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Summation Over Feynman Histories: Charged Particle in a
Uniform Magnetic Field*
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Using a particular parametrization of paths, the nonrelativistic propagator for a charged partic/e in a
uniform magnetic 6eld is derived by the Feynman method of summation over histories. It is shown that
this sum is independent of the parameterization as Iong as the classical path is included. The result is used
to obtain the density matrix for the system.

I. INTRODUCTION
' 'N I'eynman's Lagrangian formulation of quantum
~ - mechanics, the Schrodinger equation is replaced by
an integral equaion which describes how the wave func-
tion "propagates" in space and time,

tt (r",t) = K(r",r', t)p(r', 0)dsr'.

/Pote added irt proof. This approach has been used by
F. Erdogan, Parke Mathematical Laboratories Report
AFCRL-TN-60-1109 (unpublished). ]However, in view
of the possibility of applying navies' procedure to
classically intractable problems, it appears instructive
to carry out the integrations. We conclude by using our
result to rederive Sondheimer and Wilson's expression
for the density matrix.

II. THE CALCULATIONIt is postulated that the kernel or propagator E is
given by

K(r",r,T) =A P exp(iSrr/ft),
The Langrangian for a particle of charge —e in an

(2) electromagnetic field given by the vector potential A is

where L= ,'mr's —(%-)A i.
(3)LLr (t')ddt' To represent a constant uniform magnetic Geld Ho in

the Z direction we choose A= ( Hsy, 0, 0). The—propa-
gator is not gauge invariant and may be obtained for
any other choice of gauge by a suitable unitary trans-
formation. Thus

is the c1assica1 action function, I being the Lagrangian,
evaluated with respect to a possible trajectory r(t)
satisfying r(t) = r", r(0) =r'. The sum is to be taken over
all "physical" trajectories or histories connecting the
initial and final points. The normalizing factor A is
determined by the requirement that the transformation
(1) be unitary. Beginning with the Schrodinger equation
it is straightforward to prove that

L= ',m(xs+t'ts+es)+(e-Hs//c)yx.

Motion in the z direction represents free particle
propagation; we shall neglect it here but include it at
the end of the calculation by properly modifying X.We
therefore consider the two-dimensional problem of
motion from the point (x', y', t=0) to (x",y"; t = T).
Following Davies" prescription we represent the path
in terms of a cosine series

K(r",r', t) =P C „(r")exp( —iXt/h)C „(r')e, (3a)

when X is the Hamiltonian and the sum is over the
eigenstates of X.

The problem of properly deGning and carrying out the
summation in (2) has been discussed by several authors
and is reviewed by Brush. ' In particular, Davies' has
given a convenient prescription for parameterizing the
trajectories and has applied his method to the cases of a
free particle and a one dimensional oscillator. The pur-
pose of this article is to apply his prescription to the case
of a charged particle in a uniform magnetic Geld.

In Sec. III we show that the evaluation of the propa-
gator requires only knowledge of the classical path.

Sx'$ 00 Qg1
y(t)= g b„cosT' rx(t)= P u cos

The summation over paths is to be e6'ected by integrat-
ing over the coefBcients u„, b . It is possible that paths
having nonphysical characteristics such as discon-
tinuities may be introduced in this way; this problem
will be dealt with in Sec. III.

The action (3) is now given by

2eIIo j'u;b„5= Q rss(u '+b„')—
4+ ~-o c z+~ j'—N2

pdd

*This study was supported in part by U. S. Air Force OKce of
Scienti6c Research Grant No. AF-AFOSR-262-63.

' R. P. Feynman, Rev. Mod. Phys. 20, 361 (1948).' S. G. Brush, Rev. Mod. Phys. N, 79 (1961).' H. Davies, Proc. Cambridge Phil. Soc. 53, 199 (1957).
Representing the sum over all paths by integrating over
the ts's and b's we see that the propagator (2) is pro-
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portional to the integral: where

H= lim daodai ' 'de dbodbi' ' 'd4 ~iP
h.g

——Q
k~1 P

~ Ag,

k~1 P2

j'a.
and Ao=g'

j'a;b„
Xexp/ia P n'(a '+b„')] exp is P

n-0 +~ e' —j'-
Odd

XSLY"a;—(x'+x")/2 J5LQ' as—Ax]

(y'+y")
g II

b bid'b; —~y3,
2

where o=mx'/4AT, s=2eHo/Pic& hx=(x' —x")/2, &y
= (y' —y")/2, and P' denotes summation over odd j,p" over even j.

