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Electromagnetic Fields in a Homogeneous, Nonisotropic Universe*
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A solution of the Einstein-Maxwell equations is derived which represents a closed universe of topology
S &(R, filled with -gravitational and electromagnetic radiation. We confine attention to the lowest of the
large number of possible modes of radiation in such a universe. This mode has maximum symmetry con-
sistent with the existence of a vector field; the universe is homogeneous but not isotropic, and is therefore
a generalization of one of the solutions discussed by Taub. It is possible to solve explicitly for the metric
coefEcients. Some of the physical properties of the solution are discussed.

L INTRODUCTION

'N 1951, A. H. Taub' gave a two-parameter family
-- of solutions to the sourceless Einstein equations
(R„„=O) which are characterized by their symmetry
under 0(3), the rotation group of the 3-sphere. Only
later was it realized' ' that for one region of the coordi-
nates this solution describes a closed space evolving in
time ("Taub universe") and that the analytic extension
to other regions of the coordinates describes asymp-
totically Rat spaces ("outer NUT space"). Closed spaces
without sources have sometimes been proposed as
anti-Mach universes~; alternatively, we here adopt the
view that the Taub universe is held together by its
content of grmitut~orlal rodiatioe, which is present in
the lowest possible mode (maximum symmetry). In
order better to understand such radiation in the Taub
universe, we give a generalization of the Taub-NUT
solution which allows for presence of electromagnetic
radiation of the same maximum symmetry.

To date the only well-known example of a universe
held together by its radiation content is the Tolman
universe. In this solution of Einstein's equations the
wavelength X of the radiation is very small compared to
the radius of the universe, and the radiation is dis-
tributed over many modes. Therefore a statistical
treatment of the radiation is appropriate, and the uni-
verse may be assumed homogeneous and isotropic in
the large. Thus the Tolman universe is a limiting case
(X -+ 0) oi a large class of solutions in which the radia-
tion is present in various modes of finite wavelength.
The spectrum of possible wavelength modes for radia-
tion in a spherical, or topologically spherical, universe
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is discrete. The fewer modes excited, or the longer
their wavelength, the less applicable becomes the ap-
proximation of the Tolman universe and its assumption
of homogeneity and isotropy. It is entirely conceivable
that a universe be held together and curved into a closed
space by a suKciently strong excitation of a sAzgle

radiation mode. The present paper investigates this case
for the mode of longest possible wavelength.

For vector fields (electromagnetic radiation) and
tensor fields (gravitational radiation) the lowest mode
corresponds to constant fields on spacelike hypersurfaces
t=const, in this sense: Each point on a hypersurface
can be mapped into every other point such that metric
and field direction are preserved, Following Heckmann
and Schucking' and the common usage in mathematics'
we call such a universe honsogeeeols. However, at any
particular point not all grec]ious are equivalent —the
universe is not isotropic. In Taub's solution and the
generalization to be considered here only one direction
at each point is distinguished so that an additional

symmetry exists, namely, rotations about the dis-
tinguished direction. Our task is to solve the sourceless
Maxwell-Einstein equations in this homogeneous, non-
isotropic universe.

As an example of a homogeneous space, consider the
unit 3-sphere x'+y'+zs+to'=I, described here im-
bedded in Euclidean 4-space. A preferred direction is the
continuous unit tangent vector field (y, —z, z, —w); a
typical mapping showing the homogeneity moves every
point a constant distance along the held lines of this
vector field. One of the solutions given below has
exactly this geometry at the time 1=0, with the electro-
magnetic held pointing along the preferred direction.
The other solutions diGer from this example only in this
respect, that the 3-sphere I=const is distorted so that
not only the electromagnetic field, but also the space
geometry singles out a preferred direction.

Since there is to be only Owe preferred direction in our
solutions, both the E and H Acids must point along this
direction. They must therefore be parallel, and have

For a spherical universe, see E. Schrodinger, Comment. Pont.
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versity Press, New York, 1956), Chap. III. For the general case,
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constant magnitude in space because of the homo-
geneity. In Sec. II we confine attention to the response
of such 6elds to an arbitrary variation of the metric
in time. As in the Tolman universe, the 6eld strengths
increase as the universe contracts, and we obtain the
adiabatic law for the variation in time of the energy
density in a Taub space LEq. (15)j.The Maxwell tensor
due to parallel E and H fields corresponds to "positive
pressure" in directions transverse to the 6elds, and
"negative pressure" along the field direction. In analyz-
ing the response of the geometry to the fields we should
therefore expect a corresponding behavior of the metric
coeKcients, e.g., after the time of time-symmetry the
universe should expand in the transverse directions,
and contract in the longitudinal direction. Details and
a discussion of this analysis follow in Secs. III and IV.

