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Precession Equation of a Syittnmg Parti(:le in Nontmifosus Fields
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The general equation governing the changes of orientation of a spinning particle is expressed in a compact,
tensorial form which represents an extension of the vector equation of Larmor precession. The time derivative
of each component of a mean multipole moment of the particle is a linear combination of the multipole
moments of all orders, subject to selection rules which express thc interesting features of the motion.

HE orlentatloQ of a splnnlng pM'tlclc chRDgcs
under the inhuence of the torques exerted by

external fields on thc particle's multipole moments of
various orders. The simplest example of such a change
is the Larmor precession of thc particle's magnetic
moment {ts) about the direction of a uniform magnetic
6eld H; this precession obeys the equation

d(S)i«= —~IX(0), (1)

%here 'y indicates thc gyroIQRgnctlc I'Rtlo of thc partlclc
and (p) the quantum-mechanical expectation value

(the "mean") of its dipole magnetic moment. The next
more complicated example occurs vrhen a nucleus vrith

spin of &~ I is subjected to electric 6eld gradients, say,
in a crystal lattice. The changes of orientation of a
nucleus Rlc dctectablc, fol CXRHlplc, %'hcn they occUr

in the interval bctvrecn tv' y-ray emissions, because
they RGcct thc angular correlation of these radiations.
Changes of orientation of molecules as they traverse
electric or magnetic lenses arith complex Md con-

6gurations are also detectabl.
Ke irish to consider herc thc changes of orientation

of a particle under the inhuence of arbitrary nonuniform

6elds. Ho@&ever, linear dependence of the effects on the
6eld strengths vriH. be assumed, thereby disregarding

possible dcformations of the particle by the 6clds.
Since the orientation of a particle is represented, in

general, by a density matrix, its variation in the course

of time is represented by the relevant time-dependent
Schrodinger equation for this matrix. The number of
elements of thc orientation dcDslty matrix for R spin-J
particle, namely (2j+1)', is rather large except for the

elementary case of spin —,'. Therefore, it may take some

cavort to visua1izc @&hat changes of orientation vrill occur
ln RHy spccllc CRsc Rnd hovF they %ill lclatc to thc 6eld
strengths and geometry and to the multipole moments

of the particle.
Experimental and theoretical studies have been made

of QuclcRl' changes of ollcDtatlon Under the inQucncc of

torques acting on their magnetic dipole and electric
quadrupole Inomcnts, almost exclusively for axially

symmetric Mds. ' To proceed further and to extend the

' Sce c.g., S. Dcvons a,nd L. J. 3. Goldfarb, Eecydopedm yf
EkyHcs„edited by S. F16gge (Springer-Verlag, Berlin, 195'l),
Vol. 42, pp. 513G. ; V. Gillet, Nncl. Phys. 20, 561 (1960).I thank
Dr. GiHet for a friendly discussion, comments and advice on the
subject of the present paper. Analytical and numerical work on

Bs

studies to particles other than nuclei, one should
identify geometrical and dynamical situations that are
DoQtl lvlRl RmcDRblc to experimental lQvcstlgRtlon Rnd
capable of providing neer information either on the
multipole moments of particles or on the 6clds to @which

they are subjected. Even though no speci6c suggestion
is Offered to this end, it might perhaps be of help to
present herc a tcnsorial form of the Schrodinger equa-
tion for the changes of orientation. This form con-
stitutes a direct generalization of the vector equation (1)
and displays a fear syIIlmetrics and other general
PlOPCI tlCS.

Consider R particIe @&hose angular momentum eigca.-
states are classi6ed by a total angular momentum
quantum number g~ a IQRgnetlc quantum Dumber 5t
and additional quantum numbers, if any, indicated by
0.. Its state of orientation can bc represented by density
matrix elements (rrjzm

~
p~ujzn') diagonal in cr and j.The

general form of the Schrodinger equation for a density
Inatrlx ls

rip(A= —zk 1(Xp—pX) .
Thc matrix clcnMnts of X Rnd p which Rrc of interest

for our problem, namely, those diagonal in 0. and j, can
bc rcplRccd by R linear substltutloD vQth Standard
tcQsorial sets of pRlamctcrs l.c, %'ith Qcw quantitics
that transform under coordinate rotations like the
complex conjugates of spherical harmonics F~,~. The
substrtutlon~ Eq. (18.1) of FR) 1s fol' tile dellslty'
matrix'

p(L) P ( l) r'-m'

)& (jjkgb m,j zl') (nj e:
j
p—~nj zrz'), (3)

0~&k&~2j, —A&~q~&k,

where (jjkg(jtn,j —rw') is a signer coeKcient. Each
p(~)& ls proportiona1 to the comp1ex conjugate of the
corresponding mean 2'-pole moment component of the

systcxns %'lthout axial symmetry has bccn done by E. MattI11asp
W. Schneidex', and R. M. Ste6'cn, Phys. Rev. 125, I6i (1962);
Arkiv Pysik 24, 07 (1963).

~ O'. Pano and 6. Racah, Irr@Eedbke Tensori@ Sets (Academic
Press Inc. , New Vork, 1959), to be referred as FR.

