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Theory of the Electromagnetic Form Factors of H' and He't'
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A theoretical background is provided for recent experiments on the elastic scattering of high-energy elec-
trons from H3 and Hes. Formulas are derived on the basis of the isotopic spin formalism that relate the ob-
served electric charge and magnetic moment form factors for the two nuclei to the charge and moment form
fa,ctors of the proton and neutron, two form factors that describe the spatial distributions of the centers of
the like pair of nucleons and the odd nucleon (body form factors), and an exchange magnetic moment form
factor that is to be determined empirically. The body form factors are then calculated analytically for three
assumptions as to the dependence of the wave function on the internucleon distances. Two parameters
appear in the calculations with each wave function: a size parameter, and the amplitude of the mixed-
symmetry S state that, together with the dominant fully space-symmetric S state, forms the nuclear ground
state. The sign of this amplitude predicted on the basis of the known spin-dependent two-nucleon interaction
is found to agree with the electron scattering experiments, and its magnitude is reasonable. The available
experimental data show a definite preference for the Gaussian and Irving forms of wave function over a
modified exponential form, and a slight preference for the Irving over the Gaussian form. The size parameters
obtained for these two wave functions are in good agreement with those obtained from the Coulomb energy
of He', and the probability of the mixed-symmetry S state is found to be about 4%

I. INTRODUCTION

ECENT experiments in which high-energy elec-
trons are scattered elastically from H' and He'

provide information which throws new light on the
ground-state wave function of the three-nucleon
system. Thus far the experimental data have been
analyzed in terms of electric charge and magnetic
moment form factors for the two nuclei, by making
use of the Rosenbluth equation for spin 1/2 systems.
The results of this analysis show that the moment
form factors for the two nuclei and the charge form
factor for H' are quite similar to each other, while the
charge form factor for He' falls off somewhat more
rapidly than the other three. '

These observations have a simple intuitive explana-
tion in terms of the spatial distributions of the like
pair of nucleons (protons in He' and neutrons in H')
and of the odd nucleon. The charge is carried by the
odd nucleon in H' and by the like pair in He'. Since the
spins of the like pair are mainly opposed, the moment
is carried mainly by the odd nucleon in both cases.
Thus if each of the like pair of nucleons is distributed
diAerently from the odd nucleon, a natural explanation
of the observations follows. Furthermore, one would
expect the distribution of the like pair to be more
extended in space than that of the odd nucleon, since
the odd nucleon is bound to each of the others by a
linear combination of the triplet and singlet two-
nucleon interactions that is more strongly attractive
than the singlet interaction that binds the like nucleons
to each other. This leads one to expect the form factor
that is associated with the like pair (the charge form
factor for He') to fall off more rapidly with increasing

't Supported in part by the U. S. Air Force through Air Force
Once of Scientihc Research Grant AF-AFOSR-62-452.

' H. Collard, R. Hofstadter, A. Johansson, R. Parks, M.
Ryneveld, A. Walker, M. R. Yearian, R. B. Day, and R. T.
Wagner, Phys. Rev. Letters 11, 132 (1963}.

momentum transfer than the other three form factors
that are associated with the odd nucleon, as has been
observed. '

In a preliminary report on the analysis of the four
observed form factors in terms of properties of the
ground-state wave function, ' it was assumed that there
is a single 'Sy~g state, symmetric in the space coordinates
of the like pair of nucleons and antisylTD~etric in their
spins, but not symmetric in the space coordinates of
one of the like pair and the odd nucleon. This assump-
tion is inconsistent with charge independence of
nuclear forces, according to which there are three
possible '5~~2 states': The dominant state that is fully
sylnmetric in the space coordinates of all three nucleons
(denoted here by S), a state that is antisymmetric in
the interchange of the space coordinates of any pair
of nucleons, and a state of mixed symmetry (denoted
by S'). In spite of this inconsistency, formulas for the
observed form factors were derived which are nearly
the same as those that are derived in Sec. II on the
basis of the isotopic spin formalism LEqs. (17)]. The
reason for this is that the lack of symmetry between
the like pair and the odd nucleon that was assumed in
the preliminary work has its counterpart in the present

'An alternative explanation for the difference between the
two He' form factors has been proposed by J. S. Levinger, Phys.
Rev. 131, 2710 (1963); the H3 data were not available when that
paper was written. He assumes the difference arises from the
exchange moment, which is supposed to be more concentrated
in space than the nuclear wave function. However, apart from
the fact that the total exchange moment is quite small and
therefore hard-pressed to account for the e6ect, it is difrj. cult to
see why, in the three-nucleon system, the exchange moment is
expected to be localized near the center of the whole nucleus,
rather than in the much more spread-out regions where two of the
three nucleons are close together.

3L. I. SchiB, H. Collard, R. Hofstadter, A. Johansson, and
M. R. Yearian, Proceedings of the International Conference on
Nucleon Structure (Stanford University Press, Stanford, Cali-
fornia, 1963).

4 G. Derrick and J. M. Blatt, Nucl. Phys. 8, 310 (1958).
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work in the cross term between 5 and S' states of
different syrronetry.

