'i()i jijsixi jp' —j))p' —xp')], (17)

where we have introduced the wave function for 2+1 particles,

e„i "~'»'~(1 A+1)= P (—1)~PLY p(1 "A)y & ")'»~(2+1)]
(~ ')'" ((~+1)')'" &

in one term above, with a corresponding increase of the number of terms in H. All of the J and T dependence is
contained in the last term which involves just simple matrix elements of e, which is to be taken as the free nucleon-
nucleon interaction according to our discussion. The extra phases come from counting permutations in taking
matrix elements. The expression in brackets above can be identified with the ground-state energy of the nucleus
in question with A particles and differences in energy between nuclei with A&1 particles and the ground state of
the A particle nucleus, energy here meaning that energy described by H or the total kinetic and potential energy
of the nucleons in the nucleus. This is just the total nuclear mass minus the rest energy of the nucleons making
it up. This empirical identi6cation of a large part of the relevant matrix element is the same as that used in the
usual intermediate coupling calculation. The term L(+,i,""»'iH

i
%

&&&
' 'j') (+pi H

i +p)] gives the interaction
of the last particle with all shells completely closed. The term which must be subtracted to account for this is
contained in the matrix elements of v left over. The above expression is evidently independent of m& and X&. The
remaining expression in braces Lafter canceling the (+p[Hi+p)] is just (+,&„(""pj') iH[4, )„("'"jp) ) and gives
the interaction between the closed shell and itself, the closed shell and the shell ', and the shell ' and itself. It is
again independent of mp and )(&. We shall call the diagonal term in brackets just Ep((nil& ji) (e&l&j&) ).It is evidently
the unperturbed con6guration energy. The angular momentum in the matrix elements of v appearing in the last
part of the above expression can be recoupled using standard techniques. "We can thus write

(+ z~,r~, '""""'""'"""'iHi+z~, r~s '""""'"'"'"') =&), ),b), (,&j, j,&j, jap((jp)4ji)(jpp4jp) ')
+ ((n&'li'j i') (jp&'lp'j &') 'JMqTMri v(1,2) i (nil) ji) (jp&l&j &) 'JMzTMr), (19)

where

((n)'li'ji')(jp&'lpj p ) JMJTMri'p(1 2) i (s)l)j))(1$pljg2) 'JMzTMT)

(2J+1)(2T+1)
J T ji' j2'

XL((jij&)JMz; g &i)TMrip(1, 2)
i (j ij p') JMz', (p p)TMr) —(—1)'"+" (—1)+~

X((jj,')MJ, (,'p)TM,
i (12p)i($)gp')JMJ, (p p)TMT)]. (2O)

To proceed further we need to calculate the matrix elements of v. In the following we discuss techniques for doing
this.
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We assume that we can factor out the isospin dependence of s(1,2) as a scalar product of two tensors of rank K
in isospace:

s(12)=w{rx rx)W(1 2) where O'= Uz(1) Uz{2).

Tz Uz —=Q ( 1)'T—z,Uz,

(21)

as the scalar product of tensors T(Kq), U(Kq). (Here we only need to consider cases where K=O or 1.)

((-' l)TJIfrl~l(k l)&~r)=(—1)~~', , (lllUz(1)Ill)(lllUz(2)ll-').

Doing the sum on T, we obtain

((n 'l'j ')(n'I'j ') 'JM TM'
~ (1,2) ~(n t j)(n t j) 'JM TM )

(22)

~ {{jx'jx)~JIfI x (rx rx) I (jxjx')~J0)—(—1)"+" ~ ~rz((jxjx') J3f lx'(rx rx) I (jxjx )~JIf) (23)
2T+1

Next let us take m(1,2) to be independent of isospin, W= 1.This is actually no loss of generality since any isospin
factor can be reduced to a combination of space- and spin-exchange operators by making explicit use of the anti-
symmetry of the wave functions. %e see that the exchange term vanishes for T= 1, K=0, and the isospin factors
give unity in the direct term.

((nx'Ix' jx') (nx'Ix'jx') '~3f~T~r
I s(1») I (nx4 jx) (nx4 jx) '&&~T»)

(25)x (rx,rx) = sx(rxx)+x x(rxx)xrx ox, rxx=
~
rx —

rx .

%e evaluate matrix elements of e in terms of Slater integrals as follows. For the direct term we write

One can now proceed in two different ways. First let us suppose s(rx, rx) is a scalar force with possibly some spin

dependence:

&x(rxx)= Z fz(rxrx)Cz(1) Cz(2), (26)

2E
fz(rxrx) =

2
sx(fxx)Pz(cos8xx)xf cos8xx, f'xx= (rx +0'x 2fxfx cos8xx)—

Cz, (1)= (4xr/2K+1)xfxFz, (8x,gx) .

Here Pz(cos8) is the usual Legendre polynomial and the Fx (8,&) are spherical harmonics as defxned in Ref. 14.
Then for the direct term we obtain

((nx'fx'jx') (n, 'I,'j,')-V m, m,
~
sx(1,2) ) (nxfx jx) (n,4j,)-'m'~Ter)

00

= —2 ~z( 1)"+'~' .— . ((Ix'-:)jx'llCz(1) ll(~xx) jx) ((4-:)jxllCz(2)ll{lx'-:)j')
K=O E jg

h

'l ' (&x)+ xx (&2)fz(rex)~. ,x, (rx)R.;x, (rx)&x ~rxr2 xf&R

is the usual Slater integral, and R„x(r) denotes the radial wave function. Similarly for the spin-dependent term

we can de6ne a tensor operator
Xx„&z'&—=Q Cz,g x; (Kq1q'

~
KD.lx),

qe
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and therefore
vs(r»)~i, &g

—g ( 1)K+1—Xf&(ri rs)X&(x,li (1) 'Xi x' (2)
KX

where again fir is defined as before in terms of v, . We obtain

((r/i'/i'ji')(Ns'ls'js') 'JMgTMrlvs(ris)oi osl(rsiliji)(mslsjs) 'JMgTMr)
~ I '/

= —2 (—1)"+'"' x+'~-x ((/i' s)ji'IIX"x"(1)II(/is) ji) ((/ss) jsllX" "(2)II(/s's) js') (3O)
K) jx j2

Using these results along with the identities

j ) -1+( ])l'+l+K

0 —-', i

((/'-') j'IIX&' "ll (/-') j)= ((2j'+1)(2j+1)(2)i+1))'" —' —' 1 (I'II(.&lll) (s llo ills) ~

one can calculate the matrix elements of v in terms of Slater integrals Fz. For the case of ordinary forces in zero
range

v(rt, rs) =ve5(ri —rs),
one obtains

R».„,*(r)R»,„,(r)R„„,(r)R~„e(r)r'dr. (32)

An alternative method. in the case where we take our single-particle states to be harmonic oscillator wave
functions is to reduce the matrix elements to integrals over the relative coordinate (Talmi integrals's). This is
more useful when v(ri, rs) involves arbitrary types of exchange forces, and it is particularly convenient for studying
the effects of varying the potential well shape v(l ri—re I ). The procedure is first to go over to LS coupling:

((ji'js)JMlv(ri rs) I (j ijs') JM) = g ((2L+1)(2L'+1)(2S+1)(2S'+1))''
L'S' l' 1 L / l' L'

X ((2jr+1)(2jr'+1)(2j,+1)(2j,'+1))'/' —', —', S». -,'

.j&
X((li'ls)L(-', -,')SJMlv(ri, rs) I

(lilt')L'(-,',')S'JM). (33)—

For simplicity let us discuss the case where v contains no tensor or spin-orbit forces. Let us assume that we can
factor out the spin-depend. ent part,

v(ri, rs) = V(ris) o (1,2),

((/ 'l~)L(-', —,')SJ'M
I v(ri, rs) I

(lils')L'(-,' —,')S'JM)

~LL'~SS'
((-', -', )sll. (1,2) ll(s —;)s)((/, '/, )LII v(r») li(/, f,')L).