We shall not attempt to make the calculation
mathematically rigorous. However, most of the integra-
tions and summations can be formally justi6ed by
suitable limiting processes such as giving the mass an
in6nitesimal imaginary part.

Since ao does not appear in the exponent, the ao
integration is trivial. In carrying out the integrations
we shall neglect any factor which does not depend on the
end coordinates. These factors contribute only to the
normalization which will be determined at the end of
the calculation by the requirement of unitarity. The
remaining even a integrals give simply

$$2 $'x' ~
exp ——Q O'Boo =exp i —Q—b'

0 k~1 640 ~-1

where

(jo—4bo)

This formula is proven in Appendix A. The bo integra-
tion is now easily performed and gives

(y +y
H exp ishx~ — H',

2

$ X'

dn)dno .exp io. g'I'n '—i g'n '
n 640 n

XbLP' n„~x.—J(x.=x, x,=y).

These last integrals are done by introducing the
integral representation for the 5 function:

where

e
—iod zdp gl dn exp+„n '+ipn )

exp{Ex '/P},

(sx
p= g (~,~,)-'.

(So k=1

$ is evaluated in Appendix C. So including a factor

exp{ (im/2fiT) (s'—s")'}

for free s propagation, we 6nd 6nally, that

E (r",r', T)

2m PHo PHoTi
=B(T) exp i cot

A2 4 a)
X[(x"—*')'+(y"—y')')

p-,'pHo(x" —x') (y"+y')+ (s"—s')' (4)
4T

These sums are evaluated in Appendix B. We now
observe that

H exp{—~oisAx(y'+y") )E~o,
where

where

da18a3' ' ' dbgdbo exp{io Q' e'a„')

where P is the Bohr magneton et't/2mc.

We shall now determine the normalization B(t) (up
to a phase factor). Unitarity requires:

j'a;b
Xexp{io P oo'b ') exp is P

ss 1 % CVC11 Qj Odd

Xexp —— P' b ' exp{ishxg" b;)
640

X&~"-& ]&& b;-&yj.

At this point, the b~~ integrals are easily evaluated,
and their contribution is simply

exp{—i(s'/16o) (A~+2hxko) }exp{—(is's'/96o)hx'),

U= d'r'E(r", r', t)E*(r',r, t) =5(r"—r).

Let ( a2 /m)t,ob= IoPHo cot(PHot/t't), c= ',PHo, d= 5/4t-
Then from (4) we easily 6nd

U= (Ss'/2a'd) ) B(t) (' exp{iaLg x(x"+x)
+bhy(y"+y)+c(x"y" —xy)+dhs(s"+ s) $}

X8 (hz) 8 (2bhx+ chy) 8 (2bhy+ coax),

where d,a= x"—x, etc. By the theorem in Appendix D

8(2bhx+cdy) 8(chx+2bhy) = (4b' —c') '8(hx) 5(hy) .
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Hence, since x"y"—xy=gLhx(y"+y)+ (x"+x)hy), so the action takes the form

III. DISCUSSION

In the previous section we pointed out that Davies'
prescription for evaluating the sum over histories
introduced a number of unphysical paths, such as those
with discontinuities. We avoid this difhculty by showing
that only the classical path contributes to the spatial
part of the propagator, all other paths contributing to
the normalization only.

We have

K P exp(iS~/A), S~—— Ldt,

where L=-,'m(x'+2't2)+(Hp/c)yx. We write

(x y) = (x.(t) y.(t))+(k(t),n(t)),

where (x„y,) denotes the classical path and (],rt) = (0,0)
at t=0, T. Then the Lagrangian takes the form:

L=L,+22m(/+its)+-m(x, $+2't.it)
+ (eH /c) (y k+rtx. +rtk)

where L„ is the Lagrangian computed for the classical
path. Hence

S=S,+m (x.]+2't.it)dt

Lr =
i B(t) i 23(~s)b(~x)b(~y).

a'd (4b' —c')

Therefore, unitarity requires that

i B(t) i
= = t a'd(4b2 c—s)/42r'5"'
= (m/22ritt) 212(PH pt/tt) CSC(PHot/lrt) .