In the remainder of this paper only the S and S'
states will be taken into account. There is reason to
believe that the fully space-antisymmetric 'Sji2 state,
the three 'I'~~~2 states, and the 'P'~~~2 state are not present
in the ground-state wave function of the three-nucleon
system to any appreciable extent. ' However, the three
'D"' states (collectively denoted by D) are present
with a total probability of a few percent, which might
be greater than the 5' state probability. Nevertheless,
they are omitted from the present work for the following
reasons. The accuracy of the experiments is such that
terms in the form factors of the order of S" and D'
(that is, the S' and D state probabilities) are too small
to observe. The SS' cross term contributes to both the
charge and moment form factors, and as remarked
above accounts for the striking difference between the
charge form factors of H' and He'. However, the SD
cross term does not contribute to the charge form factors
because of the orthogonality of the doublet and quartet
spin functions. While it does contribute to the moment
form factors, there is another term here that is of
comparable importance: the exchange magnetic mo-
ment. Nothing is known of the exchange moment form
factor except that its static value (zero-momentum
transfer) is equal to the difference between the static
values of the magnetic moments of the nucleus and
the odd nucleon, so long as D' contributions are
neglected. Thus for the present, we shall absorb the
SD term into a single empirically determined exchange
term in the formulas derived in Sec. II. For the future,
an explicit calculation of the SD term is under way,
and will be reported at a later time.

We neglect the relatively small Coulomb repulsion
between the protons in He', so that the same wave
function is used for both nuclei. ' It is also assumed
that the exchange moment form factor has the same
shape for both nuclei. While this is reasonable for the
exchange moment itself, and we are neglecting the D'
contribution, it is not quite true of the SD term. This
term arises from the spin part of the magnetic-moment
operator, and not from the orbital part because of the
orthogonality of the doublet and quartet spin functions.
It vanishes for zero-momentum transfer because of the
orthogonality of the space parts of the 5 and D func-
tions. But for finite momentum transfer, the relation
between its values for the two nuclei is obtained by
interchanging p„and p„, the static proton and neutron
magnetic moments; since these are only roughly equal
in magnitude and opposite in sign, the SD contribution
only approximately changes sign in going from one

' J. M. Blatt, G. H. Derrick, and J. N. Lyness, Phys. Rev.
Letters 8, 323 (1962).

The Coulomb repulsion is expected to aGect the form factors
more through modification of the large amplitude S state than
the much smaller amplitude S' state. Thus if it had any appreci-
able effect, it would be apparent on the He' moment form factor
as well as the He' charge form factor; this is not observed.

nucleus to the other. The exchange term very nearly
does this, so we are incurring a small error in including
the SD term with the exchange term and assuming that
it has the same form for the two nuclei.

The isotopic spin formalism is applied in Sec. II
to the S and 5' states, without explicit specification of
their dependence on the internucleon distances. It is
then assumed that the total electric charge density and
total magnetic moment density can be expressed
without mutual interference as the sum of contri-
butions from each of the three nucleons, together with
the exchange term described above. The contribution
from each nucleon is the resultant of the distribution
of its center in space, which is determined by the
nuclear wave function, and its own structure, which is
assumed to be the same as for the free proton or for the
neutron in deuterium. In this way the four observable
nuclear form factors are expressed in terms of the four
nucleon structure form factors, two form factors that
describe the spatial distributions of the centers of the
like pair and the odd nucleon (body form factors),
and the exchange form factor. These formulas [Eqs.
(17)7have been published elsewhere without derivation,
and used to analyze the experimental data.

The body form factors are calculated analytically
in Sec. III for three assumptions as to the dependence
of the wave function on the internucleon distances. This
dependence is mainly an exponential function either
of the sum of the three distances, of the sum of their
squares, or of the square root of the sum of their squares;
they are referred to as the exponential, Gaussian, and
Irving' wave functions, respectively. Formulas are
also given for the normalization constants of the 5 and
5' functions, for the matrix element of a spin-dependent
two-nucleon interaction between the 5 and S' states,
and for the Coulomb energy of He', in each of the three
cases. The matrix element is needed to determine the
relative sign and estimate the probability of the ad-
mixed 5' state. The possibility of including the effect
on the wave function of a repulsive core in the inter-
nucleon interaction is also considered briefly.

Estimates of the parameters in the three wave
functions are obtained in Sec. IV from comparison with
experimental data. Three Appendixes indicate how
the necessary integrals can be evaluated.