((2L+1)(2S+1))

(34)

Next we employ the so-called transformation brackets" to separate the center of mass and relative coordinates
for two particles in a harmonic oscillator,

(ni'ns(fi'/s)LII V(r») llnins'(/, 4')L) = P (1I/Zn/ LI ~i'fi'nsfs, L)
NZml

N'8'n'l'

X (1I/'&'n'&', L
I
nAn '& ',L) (&rs(&&)LII V(r )II&'rs'(2'&')L). (35)

"I.Talmi, Helv. Phys. Acta 25, 185 (1952)."M. Moshinsky, Nucl. Phys. 15, 104 (1959). Note that our bracket (NZn/, LIn&/&n&4, L) di/fers from Moshinsky's bracket
(NZn/, LIn&/&n&/2, L) by a phase factor (NZn/, L n&/&n. /2, L) = ( 1)'2(NZn/, LIn&/&n2/—2,L) due to the interchange of center-of-mass and
relative quantum numbers, S8 and nl, in the de6nition.
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But
Pn(«)LII V(r») II&'n'(&'1')L) =&» b~~ b«(2L+1)'i'(ni

I V(») ln'l),

(nil V(r) In'l)= I)!„P(r)V(r)R;)'(r)r'dr

and R„q'(r) are harmonic oscillator radial wave functions for a particle of mass M/2 (M =nucleon mass);

2(n —1)! '"(r)' r' n=1, 2, 3
I('.„)'(r)=

I I
s k(~&—&')'L„,&+k

kb"Li'(n+l+-', )]' &b') b'2
(37)

where b'= (2fg/3fcv)'~', Aa&= oscillator energy, and L„(s) are the I aguerre polynomials. (See Ref. 24.)
Finally we can write

(nl I
V (r) I

n'l) =P B(nln'1; p)I„,

I,=L~/I (p+-,')] x ~;*'V(b'*)Z~

is dehned as the Talmi integral of V. The 8 codhcients have been computed and tabulated, as well as the trans-
formation brackets. "Following the notation of Ref. 20, we de6ne

C(n)'1)'n212, n&lynn''O', Lp) = Q (XZnl L
I
ng'l('n212L) (X2n'1L In(l)ng'12', L)8(nln'1; p) .

%e obtain

((ni'li'Si') (n2 l~'&2') 'I~~2'i'» l((1,2) I (nile))(n2~V s) J~z'I~r)

((l l)sll~(1, 2) ll(l l)s)
&( (2J+1)(2L+1)(25+1) Q C(n)'1('n2lg, n)l)n2'12', L,p)I„(V) . (40)

(25+1)'i' )

An important feature of this method is that when ()(r~,r2) contains the Majorana space-exchange operator
P))r(1,2), we can use the fact that

(«IIV(» )I' (1,»lln'l)=( —1)'(nlllV(» )lln'l)=( —1)'(»+1)')2(»IV(r) In'l) (41)

since exchanging r& and r2 is equivalent to the parity operator acting on the relative wave function. Therefore the
summation in the C coefficient carries an extra factor (—1)'. In particular if ()(rq, r2) is a Serber force, thenthe terms
for the C coefFicient only need to be summed over ewe values of t.

The calculation of the diagonal matrix elements Eo is a straightforward numerical procedure. We de6ne

where W(") is the total energy of the nucleus (A). Then we have

(c «'"'"'"I&Ic' ~'"""")—(COIIIICo)=~ ) "+"—&o'")

(@ &
(~s&sis) ~IIIIC &

(~nein) ') {@OIIII@0)—+ &, (&—)) +0(&)
(42)

AB of these numbers are chosen directly from the experimental data. "The resulting eigenvalues of the secular

determinant are the energy differences $E (40 I
H

I
C'o)]. —

Once one has diagonalized the secular matrix and found the coeKcients 0.~, any observable of the system may

See for example, M. Moshinsky and T. A. Brody, Tables of Truwsformutioe Brackets (Universidad de Mexico, Me»co, &960)-
"T. Lauritsen and F. Ajzenberg-Selove, Energy Levels of Light Nuclei (Printing and Publishing Of5ce, National Academy

of Sciences—National Research Council, Washington, D. C., 1962).
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be calculated. A transition matrix element of a multipole operator 5K'~ is given, for example, by

I (+»Il~»llano) I'=
I 2 ~»'""""'"""''(~1/ij~ll~»II~2/mjs) I'

=
I (+oII~»ll+») I', (43)

where the symbol I! mdhcates reduced matrix element with respect to both isotopic spin and angular momentum.
Note the matrix elements (ni/&j&!!BR»!!n2/2j2) in the sum are just simple single P(sr-ticle srtutrix elemelts, and there
are no extra phases in this expression.

Let us consider in particular the calculation of the reduced matrix elements of the operator Ts~"(q), dined in
Sec. II between the ground state and a state of 7= 1, 3fp=o. This can be written

(+'.r-~,~.=o(""""'""""'IITs" (q) II+o)= (-:)"'(~ (1 l)j II/A, .'(q)II~2(/mk) j2)
( ) i (~&.& z( itn'x)( a&sn) '!!2"&& & &(q)!!cy ) (44)

where ts~,."(q) is the isovector part of the single-particle operator

1 /t I+r, lt tX„+X. X,—X. )
tsjr, ,'(r)= Lqy j—s(qr)ezzi (8,g)]. p'+q'j ~(qr)Iai (8 0) '

I + rs Io' (45)
Mc 2i 2McE 2 2

Here X„=2.8, X = —I.9 are the total magnetic moments of the proton and neutron. We de6ne

4'"(q) = ,'tv~, (-q)+kr3tzsr. (q). (46)

Using standard techniques of tensor algebra (see, for example, Refs. 14 and 23) one can calculate the j and j'
dependence of the single-particle matrix elements. Omitting the intermediate steps we obtain finally, for J=1;