II. ELECTROMAGNETIC FIELD IN A GIVEN
HOMOGENEOUS GEOMETRY

Let the spacelike invariant varieties under the homo-
geneity transformations be surfaces t= constant. Since
they are geodesically parallel we can choose time-
orthogonal geodesic coordinates such that the metric
takes the form,

ds'= dt'+da'. —

Here do-' is a homogeneous three-dimensional metric.
It is useful to describe it in terms of an orthogonal
triad, 0„0.„, 0-„which is to be invariant under homo-
geneity transformations. Let a-, point along the dis-
tinguished direction, then

do'=A'o '+8'(o '+o ') (2)

Due to homogeneity, A and 8 are functions of t only.
The invariance group of the Taub geometry has the
structure" 0(3). The a.'s are invariant differential
forms and therefore satisfy'

In Cartan's notation, " then

d (H82)/dt = EA . — (9)

The other equations from this set are automatically
fulfilled by our choice (7) of the form of F For e. xample,
since the preferred direction 0, has the topogolgy of
the vector 6eld mentioned in the introduction and
therefore points along closed geodesics, the equations
divK=O and div$=0 are automatically fulfilled.

To evaluate the other Maxwell equations we need
the dual ~F, which follows immediately from (7):

*F=H(P A (g'+Em)' A io'

=HAdt n o,+EB'o, r o.„. (10)

Thus the other set of Maxwell equations, d~F =0, give

d(EB')/dt= HA.

Introduce new measures for the fields and the time
coordinate,

z'=A@2 B'=aa2
dt'= (A/8')dt. (12)

Then the Maxwell equations (9), (11) take the simple
form

dH'/dt'= E' dE'/d—t'=H' (13)

F= —Eioo A (g'+Hanoi a or2

E—Adt A o,+HB~o, n o„.
Due to homogeneity, E and H are functions of t

only, so that, for example, dE=Edt (here a dot denotes
differentiation with respect to t). By using (7) and (3),
one set of Maxwell's equations,

~

der=0 (g)

reduces to the single equation,

da, =0., n o-„and cylically. (3) with the solution

F„=—F„=EH
F,y

———Fy, =IJB' (5)

and all other components vanish. Here the factors were
chosen so that E and H are the fields measured in an
orthonormal frame,

oP =dt, u)'= Bo., (u'= Bo „, o)'= Ao. (6).
"See, for example, C. Chevalley, The Theory of Lie Groups

(Princeton University Press, Princeton, New Jersey, 1946),
pp. 152 ff.

(In holonomic coordinates this metric could be written,
e.g. , as

do'= A'(dP+costtdq)'+8'(dg'+sin'edy')
0~&P(4ir, 0~&0(ir, 0~& y(27r. ) (4)

Since o. is the preferred direction, the E and H vectors
must point along it. Therefore the Maxwell field has
the form, written in the tetrad Ct, 0.„, o.„, f7„

E'=P sint' H'=p cost'

Here p is a constant of integration which is related to
the electromagnetic energy density in the orthonormal
frame

Too——-', (E'+H') =P'/284. (15)

Equation (14) is the complete solution for the fields
in a given metric of the Taub type. Although only one
constant of integration appears explicitly, another is
contained in the arbitrary origin of t', which is left free
by Eq. (12). The two constants of integration are de-
termined, e.g., by the initial magnitudes of E and H.

The analog of the adiabatic law for the electromag-
netic energy in the Tolman universe, 2'oo~ (radius of
universe) ', is given by Eq. (15). As in the Tolman
case, Eq. (15) can be derived by a simple physical

"E. Cartan, Les systemes dijereetiels et leur app/~cushions geo-
metngues (Hermann et Cie., Paris, 1945); G. de Rham, Uurietes
dgferen&ables (Hermann et Cie., Paris, 1955).



HOMOGFNj-. nt.~S, NOXt SOTROric UNrvr:. RSR

argument. For example, as A increases, work is being
done Oe the fields, hence the total energy in the uni-
verse increases as A; the total volume also increases as
A, so that the energy density Tpp shows no dependence
on A. The factor 8 ' can be similarly explained.

III. SOLUTION OF THE MAXWELL-EIBSTEIN
EQUATIONS

gee now turn to the Einstein equations for the case
of sourceless electromagnetic radiation (2'= —R.=O),

R„„=T„„.

Here the Maxwell stress-energy tensor

&,.=~,a~ .—gg, .~up~

(16)

RpP=R '= —R,~ (17)

should be expressed in terms of the solution for E found
in Sec. III, and the resulting equations (16) solved for
the metric coefficients A and 8. For the case of parallel
K and 8 fields pointing in the s direction, all o6-
diagonal components of T„„vanish, and the diagonal
components can all be expressed in terms of Tp', given
by Eq. (15):

+p gz g z T y
Z X P

Similarly, due to the homogeneous form of the metric
(2), the off-diagonal components of R„„vanish. More-
over, since the x and y directions are equivalent,
R,*=R„&.Thus only three of the equations (16) are not
automatically satisfied. It is convenient to divide these
into a set of two equations specifying the algebraic
structure of R„„,

following we shaH assume, without loss of generality,
that tp" vanishes.