To obtain the propagator in the symmetric gauge
A=2Ho( —y, x, 0) =-2'HpXr, we need only multiply by
the phase factor exp{i(eHp/28c) (x'y' —x"y")}.There-
fore, for this gauge

K(r",r', t) =B(t) exp{i(m/2It2)

XLPHo cot(PHot/tt) L(x"—x') '+ (y"—y') 2]

+(a/t)("' —") +2PH, (x'y —xy') g}. (5)

{22m(/+its)+(eHp/c)rt)}dt=S, +S'

and S' is independent of the endpoints. Therefore,

K~eisafo Q ere'l2
H

and since 5' is independent of the endpoints the sum
contributes only to the normalization. This means that
if we choose the proper normalization the sum may be
taken over any set of paths which includes the classical
trajectory.

As an application of (5) we shall obtain the density
matrix for an electron in a uniform magnetic Geld. For
nonrelativistic quantum mechanics K(r",r', t) is given
by (Ba). Sondheimer and Wilson4 have evaluated the
quantity

lt (r",r',7)=Z C'-'(r") exp( —V&)C-(r')

for the case we consider here. To obtain their result we
need only make the replacement t= —imp and inter-
change the initial and Gnal points of the paths. When
these replacements are made, (5) becomes

y(r", r', p)

(PHo~) m
exp —

i

k2 li'y sinhgtag) k2 5'y)

X [PHD coth (PHD) L (x"—x')'+ (y"—y') ']

+ (s"—s') 2+2iPHpy (x"y' —x'y")) .
This is precisely the result obtained in Ref. 4.
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APPENDIX
eHp

(y,j+qx,+q j)dt+ ,'m-(~+" ) ' A: S= Q O'Bo'

Now, integrating by parts, we find = —,', P' b„b;S(22/2j /2)+ ,', g' 22 2S (22/2)—,

m (x,$+j(,it)dt= —m
0

(x,g+y, rt) dt.

However, the classical equations of motion are

mx, + (eH p/c)j,-0,
mg, —(eH p/c)x, =0,

where
P2 k'

S(a,b) = g —, S(a)= g
2 (b2 a2)($2 b2) 2 2 (Q2 a2)2

' E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A210, 173 (1951).
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Starting from the well-known formula

— ——cot'ra,
&-1 k2 —a' 2a' 2a

Again,

~I
As= Z —= '2'i'aii (i/2)

k=1 Q

we easily find

me2 cote b cotxa m——cote' =0,
a 2b

S(a,b) =
2(a' b—') b

where the last equality is due to the fact that a and b

are to be halves of odd integers; and

CO

a
&-i k'(b' —a')

l m2

cota-
2a4 2a' 6a'

Therefore,

X2 7r 2

S(a)=—csc's.a——cots.a=—.
4 4a 4

7r2

S=—Q' b„'.
64 n

i (i/2) =g/i ' 2~'/—3i '

Qg

A, =2 Q' ———hx.
6

Combining, we find

~ Ap2
a: A, = P =—,', P'q'e'a;a„X{q/2, ~/2)

y —,', P' ~4a„z(~/2),

where
C:

7r2 X2

h.i+2hxh. 2=—Q' ai2 Ax'. ——
4 ~ 6

(sx)'--'
(» 1)'—

I

—
I

1/2~1 M k 1 kg~/
00

X(a,b = X(b) = P . Prom the well-known sum,
~-i &'(&'—a') (u' —b') ~=}&'{&'—b')

Again from (A.1) we find

a'+b' cotxb cote a

7r m'X

=—tan—,
~=i (2k —1)'—x' 4x 2

X(a,b) = — +
6a'P 2a'b4 2 (a' —b') b' P= 2/is tan (sx'/16').

so

Z(j/2, n/2) =
3j'e'

87r' 32 (j'+n')
~4~4

D: Theorem:

n n 1 n

g b[P a (i}xi]— Q. b (xi)
j~1 s=1 Q i=1

so

7r2 1 3m 7r'

X(b) = ——+ cote.b+ csc'}rb
6b4 b' 4b' 4b4

X (m/2) =20}r'/3is' —64/I'.

where 6= det )
a;&'}

)
NO.

Proof:

A=(2x) " dk dk
Therefore,

%2 Cg
Ai= —(Z' ai)'+ —2' ai' —4 g' —K' ai)6- ' 4~ '

~ j2
( um over all repeated indices). Let K;=k;a;

'
. The.(j)wes

~ ~ ~ ~

Jacobian of the inverse transformation is simp y
Hence,

ai'}=—Ax'+ —g' a, 2—4hx Q' —~.
i

A = (2~)--S-' dK dK„e'~'"=i} ' Q 8(x').