A 3 112

(~'(/'l) j'lit, ."(q) Ill(/l) j)= — —(2/+ 1)(2/'+ 1) (2j+1)(2j'+1) I

3fc 4n-

X, ( 1)v+i+5

1' 0 /+Iq
!1' j' —' 2" 0 1 1 0 0 0)/+It

I
e'/+1 jo(qr)j / 1 3 1 1' 1+1 t/+I 1 1 2/+I(

(0 00!

t/' 0 / —Iq

td /i, i 0 1 1 EO 0 0 ) 1 ' /d /+I)x!——
I
~/!+ n'/ —1 j,(qr)! —+ ! n/

(dr ri ) 1 1' 1—1 / —1 1 /)2/+1 (dr r )
0 00)

(5 'i' 2 1

k3 l 1'

//' 2 /+Iq

1 (0 0 0) /+ip td /q!
I
e'/+I j,(qr)! ——

! I/
1+1 t/+I 1 /q 2/+I& ! kd r),

io 0 0)
/' 2 / —Iq

!
2 1 1 0 0 0 ) 1 /'d /+1i

n'/ 1j2(qr)—
I

—+
I

Nl !
l 1' 1—1 / —1 1 /)2/+1 i (dr r )

0 00)
tl' 1 1'

1' 1 1
+-,qy, „—~„)(—1) (Ig)«-; —; 1

I !( /'Ij, (q.)I l) . (47)
0 0 0

) ) I
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Here we de6ne, for example,

(r$'l'I j&(qr) I$$l) = R„.$ e(r)j), (qr) R &(r)r'dr.

Note that these radial wave functions are defined the same way as the R„$'(r) of Eq. (37) except that b' is replaced
by b= ($$$/Afar&)"'. These matrix elements when combined with the wave functions allow one to calculate form
factors for transverse excitation of the diagonalized 1, T= 1 particle-hole states.

In order to carry out numerical calculations one must choose a set of single-particle wave functions; a con-
venient and reasonable choice is the harmonic oscillator eigenfunctions. We choose the oscillator parameter by
fitting the Coulomb energy difterences in mirror nuclei. "This procedure gives results similar to the oscillator
parameter obtained by fitting to the rms charge radius in light nuclei as observed in elastic electron scattering. "

Using these wave functions we can compute the Slater integrals or Talmi integrals directly. In order to calculate
the single-particle matrix elements of t&,.' (q) we use, in addition, the following formulas satisfied by harmonic
oscillator radial wave functions $$ R„$(r), $$= 1, 2, 3,

R$$= (t+-')"'R&$—(t+-')"'R1$+2)

R3$ ((1+-,') (t+-'))'t'R$$ —2(l+-', )R$$+$+ ((t+-', ) (t+-', ))'"R&$+&,

(d l) 1

I

——IR$$= —-(&+«)'"R$+$,
&dr ri b

(49)

Also

t d l+1~ 1
I

—+ IR$$ ———(2(2l+1))"'R$$ $
—(l+2$)$1'R$$+$.

&dr r i b b

1 (qb) ~1( $r ) 1/2 n$—1 n$ 1(—1)-m&+~$

(N$4lj (q)l~t$)=, I
—

I I
1'(~»l'(N$)

I
«($+t$+l)l'(&$+f+l))'" Z Z

F(r+-', ) E2 I E2qb )

X
1 (I $$$ )f (t$ $12) 1 ($$$1+ll+ )f ($$$2+l2+ )3 3

1'(-', (l$+l$+ 2$$$$+2$$$$+ r+3))
$F$(-', (l$+l$+2$$$$+2$$$$+r+3); r+-', ; —x'q$b$), (50)

where $F$(n; y; s) is the confluent hypergeometric
function. "

Finally we wish to reemphasize the point made
earlier concerning the potential e(r$$); if one takes this
model seriously, then e must be identi6ed with the free
nucleon-nucleon interaction. One should really not

treat this as a parameter, but instead choose it to 6t the
low-energy $$-p scattering data

IV. COMPAMSON WITH EXPERIMENTS

We have carried out the calculations described in the
previous section for the case of carbon-12, The oscillator

TmLz I. Energy levels and wave functions for the 1, T=1 states in C~. The Hamiltonian was diagonalized with a Serber force,
Pukawa well residual interaction with parameters chosen to Gt low-energy I-P scattering data, as discussed in the text.

zing
——19.57 MeV

E2 ——23.26 MeV

Eg ——25.01 MeV

84=35.80 MeV

+ ((»«)(1pa) ')
Ep= 16.86 MeV

0.977

0.194

—0.088

—0.027

e((1d&) (1p&)-)
L:p=17.62 MeV

—0.168

0.952

0.252

—0.044

@((14)(1P~) ')
Ep ——22.11 MeV

0.133

—0.211

0.933

0.260

e((V«)(1 «)-)
Ep ——30.05 MeV

—0.016

0.106

—0.243

0.964

» B. C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954).
$$ R. Hofstadter, Ann. Rev. NucL Sci. 7, 231 l1957l.
24 R. Willey, Nucl. Phys. 40, 529 (1963).
"P. M. Morse and H. Feshbach, Methods of Theoretic+i Physics (McGraw-Hill Book Company, Inc., New York, 1953), Vol. I,

p. 784.
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e +&12

e(r &2) = &o Vp = —46.87 MeV, p =0.8547 F

'Vp= —52.13 MeV, '@=0.7261 F '.
With this choice of potential we computed the Talmi

integrals I„and the matrix elements of v between the
basis states. The 4)(4 Hamiltonian matrix was then
constructed and diagonalized with the aid of the
IBM-7090 computer at the Stanford University
Computation Center.

The resulting eigenvalues and eigenstates are given
in Table I.

Experimentally the giant resonance is observed as a
single broad peak with a maximum at 22.5 MeV in the
photoabsorption and (p,ye) experiments. " In the
electron scattering experiments'~ a broad peak is also
observed in the same energy region, but with its
maximum shifted upward to about 24.5 MeV. Therefore
we interpret the dipole transitions in this energy region
in terms of the two states %2 and%'3. Note that we have
assumed that practically all of the transition strength
observed in electron scattering in the giant resonance
region comes from E1 transitions. The single-particle
Weisskopf estimates for M1, E2, and M2 transitions in
electron scattering at q= 120 MeV/c and Er;——20 MeV
are 10 to 15% of the experimental cross sections ob-
served in electron scattering data at these momentum
transfers for the giant resonance. ""

"H.E. Gove, A. E. Litherland, and R. Batchelor, Nucl. Phys.
26, 480 (1961)."J.Goldemberg (to be published).

parameter was chosen from Ref. 22 as the average of the
parameters for C"and C";we found this to be b—1.6 F.
For a set of basis states we chose the four lowest energy
shell-model particle-hole states:

eg t-r t&"i&«»& '; Ee((2si)(1P)) ')=18.72—1.86
= 16.86 MeV.

Cg t- r t&"t&i'»& ' Ee((1dy)(1P)) ')=18.72—1.10
= 17.62 MeV.