By using (21) we can rewrite the first equation (17)
in the form

lj2

$(A'+48'') (80'+ t"')$=0
d']l/2

80'(A 0'+480')+Ch"
A'= 480'+—

2+ tI/O

Here A 0= A (to) and C are two constants of integration.
Finally we must check what restrictions, if any,

Eq. (18) imposes. We substitute (15), (21), and (22)
and find that Eq. (18) reduces to an algebraic condition

48o' —3o'= 24' (23)

with
f 2dP2+ (2t—)2f2~ 2+ (t2+P) (~ 2+~ 2) (24)

-mt" +p —'y~-

t&~2+P

relating various constants of integration.
Equations (21) and (22) give the time dependence of

A and 8, the coefficients determining distances in the
longitudinal and transverse directions. The result is
consistent with the qualitative discussion in the
Introduction.

To compare with the Taub-NUT metric in the form of
Newman et al. ,

' let Bp=l and C=2ns, and express Ap
in terms of ht and 3:

ck' = 2 (Bo/8') dt" =280dh"/(80'+ t"')

so that the electromagnetic fields (14) are given by

Equation (17) can be solved without specifying E
and H. The components of R„"are easily calculated'

Ro'= 2d(B/8)/dt+2(B/8)'+d(A/A)/ch+ (A/A)'

R.*=R„~=C(B/8)/dh+2(B/8)'
(19)+ (AB/AB)+ (28' A')/28', —

R *=d(A/A)/Ch)+ (A/A)'+2(AB/AB)+ (A'/28') .

E=2yBd"/(h"'+8. 2)2

H=y(802 t"')/(h"'+802)2.—

IV. CONCLUSION

and an equation specifying the value of, say, Ro' When y~0 tl can be corn uted from (12) (20)
(18) (21) in terms of t":

To solve the second equation (17), R,*=—R ', intro-
duce a new time coordinate,

dh" = (A/28, )Ch, (20)

8'=8 2+ (h" t,")'—(21)

Here 8p and tp" are two constants of integration. In the

where 80=8(to) is the value of 8 at some fixed time to

The equation then takes the form

c'8/dt'" =802/8'

with the general solution

Many features of our metric (24) are similar to those
of the Taub-NUT solution. For a 6nite range of time,
during which fs(0, or A') 0, i.e.,
—m —(m'+ p —4ip')'"(t ( m+ (m'+ p 4ip')—" (26)—

it represents a closed universe with electromagnetic
fields given by (25). For times outside this range (or for
all P if 4(m'+P)(P'), t" is a spacelike ("radial" ) co-
ordinate and 0, is timelike. In this region the solution is
related to the asymptotically Bat xUT space in some-
what the same way as the Reissner-Nordstrom solution
for a charged "particle" is related to the Schwarzschild
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Tmz, E I. The different solutions contained in the metric given
here as specializations. The arrows point in directions of increasing
generalization.

l&0

@+O

Schwarzschild —+ Reissner-Nordstrom

Taub-NUT -+ present paper

solution (see Table I) In .particular, when /=0(=BO),
Eq. (25) shows that E vanishes. Our solution then goes
over into the Reissner-Nordstrom solution for a mag-
netic pole. By a "duality rotation" the roles of the
electric and magnetic fields can be interchanged to
obtain the more familiar form of the Reissner-
Nordstrom solution, representing an electric charge.

In the case BONO ("charged NUT space") both E and
H fields differ from zero, and no duality rotation can
make the 6eld purely electric or purely magnetic, since
according to (25) the two fields vary differently with
the "radial" coordinate t.

The time development of the solution in the region
representing a closed universe is very similar to that of
Taub's solution. If we choose ad=2m=0 we obtain a
time-symmetric solution; if we take 30=$0=-',p, the
initial geometry is that of an (undistorted) 3-sphere,
both homogeneous and isotropic, in which a preferred
direction is found only in the electromagnetic 6elds.
(This is the case referred to in the Introduction). All
the solutions develop geometrical anisotropy (A&B)
in time. Equation (22) shows that A' increases from
zero to a maximum and decreases again to zero. The
total space volume V= j'g"d'x= J'AB'd'x, measured
on the invariant varieties t= const (or t"= const) shows

a similar behavior: the universe expands and re-
contracts like the familiar Friedman models. However,
neither the Taub-NUT solution nor the present generali-
zation shows any geometrical singularities on the time-

like surface on which A =f= V=0, which separates the
closed universe and the outer, asymptotically Rat
region. "To show this, note that all the terms in (19)
are finite on this surface, in particular

A/A = (1/2BO)dA/dt" (~ .

The analytic continuat. '-pn of the Taub-NUT metric
across this surface has been discussed by Misner and
Taub" and these results apply also to the present
solution. Although no singularity exists in four-space,
every spacelike hypersurface which is pushed forward
beyond the region represented by (26) does become
singular. '

Another generalization of Taub's solution, to the
case of dust-filled universes, has been treated via nu-
merical integration by C. Behr.4 Whereas the solutions
presented here may be said to correspond to universes
of various ratios of electromagnetic to gravitational
radiation content, Behr's solutions correspond to
various ratios of dust to gravitational radiation content.
All the latter solutions show geometric singularities,
since particle paths must cross in a finite proper time, "
leading to infinite mass-energy density, Too. Thus
Taub s solution and its generalizations give us a con-
tinuous family of solutions with the Friedmann universe
as one limit and the Schwarzschild or Reissner-
Nordstrom solution as the other limit.
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