3 Since only matrix elements diagonal in (0,,j) are involved here
and these indices need not be shown explicitly, the symbol
L(op (» ~ oj)g &&&r of FR can be replaced here by the simpler notation
p(k)
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particle, (Kl"&,)*(FR, p. 105). Thus the state of orien-
tation of the particle is characterized by parameters
with immediate geometric significance.

The Hamiltonian of the particle orientation consists
of a sum of terms representing multipole interactions of
various orders, namely, X=gs ts'QsK&"&,Sts&,.Here
K's&, indicates the qth component of the 2s-pole
moment operator of the particle and Its&, is the cor-
responding component of an irreducible standard tensor
constructed with space derivatives of order k —1 of the
electric or magnetic 6eld. 4 Each matrix element of a
multipole moment operator is, according to the Wigner-
Eckart theorem (FR, p. 79), the product of a "reduced"
matrix element independent of orientation and of
a Wigner coefficient, (crjmlRls&, lnjm')= (—1)~' "'
X (2k+1) '"(njllM'"&llcrj)(jt&t, j —m

l jjkq). Therefore
we may define, in analogy to (3), multipole parameters
of the interaction

( 1)r'-m'

X(jjkqljm, j —m')(crjmlXlnjm') (4)
=k- (2k+I)-f(-jll~"'ll-j)~"&'

Inclusion of the factor 5 ' gives Q&~&, the dimensions of
a frequency. The factor k '(2k+1) '~'(njllMls&llnj) is a
generalization of the gyromagnetic ratio.

With these notations the calculation of the matrix
product Xp in (2) reduces to a recoupling operation of
Racah algebra, which yields, according to (18.18) of FR,

&&i '(Xp) t"& =g/„ /g, (—1)s'+s[(2kt+1)(2ks+1)y

t krksk
Xgoal

[~isli X y(s2&] (s& (5)

t'ktksk
X[(2ki+1)(2ks+1)]'"m'l [Qt'» Xy&'») & "& (7)

where boldface letters indicate collectively entire sets of
tensorial components with diGerent indices q. Equa-
tion (7) displays explicitly which multipole parameters
of the interaction, Q&~», are eGective through coupling
with given multipole parameters of the initial orienta-
tion, p&~», in bringing about time changes of that
orientation.

A principal characteristic of (7) is the factor
1—(—1)"&+si s which vanishes unless kr+ks —k is odd,
that is, unless [Q&"»Xg&"'&]&"& is odd with respect to
permutation of its factors. The oddness of the vector
product HX(y) in (1) is a special case of this rule; in
fact the right-hand side of (1) is equivalent to the term
of (7) that contains only vectors (tensorial sets of degree
1), i.e., to the term with kt=ks ——k=1. The vector
product HX(p) represents a torque, which changes the
direction of (y) but leaves invariant its squared mag-
nitude

l (It) l'. Similarly, the odd products on the right
of (7) may be regarded as generalized torques which
change the orientation parameters p'~', but leave in-
variant their aggregate square magnitude'

2j 2j

Wigner coeffIcients (see, e.g., p. 37 of FR). Therefore,
application of the substitution (3) to the ordinary
matrix representation of (2) yields the desired tensorial
form of this equation

if~is&/df — &7 ( 1)sj+s[1 ( 1)Lz+sn-s)

s=Z Z lp'"' i'=Z lf, '"l' (8)
Here the (Xp) &"&s have been obtained from the matrix
elements (crjmlXplcrjm') by the substitution (3), the
Racah 8' coeS.cient is the same as the Wigner 6j
symbol with the same indices' and

[z&»&X y&"»]&a&,=Q„„(ktkskql ktqtksqs)Qt"'& pt"'&

(6)

is a component of the irreducible product of degree k of
the tensorial sets Qts» and p&"». [The product (6)
exists only for values of k~, k2 and k that fulfill the
"triangular conditions" lki —ksl ~&k~&ki+ks etc.] Cal-
culation of the other matrix product in (2), namely
k 'pX, yields the same result (5) except for permutation
of the factors of the irreducible product. This permu-
tation has the eGect of multiplying the result by
(—1)s'+s' ", owing to the synunetry properties of the

'As is well known, the multipole interactions are electric or
magnetic for even or odd values of k, respectively, because matrix
elements diagonal in (n,j}vanish for operators that are odd under
inversion of space coordinates.' For an extensive table of the 6j symbols, which also provides
the ordinary signer coefIjLcients, see M. Rotenberg, R. Bivins,
¹ Metropolis, and John K. Wooten, Jr., The Jj urn( 6j Symbols
(Technology Press, Cambridge, Massachusetts, 1959).

The sum 5 is an index of the degree of orientation or
of polarization of the particle state, since it vanishes
only in the state of random orientation, in which
p&"&,=0 for k/0. The various subsums

l
its& l' represent

diGerent "kinds" of polarization, namely, dipole,
quadrupole, ~ ~ ~ polarization, respectively, for k=1,2. . . (see also FR, p. 105). Equation (7) does not
preserve, in general, the magnitudes of the separate
kinds of polarization, i.e., of the individual

l
yts& l'.