4J t- r t«&&«»& ' Ee((1da)(1P)) ') =18.72+3.39
= 22.11 MeV.

es t-, s t«»&«'» '; Ee((1pi)(1si)—') =35—4.95
=30.05 MeV.

For a potential t&(1,2) we chose a Serber force with
parameters adjusted to 6t low-energy e-p scattering
data)

e(1,2) =Lie(rt~)&P+at&(r»)SPj(~iL1+P»r(1, 2)J), (51)

where
1P=—(1—trt'IF2) ) P= 4(3+irt'tr2)

and Psr(1,2) = Majorana exchange oPerator. As a first
choice we took t&(rt2) to be a Yukawa well; the parame-
ters for this case are given in Table VI of Ref. 15.
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00025
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FrG. 1. Squared form factor versus momentum transfer for the
giant dipole resonance in carbon-12.

~8 R. Montalbetti, L. Katz, and J. Goldemberg, Phys. Rev. 91,
659 (1953).

'9 R. Nathans and J. Halpern, Phys. Rev. 93, 437 (1954).~ W. C. Barber, W. D. George, and D. D. Reagan, Phys. Rev.
9S, 73 (1955).

Finally we calculate the squared inelastic form
factors for transverse electric excitations of each of
these states using the techniques of Sec. III. The total
cross section for transitions into the giant resonance is
then proportional to the sum of the absolute squares of
the form factors

~
(5=1, T=1~~ Tt( )q~~

7=0+, T=O) ('
for the states %2 and 0 3. We call this sum the "square
of the form factor of the giant resonance"; this quantity
is plotted as a function of g in Fig. 1.

As was pointed out in Sec. II, the cross section for
inelastic electron scattering at 180' depends only on
the transverse multipole excitations. For excitation of
the giant resonance (7=1 ) only Ti"(q) contributes
and the cross sections can be used to calculate the
matrix elements of this quantity directly. These cross
sections have been measured and reported in Refs. 11
and 12 for incident electron energies of 41.5 and 55
MeV. The two resulting squared form factors for
momentum transfers 60 and 87 MeV/c are also shown
in Fig. 1. (We have chosen a "mean excitation energy"
of 23 MeV in our kinematical calculations. )

Finally we have used the formula (4) given in Sec.
II to obtain the experimental value of the squared form
factor at a momentum transfer of 23 MeV/c. The
integrated photoabsorption cross section over the gian't
resonance in carbon has been measured by many people
both for (y,e) and (y,p) Lor, (p,ye)) reactions. We have
taken an average of several reported measurements of
the (y,N) cross section'e 'e and also of the (y,P) Lor
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FIG. 2. Relative transition probabilities for transverse excitation
of the 1, T=1 states in carbon-12. The length of each line is
proportional to the square of the form factor for excitation of the
corresponding state at the given energy and momentum transfer.
The two types of residual interaction indicated are discussed in
the text.

(P,ys)j cross section"""" and added the results.
LThe (P,ys) data were related to the (y,p) cross section
by means of the detailed balance theorem. ] The re-
sulting squared form factor is shown in Fig. 1. The
error bars on this point are drawn to represent the
degree of variation in the results obtained by various
different authors.

We wish to point out that the theory predicts that
there is a dip in the squared form factor which is
clearly seen experimentally. This arises because the
giant resonance is composed of two states, 0'2 and +3.
As the momentum transfer q increases the squared form
factor of %3 increases while that of 4'2 decreases. The
sum therefore goes through a minimum.

This can also be clearly seen in Fig. 2, where we have
indicated the squared form factors, or relative transition
strengths, for all four states at several values of q.
(These are labeled "Serber Force, Yukawa Well. ")The
theory predicts that there is a peak in the ci..oss section
as a function of energy, and also that this peak shifts
upward by about 2 MeV as q increases from 23 MeV/c
to 90 MeV/c. A comparison of the photoabsorption
data"" "with the electron scattering data of Ref. 12
confirms the existence of this shift in the position of
the resonance. Again, this shift arises because as q
increases there is a shift of transition strength from +3
to %2.

The observed (1,T=1) state at 17.2 MeV in" C"
has also been resolved in the (pcs) experiments" as
well as in some of the electron scattering experiments. "
We describe this state by the wave function +~, and
we have plotted the squared form factor for excitation

O, OOI6

O.OOI4-

O.OOI2-

+ O.OOIO-0

0.0008-
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0.0004-

0.0002-

0 I f 1
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MeV

IOO

Pro. 3. Squared from factor versus momentum transfer for theJ=1, T=1 state at 17.2 MeV in carbon-12. The two types of
residual interaction indicated are discussed in the text.

of this state in Fig. 3 (labeled "Serber force, Yukawa
well" ).

By starting with the relative B"(p ys) C" cross
sections in which the intermediate state of carbon-12
is the giant resonance or the 17.2-MeV state (see, for
example, the p-ray deexcitation curves shown in
Ajzenberg-Selove, Ref. 21) and using the detailed
balance theorem, we have estimated the integrated
photoexcitation cross section for the 17.2-MeV state
to be about 5% of that for the giant resonance. The
resulting squared form factor for the 17.2-MeV state
is shown in Fig. 3. Finally we have used the electron
scattering data in Ref. 12 to estimate the cross section
for excitation of the 17.2-MeV state at 90-MeV/c
momentum transfer, and the resulting squared form
factor is also shown in Fig. 3. We see that the tendency
for the squared form factor to increase with q as pre-
dicted by the theory is reproduced by the experiments.

Finally let us point out that the theory predicts a
sizeable form factor for the state at 36 MeV which
we describe as N4, and in fact this form factor should
grow very large at larger momentum transfers (see
Fig. 2). Some evidence for the existence of this state
has been reported from (p,ys) experiments, " and pre-
liminary electron scattering results at'" q=100 MeV/c
definitely indicate a large bump at about the right
energy to correspond to this state. Let us emphasize
here that the predictions of the theory for all four states

3' V; J.Vanhuyse and W. C. Barber, Nucl. Phys. 26, 233 (1961).
~ W. R. Dodge, Stanford University, W. W. Hansen Labora- ~ N. W. Reay, N. M. Hintz, and I,.L. I,ee, pr. Nucl. Phys. 44,

tories of Physics, H.E.P.L. Report No. 246, 1961 (unpubhshed). 338 (1963).
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FIG. 4. Energy levels of the 1, T=1 states in carbon-12 as a
function of the residual interaction strength. The interaction used
was a Serber force with a Vukawa potential well. We have also
indicated the range of energies occupied by the giant resonance
in C" as observed in electron scattering.

elements by varying ) and holding the con6guration
energies fixed. The resulting energy levels are shown as
functions of 'A in Fig. 4.

We have repeated the entire calculation using other
types of forces for the form of e(1,2), not necessarily
chosen to fit the free nucleon-nucleon interaction. Qne
choice we studied was the "ordinary force with zero
range, "

e(1,2) = v—ph (ri r—2)

similar to the calculations described in Ref. 7. Here
again we calculated the matrix elements of v(1,2)
between the same basis states, this time using the
technique of Slater integrals described in Sec. III
along with the same oscillator wave functions. These
were expressed in terms of vo which was left as a free
parameter. The resulting 4)&4 matrix was diagonalized
as before for various values of eo.

The energy levels are plotted in Fig. 5 as functions
of X—=eo(b'X10 ', where b is the oscillator parameter
discussed before. We have also indicated in this figure
those values of X which one would compute from low-

energy e-p scattering data by averaging no —— J' e(r)d'r-
over the various potentials given in Table VI, Ref. 15.
These give us the singlet parameter X, and the triplet
parameter li&, we define X=—„'li.+4li~. All three values of
X are shown in Fig. 5.

The parameter X was then chosen to fit the known
T=1, J=1 energy levels in carbon-12. We took
X=0.10 MeV, or

~0 ——410 MeV F',

agree with the experiments both in energies as well as
in the form factors. At this point we have a theory with
eo adjustable parameters; the unperturbed configu-
ration energies come from the energies of C" and C",
the oscillator parameter (the only nuclear parameter
involved) comes from fitting Coulomb energies, and
the two-particle force is taken from free nucleon-
nucleon scattering.

We now want to discuss the sensitivity of this result
to the details of the theory. In particular we are inter-
ested in the effects of variations in the form of v(1,2),
both in order to study the sensitivity to diferent types
of nucleon-nucleon potentials and to compare with the
calculations made by other authors.

The calculations discussed so far have all been made
using the Yukawa potential well shape described earlier
in the two-particle interaction v(1,2). We have also
calculated the Talmi integrals using a square well with
parameters again taken from Table VI, Ref. 15, to fit
low-energy e-p scattering data. The resulting energy
eigenvalues and eigenvectors are the same within a
few percent as those using a Yukawa well.

Furthermore, we have studied the dependence of
the energy eigenvalues on the interaction strength by
replacing v(1,2) by Xv(1,2) and varying the matrix

45

40

50

~ 25

ILI

20

15

IO-

0 C I I l, MeV0 0, I O.R 0.5 0,4 0.5

FIG. 5. Energy levels of the 1, T= 1 states in carbon-12 as a
function of the residual interaction strength. The interaction used
was an ordinary force with zero range. The parameter ) is dis-
cussed in the text. We have also shown the values of X corre-
sponding to the singlet and triplet parts of the free nucleon-
nucleon interaction.



O862 F. H. LEWIS, JR. , AND J. D. WALECKA

0.006

0.005

0.004

O

0,003

0.002

0.00!- Brown Model

'o 20

O. I

40 60 80

0.2 0.5 . 0.4
Momentum Transfer q

IOO

0.5

l20 c
MeV.

0.6

FIG. 6. Squared form factor versus momentum transfer for the
giant dipole resonance in carbon-12. The solid curve is calculated
using a spin-dependent force with zero range for the residual
interaction. The dashed curve is calculated using an ordinary
force with zero range for the residual interaction and leaving the
high-lying basis state at 30 MeV out of the calculation completely.
The long dash-short dash curve is calculated using a Serber force
with a Yukawa potential well for the residual interaction; this
curve is the same as in Fig. 1. We have also shown the curves
calculated using the collective models.

18.25 MeV. Choosing the cross section of the giant
resonance again to be the sum of the cross sections to
the first two states we obtained a squared form factor
which is shown in Fig. 6. This gives an indication of
the sensitivity of the calculation to higher basis
conigurations.

Secondly, we chose s(1,2) to be a spin-dependent
force with zero range,

s(1,2) = —op[(1—g)+peg e,]8(r,—rp)

with pI chosen so as to yield the same singlet/tripLet
ratio for the volume integral of the potential as that
of the free interaction. Using parameters chosen from
Ref. 34 we obtain a value g=0.064. This potential was
then diagonalized among the four basis states. The
resulting eigenvalues and eigenstates were identical to
within a few percent to those from the ordinary force
zero-range calculation. The form factor of the giant
resonance for the spin-dependent force calculation is
also shown in Fig. 6. This calculation was also reported
in Ref. 12.

Finally we chose s(1,2) to be an "ordinary force,
finite range"; in particular, we chose a Gaussian well

IO

which gave us two levels, as shown, at 24.01 and 20.84
MeV in the observed region of energy of the giant
resonance and also two levels at 18.24 and 33.76 MeV.
(This value of sp is about the same as that chosen in
Ref. 7.) The squared inelastic form factors for all four
states were then calculated, and are shown in Fig. 2.
The squared form factor of the 18.24-MeV state which
we identify with the observed state at 17.2 MeV is also
shown in Fig. 3, and the squared form factor is a factor
of 4-6 too large in magnitude with the 8-function force.
This result indicates that the structure of the 17.2-MeV
state is very sensitive to the two-body force used. The
squared form factor of the giant resonance is again
taken to be the sum of the squared form factors of the
two states in the giant. resonance region, and the result
is the same to within a few percent as the curve for the
spin-dependent zero range force shown in Fig. 6. Com-
parison with the. result for the Serber force indicates
that the form factor for the giant resonance is not
particularly sensitive to the two-body force used. We
wish to emphasize that the method of choosing vo as
described above yields a value of X which is at least 2

or 3 times smaller than the values (X,X„X~) corre-
sponding to the free nucleon-nucleon interaction.

This calculation was also modi6ed in several
ways. First we left the high-lying basis state
4z z-, z=&&'»)&"&& ' out of the calculation completely
and diagonalized the interaction among the three
remaining basis states. Choosing the same value of vo

as before we obtain three states at 24.49, 20.88, and

IO

MI tq) II 0 )I
—--—K I II T,

'
(q) II 0 &I
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"4
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-5IO-
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Momentum Tronsfer q Moc-'
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FIG. 7. Longitudinal and transverse squared form factors versus
momentum transfer for the giant dipole resonance in carbon-12.
The curves are calculated using a spin-dependent force with zero
range for the residual interaction.

~ L Hulthen and M. Sugawara, Hcedblch der I'hysik, edited
by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 1.
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shape
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+IG. 8. Squared form factor versus momentum transfer for the
giant dipole resonance in aluminum-27. The solid curve is cal-
culated using the Goldhaber-Teller model and the dashed curve
is calculated using the Steinwedel-Jensen model.

"J.M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

Here we chose a=1.43 F to fit low-energy scattering
data for the range of the triplet part of the I-p force.
Matrix elements were computed using the Slater
integral techniques discussed in Sec. III and the
Hamiltonian was diagonalized among the four basis
states. By choosing Vo ——20 MeV we obtained states
at 19.22, 20.84, 24.55, and 34.34 MeV. The volume
integral of this potential is 80/c of that chosen in the
zero-range calculations. Note that if one analyzes low-

energy n-p scattering data with a Gaussian potential,
one obtains Vs= 79 MeV. (See Refs. 34, 35.) The wave
functions obtained in this calculation resemble those
of the Serber force calculation rather than those of the
zero-range force calculations, and the squared form
factors are therefore also within a few percent of the
Serber-force squared form factors.