Conservation of the separate
l

y&s& l' occurs only in
the case of uniform external 6elds in which Q&~» =0 for
k»1 and consequently only terms with k2=k fail to
vanish on the right of (7).The equation represents then
a simultaneous simple precession of all separate 2~-pole
sets of parameters y&~& about the direction of the
uniform magnetic field with equal Larmor frequencies.
In this case, but only in this case, the change of orienta-
tion of the spinning particle resembles the precession of
a classical top whose shape parameters are constant.

'The parameter p(')0 ——(2j+1) '"Trp= (2j+1)»~ is the same
for all states and is constant in time according to (7), so that it
need not be considered.



A milder restriction on the changes of orientation,
corresponding to another subgroup of these motions,
occurs when the electric Geld is uniform or vanishing
but the magnetic GeM, is arbitrary. In this case Q&~»

vanishes for all even values of k~ and only terms remain
on the right of (7) for which ks and k have the same
parity. Thc sets of clcctric Rnd magnetic 2 -pole paramc"
ters—with k even and odd, respectively —do not inter-
act then and we have two separate invariants, instead.
of (8) alone, namely

&e)=Ps caen) P
"

)
and ~mean=Zs ops( t) ( ~ (9)

Conversely, a nonuniform electric Geld in the absence
of magnetic field causes only variations of the magnetic
parameters (with odd k) proportional to the electric
ones and variations of the electric parameters propor-
tional to the magnetic ones. A simple example of this
cGect occurs when nuclei are initially "aligned" in R

certain direction but not "polarized, " i.e., when
p&~&,/0 only for k even and q=0; an electric Geld

gradient yielding Q('&,/0 for q/0 will then generate ae
oriest&ttio)s represented by dp&I), /dt and/or dp&'), /Ct&0.

In the event of axial symmetry of all Gelds and Geld

gradients, the coordinate axis is appropriately laid
along the synimetry axis and all 0('», with qi/0
vanlsll. Equat1on (7) 1'cdllccs 'tllc11 to terms tllat 1'elate

parameters dp& &,/dt to p& '&„with qs=q. The original,
nontensorial form (2) of the equation of motion is par-
ticularly simple here, because the magnitude of each
matrix element (&&j&m

~ p ~&&&jI)s') is now constant and its
phase varies like expLi(E„—E ')t/hf, where the mag-
netic quantum numbers m are now constants of the
motion and E is an energy eigenvalue. In this event,
each p&~&, arith q/0 is a linear combination of diA'erent

(I)I j p)m') with different E E' though e—qual t&s m'—
and therefore oscillates in magnitude in the course of
time; however the ps ~

p& "&,|s is constant for each value
of q.

Ex(tt&&pls: spis 1

%e write here, for purposes of iHustration, the equa-
tion of motion (7) for j=1 with the appropriate nu-

merical values of the Racah and signer coefIIicients and
in terms of ordinary Cartesian components of the elec-
tric and magnetic fields E and H and of their deriva-

tives. The elements of the standard sets of parameters
p(~~ are related to sets with other normalizations in
accordance with FR, pp. 24, 25, and 105.

The intrinsic magnetic moment p, of the particle is
deGned as usual as the mean value of p,, in the state
(j=1, I)I=1) and the quadrupole moment Q as the
mean, value of 3s'—r' times the density of positive
charge in the same state. One Gnds then

Q&')I ———Q&') I*——A 'P, (B,—iH„),
n(» = —W2A

—'&II

tt8 8
Q&s)s ——Q(s) s*———-',A 'Q~ —i —(E, iE„),—

'Eaa By

B B B
X i

—i—E,+-(E.-iE„),
&,aa ay as

3q llew

Q&'&, = ——
i

A-'()-
g/ as

'

&tp(I)I/dt=i{g t (Q(l)g)(l)s QO)sp(I) )
—(Q(s)sp(s) I Q(2) Ip(2) )

+g s(Q(s)g)(s)s Q(s)sp(s)I)}

dp(I)&)/&Q= i{/ L(Q(I) p(t) —Q(I) pO) )
~g(Q(s)sp(s) s Q(s) sp(2) )

+g t (Q&s)&p(s) I—Q(s& Ip(s)I)} (11)
&tp(s) /&tt=i{(Q (pl&(s)I —Q(s) p(I)I)

—~(Q(1) p(s) Q(s) p(t) )}
dp(s)I/dt i{/ s (Q—(I)~(s)s Q(s)sp(I)I)

QL(Q(1) p&s) Q(s) pQ)s)
—(Q(o p(s) —Q(s) p(I) )}

&ip(s)s/dt —ig s{Q(I)Ip(s) I Q(s) Ip(I)1

Q(I) ~(s)I+Q(s)tp(&) I}

The equations with. q&0 are obtained from those with

q&0 by reversing the sign of Rll q and the sign in front
of the braces. A form of (11) without any imaginary
element is obtained by replacing the standard sets of
parameters p&') Rnd y(') with the corresponding "real
standard" sets. ~

' U. Fa)&0, J. Math. Phys. 1, 417 (1960).