One can therefore conclude that the type of exchange
mixture in the force influences primarily the position
of the energy levels as a function of interaction strength,
while the wave functions themselves are more sensitive
to the range of the force.

The form factors discussed up to now have all been
for transverse excitation of the levels. Ke have also
calculated the form factor for Coulomb excitation of
the giant resonance using the states obtained from the
spin-dependent force calculation; these form factors
are the reduced matrix elements of the operator Mi(q),
where Mz(q) was defined in Sec. II.The transverse and
longitudinal squared form factors for the giant reso-
nance in C" are shown in Fig. 7 out to large values of q.

Note that both squared form factors show the ap-
pearance of a minimum in the region q=200—300
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I
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0— I l
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FIG. 9. Squared form factor versus momentum transfer for the
giant dipole resonance in krypton-84. The solid curve is calculated
using the Goldhaber-Teller model and the dashed curve is cal-
culated using the Steinwedel-Jensen model. The experimental
point at g=18 MeV/c is the squared form factor measured in
rubidium-87.

'6 H. Steinwedel and J. H. D. Jensen, Z. Naturforsch, Sa, 413
(1950).

MeV/c. This minimum occurs because the formula (50)
for the radial matrix elements of j„(qr) generally
contains zeros from the hypergeometric functions,
and the zeros for the various different terms tend to be
near each other.

Ke have also calculated the form factor of the 17.2-
MeV state for both transverse and Coulomb excitation
at large values of q. One finds at q=500-700 MeV/c
that the squared form factors of this state are several
times larger than those of the giant resonance, and
also that the longitudinal form factor is dominant over
the transverse form factor. Preliminary inelastic
electron scattering data in carbon-12 using incident
electron energies of 800 MeV have been taken by
Crannell at the Stanford Mark III linear accelerator.
At 40' scattered electron angle (i.e., momentum
transfers q~500-600 MeV/c) the data show a peak in
the cross section at a scattered electron energy 18 MeV
down from the elastic peak. An analysis of this data
was made by neglecting the transverse excitation and
using the formula in Sec. II to obtain the longitudinal
squared form factor from the scattering cross section.
The results at present are in agreement with the theory
within experimental error.

Finally we have also indicated in Fig. 6 the squared
form factors of the giant resonance obtained from
collective motion models. The Goldhaber-Teller model
(Ref. 1) calculation is discussed in Ref. 11. We have
also shown the squared form factor obtained from the
Steinwedel-Jensen modeP' calculation discussed in
Appendix A. Note that this theory contains one parame-
ter, the s~nmetry energy constant E from the semi-
empirical mass formula. In order to obtain the giant
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resonance at an energy of 23 MeV it was necessary to
choose X=15 MeV, which is 60% of the value obtained
in other experiments. '~

The collective model calculations have also been
compared with the electron scattering data for AP~ and
Kr84 which were reported in Ref. 11.The squared form
factors are shown in Figs. 8 and 9. The symmetry
energy parameter for these two nuclei yielded the
correct energy for the same value of E as given in Ref.
37. The data points for the lower values of q werc taken
from photoabsorption data given in Ref. 28. These
authors did not report any results for Kr~, but instead
we have plotted the point corresponding to Rb'~. This
point appears to give an anomalously large value for
the squared form factor, and one of the authors in
Ref. 28 (J. Goldemberg) has informed us that these
experiments are being repeated and photoabsorption
data are being taken for Kr~.

V. DISCUSSION AND SUMMARY

It is perhaps a good idea to 6rst summarize the results
of the present paper. The Brown theory has been re-
formulated in terms of the usual Talnm-Banco' shell-

model calculation. The two-particle potential in the
nuclear Hamiltonian is taken to be that obtained in
free nucleon-nucleon scattering. The calculations of
Brown et al.~ are repeated with this two-nucleon force
for C". The ground state of C'2 is taken to be
(Is.)4(ipse)'. The T=1, J =1 states are taken as
linear combinations of the lowest lying states of T= j,
7~=1 in C" which are (2sI)(ipse)

—', (idt)(ipI) —'
(id')

(ipse)

', and (ip*,) (is~) '. The Hamiltonian matrix
between these states is then computed, and most of
the interaction matrix elements can be idcnti6cd with

energy difFerences of C'2 from C" and C".This identi6-
cation comes from merely rewriting many of the
diagonal terms of the matrix. A similar identification of
such terms was also used in the intermediate coupling
calculations of Elliott and Flowers. The off-diagonal
matrix elements, for the class of states considered
for the T=i, J =1 states in light nuclei, only
involve simple matrix elements of the two-particle
potential. The radial wave functions are taken to be
harmonic oscillator wave functions in computing the
particle-hole matrix elements and the oscillator parame-
ter is taken from fitting Coulomb energies. The resulting
calculation of energy levels by diagonalization of the
matrix and form factors from the wave functions
obtained contains no free parameters. All the input
data is taken from other experiments. The resulting
four dipole states are at energies 19.57, 23.26, 25.01, and
35.80 MeV. The 6rst state is identi6ed. as the known
7=i, 7=1—state at 17.2 MeV in C". It is thus 2.4
MeV too high. The computed transverse electric form
factor of this state turns out to be in very good agree-
ment with the experimental results of Goldcmberg et ul.

37 A. E. S. Glc|„p, Phyg, Rcy, '$5, 1006 (1954).

and the one point on the form factor curve which can
be obtained from photoabsorption. The sum of the two
squared transverse electric dipole form factors for the
23.26 and 25.01 states is also in agreement with the
photoabsorption and electron scattering data. More-
over, it shows a quite remarkable dip in the region
g&150 MeV/e which is observed experimentally. The
analysis of the contributions of the two states (Fig. 2)
shows that in photoabsorption, one should just see one
large peak at 23.26 MeV (this is actually observed and
comes at 22.55 MeV) with only perhaps a very small
shoulder at 25.01 MeV. As the momentum transfer is
changed, however, the strength of the 23-MeV level
decreases while that of the 25 MCV increases leading
not only to the dip described above, but also to an
Upward shift of Z 3feV iri the resorioriee energy which
is also observed experimentally. The state at 35.80 MeV
has been observed in (p,y) work. Our calculations indi-
cate, however, that for q& 150 MeV/c this state actually
has most of the dipole strength. There are preliminary
indications that this is observed in the electron scat-
tering. Attempts to 6t the giant resonance form factor
in C" with either the Goldhaber-Teller or Steinwedel-
Jensen collective models lead to completely wrong form
factors. The two main points we want to make in the
paper are:

(1) The electron scattering form factors are very
sensitive to the structure of the states involved indi-
cating again that electron scattering is a tremendously
powerful tool in studying nuclear structure.

(2) The particle-hole picture of the giant resonance
seems to be in quite remarkable agreement with the
main features of inelastic T= 1, J = 1 form factors.

To determine the sensitivity of our result to the force
used we carried out several calculations with diferent
fol'ccs. Thcsc calculations alc descllbcd ln Scc. IV. Thc
main results can be summarized as follows:

(1) The form factor for the giant resonance was
quite insensitive to the force used. The dip appeared
in every calculation we made. The energy of the state
was sensitive to the force. A delta-function interaction
had to have a strength much less than a comparative
volume integral of the free nucleon-nucleon force to
get the levels in the right place, while with the free
two-nucleon Serber force (which has no interaction in
the odd angular momentum states) the levels came out
correctly. Adding the spin dependence of the free
nucleon-nucleon force changed almost nothing.

(2) The form factor of the 1'I.2-MeV state turned
out to be very sensitive to the interaction since this
state gets most of its strength from the admixture of
the higher lying d-particle states. Again the free Serber
force gave a form factor in agreement with experiment
while the 6-function force gave a result 4 to 6 times too
large.

To determine the sensitivity of our result to the type
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of states admixed we carried out one calculation of the
giant resonance state leaving out the (1pi) (1si) ' state
with EO=30.05 MeV and the result is shown in Fig. 6.
The difference is appreciable at large q and indicates
that for any more really quantitative fit to the data
one must include two-particle two-hole states etc.,
although work by Brown shows such states do not play
a dominant role in T=1 states. ' There is one other
piece of evidence that such states may be important
in the ground state. If one tries to fit the inelastic
magnetic dipole form factor of the T=1, J= 1+ state
at 15.1 MeV in C", which according to Brown' is a pure

(1P1)(1P1) ' state, then one obtains a squared form
factor which is about a factor of 4 too large. The
intermediate coupling calculation of Kurath, which
contains a large admixture of other types of states
however, gives the correct y-absorption cross section
for this 15.1-MeV state. One is tempted to conclude
that the Brown theory is just much more successful
for the 1 states because these states must be made up
of particles promoted to the next oscillator shell and
can't be obtained by merely recoupling particles within
the p shell. It should be mentioned here that calcu-
lations of T= 1, 1 levels in Pb' ' have been carried out"
using the particle-hole theory, and good agreement with
experiment is obtained without the inclusion of ground-
state correlations. However, calculations of other states
(3,4+) in Pb" using the particle-hole theory"" yield
considerably poorer agreement with experiment, which
supports the conclusion that the restriction to one-
particle, one-hole states is particularly successful only
for T=1, 1 states. It has also been shown" that the
inclusion of two-particle, two-hole states can be sig-
ni6cant for other nuclei with un6lled shells.

In our calculations we have not treated the center-
of-mass motion correctly. Elliott and Flowers did this,
and found the results were only important in T=O
states. This is evident since the spurious 1 state
corresponding to pure center-of-mass motion must be
T=O since any other T cannot be just a translation of
the whole system.

Also let us emphasize that the form factors which
we have computed are for transverse excitations, and
are therefore dependent on the details of the nuclear
convection current and magnetization density LEq. (3)j.
It is the matrix elements of these operators which one
measures experimentally in photoexcitation and 180'
electron scattering, and which are successfully predicted
by the Brown theory. However, for small values of
qf, =Ef,/Ac one can apply the equation of current
conservation in order to rewrite the transverse electric

"V. V. Balashov, V. G. Shevchenko, and N. P. Yudin, Zh.
Eksperim. i Teor. Fiz. 41, 1929 (1961)Ltranslation: Soviet Phys. —
JETP 14, 1371 (1962}g.

39 J. C. Carter, %. T. Pinkston, and W. M. True, Phys. Rev.
120, SO4 (196O).

~ W. T. Pinkston, Nuel. Phys. 37, 312 (1962}.
4' M. V. Mikhailovic and M. Rosina, Nucl. Phys. 40, 252 (1963).

dipole moment operator for photoabsorption (Siegert's

theorem):

2 tsr'&(qf, ) —(~—/3)qr, d xXpsj. (x)Ftsr(Qs), (52)

which only depends on the nuclear charge density. If
one now uses the Brown theory to calculate matrix
elements of this quantity for photoexcitations into the

giant resonance in order to compare with the experi-

mental data, one 6nds that the Brown theory gives a
squared form factor which is larger than experiment by
a factor of 2. One could conclude from this that the
Brown theory correctly predicts the matrix elements

of the current and magnetization, but it fails to give

the right matrix elements of the transition charge

density. Another way of looking at this is to compare
the expression for Ttsr" (qf,) LEq. (52)j with the matrix
element predicted by the Brown theory:

X d'x(1 ll*p~(x) I' t(f2*) IIo+) (53)

Here Acro., is the energy parameter used in de6ning the
harmonic oscillator single-particle wave functions. We
see that the Brown theory replaces Acqf;=By; by A~,.„
so that on squaring one obtains a factor

)15 MeVq'
~ ~

I
=o.4.

Ef; (23 MeV J

This is essentially the origin of the factor of 2 dis-

crepancy mentioned above. If one had really con-
structed exact eigenstates of the total Hamiltonian,
the two methods of calculation I Eq. (52)$ must of
course give the same results. This is a drawback with

any theory that uses approximate wave functions. We
should emphasize that we must deal with the transverse
multipoles of the current and magnetization if we want
to compare with electron scattering since there one
cannot work in the long-wavelength limit. Ke should

also add that the current operator which we used had
no specific meson-exchange current contributions, but
only contained convection and magnetization parts.
The question of the contribution of meson-exchange
currents to the transverse form factors is still an open
one.

One of the most important successes of the Brown

theory, as was mentioned before, is the prediction of
the dip observed in the squared transverse electric form
factor of the giant resonance, which occurred in every
shell-model calculation which we made. This basic
feature of the shell model can be understood quali-
tatively in the following way. Let us, for simplicity,
turn off the two-particle residual interaction so that
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+2 and 43 are simply the basis states +z &- »o&) o») '

and e J=g-,r )" &) &'») ', respectively. (These basis
states are, in fact, the principal components of 02 and
4's as seen in Table I, for example, ) The form factors
of these states can be separated into two contributions,
one coming from the convection current j~, and the
other arising from the intrinsic magnetization density
pN /see Eq. (3)]. For small values of momentum
transfer (i.e., 0&q&100 MeV/c) the absolute magni-
tudes of these two contributions behave diBerently
from each other (they behave roughly the same way
for both states). The convection current contribution
decreases somewhat in absolute magnitude as q in-
creases, while the magnetization contribution starts at
zero and increases rapidly in absolute magnitude as q
increases. For the state 4J ~-,~ ~'"&' '»' ' these two
contributions add destructively, so that the squared
form factor of this state is due to a large convection
current contribution at small q, and rapidly decreases
as q increases, actually reaching a minimum at q 100
MeV/c (for larger q the squared form factor increases
again). The other state 4 J—)-,r=go &) o»' ' has only a
small convection current contribution (note that this
is a spin-Qip transition) so that its squared form factor
is primarily just due to the magnetization contribution,
and therefore increases rapidly with g. These two
squared form factors vary so rapidly that even if these
states are mixed with other 1—,T= 1 states to form
4~ and +3, the squared form factors still show the same
behavior, i.e., they are dominated by these two basis
states. The squared form factor of the giant resonance
is therefore essentially the sum of an increasing function
and a decreasing function of g, which then has a mini-
mum in the region under consideration.

Calculations similar to the preceding have been
applied by one of us (F.H.L.) to the E1 form factors
in 0" with also quite remarkable success and will be
discussed in a forthcoming publication.

peM't 8 q' M
l m l

——p.(&4)'
16E'4)9t I 2

(AS)

together with the subsidiary condition (continuity
equation)

(A6)(8/at)rj+p, w v=0.

The resulting equation of motion4'

8E SZ
&' l&(r t)=0

(Bts M A'
(A7)

together with the boundary condition

I

=0, where R= roA'~' (A8)

The interaction between these fluids arises from the
nuclear synunetry energy" ~ "

E.=EL(il)'—Z)s/A j (A2)

via the energy density e(r, t), which has the static
equilibrium value

(p-' —p')'
co=E, X=24 MeV. '~

po

Using the definitions
p~ p&

0 0

rt (r, t) =p, (r, t) —p„', p, =
po

(A3)
v(r, t) =v, (r, t)—v„(r,t) (flow velocities),

V= (pe) '(p„v„+p,v„),

and assuming

V=O and V x v=0, i.e., v= Vg(r, t)—, (A4)

we have, to first order in g and P, the Lagrangian:
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lead to the complete set of orthonormal modes for g.

qj~„(r,t) =e'"'"'f~„„(r), o)j„=k~„N,

0~-(r) =A j-i i(ttj-r) 1'~-(eA),

1 ( t(l+1)
A,„„= -,'Rsl 1—

ji(ki.R) — E ki 'R')-

APPENDIX A: HYDRODYNAMICAL MODEL

In this model" the neutrons and protons are treated
as two interpenetrating Quids inside a rigid spherical
volume with constant total density,

I =
M A'

k&„R is the (I+1)th root of —j~(j'z~„r)
dr

=0

where

Z S
p.(,t)+ -(,t)= = '+ -'=—o+—

o (A1)
A A

3mro'po= 1, ro—1.4X10 "cm.

m=09 1) 2) ~ ~ ~

4R C. F. von Weizsacker, Z. Physik 96, 431 l1935).
4' J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics

(John Wiley and Sons, Inc. , New York, 1952), Chap. VI.
44 H. Goldstein, Classical Mechanics (Addison-Wesley Pub-

lishing Company, Inc., Reading, Massachusetts, 1959).
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(1 IIT~"(q) IIo+) =v3 (01a ooT o"(q) I o),

where j„(z) are the spherical Bessel functions" and nance is given by
I'~ are the spherical harmonics. "

We introduce the canonical commutation rules for
P(r, t) and ~(r, l) = bL—/l)(BQ(r, l)/N) in the Schrodinger
representation;

Expanding

[0(r)A (r')]= [~(r),~(r')]=o,
[y(r)p (r')]= ihb (r—r') .

(A10)
and

T&M '(q) =- d'rj)v(r) VX ji(qr) I111 (0,4)
g

~3 (r)=p (r)v (r)= p V&(r). (A19)

and defining

Integration by parts yields only a surface term since
V Xj)r(r) =0. Using the identities"

where
p= poM'/SK,

we obtain the Hamiltonian

a
gi~n= [a)„+(—I)"a) „„t],

2@07~~

Pi .=i(o(p&«))'I'[« ' (—1—)"«
(A12)

1
Ii)P(e,p) = (rX V) I'm (II,4),

i%2

/',
r VI'm(8, qh)=0,

I
V'+—!Y).))r(e,&)=0,r')

we obtain
RV2

T)~"(q) = ji(qR) p.
zgc

(A20)

B= Pt'
4E Mp,

, '+ (Ve)'
ppM' 2 dII4 (r) I „,1,~(e,y), (A21)

= P A,.[a,„.tat„.+-',] (A13)

together with the commutation rules

t
NZ)' 1

I
(1-11T;)(q) llo+) I

o= 24 poR Kl
M'c' EA'& Ao)M

[almnqaVm'n'] [aEmn qaVm'n' ]
[ l ay mnl' a' m]n~ll'hmm'/)nn' ~

The operator

(A14)
~ 100

j)(qR) j).(kioR) . (A22)
g

APPENDIX 8: PHOTOEXCITATION

where

Z

L=— P p,„.„(inc'IL,„Ilm)q( „,
$ Inmost'

(A15) The integrated cross section for photoexcitation of
the nucleus into an excited state P„by a photon (k,X)
is given by"

LyL=iL. (A16)

(lm'IL, „lies) = dnI', ,*(n)[—ir x V]I')„(0)

satisfies
2x

&(o))do)= II(l (4 IIIil4o, k&) I ), (81)
bs line Ac

where 0 is the "volume of the universe" andIt is rot, however, the kinetic angular momentum of
the system, which is actually zero in this model. The
state a~„„t!0)diagonaiizes L' and Lz with eigenvalues
l(l+1) and m.

The giant resonance is taken to be the low-lying 1
state:

co J
(e-I%leo,»)=le- 2 2 i'

) J=I M=J

2me'Ac' - I/2

X —(27+I) (TJof"(k)+I)Tg)s '&(k))
20coy

II~0) =al ot!0). (A1/)

This has an energy

x&m~( —4L, —e, 4) 6), (o2)l), SKNZq'I'
!Acolp = 2.08—

R M A')
(A1S)

4'W. Heitler, The Quaetnm Theory of Radiation (Clarendon
Press, Oxford, England, 1954), 3rd ed. ; see also Ref. 43, Appen-

The transverse electric form factor of the giant reso- dix B.
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where D~&~ are the rotation matrkes de6ned in Rd'.
14. If the initial and 6nal states are both eigenstates
of J' and parity, then

I (~r~~ll T'~"(e)+»~-'(v) Il~.~') I'
=

I (~J rll2'~" (v)ll~~') I'

+1(f~~fllT~""4)ll~ ') I' (»)
since one or the other term must vanish.

Using the techniques in Edmonds (Ref. 14) to
perform the sum over 6nal nuclear orientations and
average over initial nuclear orientations and photon
polarizations X v e and

2x'8 Ac

(l(~-I» l~.,&)I'),= 2
2Qa&g 2J~+1

X(1(Jfll2'~"(@II~')I'+ I (~rll2'~-"(&)II J') I') (&4)

Hence, we obtain the formula (4) given in Sec. II:
n(hc)' 1

~(E)dE= (2~)'
Ef; 2J;+1

&Z (I Vrll2'~'(&)IIJ~) I'

+I V II2'.-"(&)Il~~)I'}, (»)
where Er;——hck and n=e'/4~bc is the 6ne-structure
constant.