II. ISOTOPIC SPIN FORMALISM

The doublet spin states for three nucleons have the
forms

X1=6 '"[(++—)+(+—+)—2(—++)j,
(1)

F2=2 '"L(++—)—(+—+)j.
A+ (or —) in, say, the second position of a parenthesis
means that nucleon 2 has spin up (or down). The isospin

VL. I. Schi6, H. Collard, R. Hofstadter, A. Johansson, and
M. R. Yearian, Phys. Rev. Letters 11, 387 (1963}.

8 J. Irving, Phil. Mag. 42, 338 (1951}.
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functions g& and qm also have the form of Eqs. (1),
where now a + (or —) means that that nucleon is a
proton (or neutron); these functions describe He', and
tb.f: H' isospin functions are obtained by interchanging
+ and —in the arguments of the g's. The combinations
of spin and isospin functions that we require are4

go= 2-'"(X2gi—Xiga),

pg ——2 'I'(Xmgg —Xgqg),

y, =2—'I'(X,gg+ Xgqm) .
(2)

The y's and the g's also transform in accordance with
Eqs. (3). The fourth combination of the x's and g's,
Xmrlm+x&p&, is fully symmetric, and we shall not require
it.'

Since we shall only make use of S states in this paper,
the space-coordinate dependence of the wave function
can be specified in terms of the three internucleon
distances r», r», and r». The fully symmetric space
function u is un''ected by an interchange of any pair
of nucleons. The other two space functions that we
require can be de6ned in terms of a single function

g (12,3) which is symmetric in an interchange of
nucleons 1 and 2, but neither symlnetric nor anti-
symmetric in an interchange of 1 and 3 or 2 and 3:

vg
——6 '"[g(12,3)+g(13,2)—2g(23, 1)],

(4)
w =2—'i'[g(12,3)—g(13,2)].

The three functions I, v~, and v2 may be chosen real,
and they are orthogonal to each other. The v's also
transform in accordance with Eqs. (3), and the
combination

~P+~ '=a3[g'(12,3)+g'(13 2)+g'(23, 1)—g(12 3)g(13»)
—g(12,3)g(23,1)—g(13,2)g(23, 1)] (5)

is fully symmetric.
The Pauli principle requires that the over-all wave

function be fully antisymmetric in interchanges of all
of the coordinates (spin, isospin, and space) of any pair
of nucleons. The function Joe has this property; this
is the dominant 'S&~2 state that we denote by S. Only
one other fully antisyrlunetric function can be con-
structed from Eqs. (2) and (4): p&v2 —p&e&, this is the
'S~~~ state of mixed symmetry that we denote by S'.
Our wave function, then, is

4' =AN+ (4~2—4'2&x) (6)

We note that the two y's are orthonormal, as are the
two p's and the three &f's. The function po is fully
antisymmetric, and the other two g's transform in the
following way under interchange of the nucleons:

F2341 41 y F124'1 s (3 4'2 4'1) yt

F134'1 s (3 4'2+41) )
(3)

&ss4s= —42, &UA=2(42+3'"4i),
&iaes= 2(A —3'"4i).

We use nonrelativistic kinematics for the nuclei, and
deGne the form factors as the three-dimensional Fourier
transforms of the expectation values of the electric
charge density and magnetic moment density operators
for the wave function f. In accordance with the assump-
tion of Sec. I that the three nucleons contribute without
mutual interference or distortion, the charge and
moment density operators are

pc (r,r;) =P [-,' (1+r,.)f,z"(r—r,)

p~(r, r~) =P [,'o;, (1+r;,)y~fm~" (r r~)—
i I

+i~ *(1—r'*)~ f ~"(r—«)] (8)

Here, the 0-'s and r's are unit-amplitude Pauli matrices
that operate on the x's and g's, respectively, and the p, 's

are the static magnetic moments of the nucleons. The
f's may be regarded as spatial distribution functions
for the charge and moment densities about the centers
of the nucleons; or, alternatively, they may be thought
of as three-dimensional Fourier transforms of the
normalized nucleon electromagnetic form factors F,h&,

P,h", Ii „&, and Ii „",which are functions of q, the
momentum transfer divided by A.

The P of Eq. (6) refers to He', which has a static
charge of two units. We absorb this factor of 2 into the
definition of the charge form factor, and write

2F„(He') = exp(iq r)/*pc(r, r;gird'r;. (9)

+ (2/3) (F.z&—F,z") {[exp(iq r&) —exp(iq rm)]svl

+3'I' exp(iq r~)gv2}d'r; (10)

where use has been made of the symmetry of e and the
w's. Since the static charge of H' is one unit, F.~(H') is

given by the right side of Eq. (10) with the superscripts

p and e interchanged.
The Fourier transform of the expectation value of

Eq. (8) may be calculated in similar fashion; the result

The structure of Eq. (7) is such that the integration
over r may be performed erst by changing variables
from r to r—r;; this leads to the nucleon form factors
P,i,& and Il,h". The remainder of the evaluation of
Eq. (9) requires computation of the expectation values
of the 7-;, and evaluation of integrals that involve

exp(iq r~) The res.ult is

2F,h(He')

= (2F,h&+F,h") exp(iq r&)(u'+vp+w2')&r;
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ls convenient to use the linear combinations

IJ,„F ~" exp(iq rg) (u'+eP+eP)d'r;

—(2/3)( P- "+I&-.")

X {[exp(iq r&) —exp(iq r2)]us&

+3'I' exp(iq r2)urn}d'r;

+(2/9)(p+ ~"—p F ~") [2 exp(iq rg)sp'

where

Fg(q) = exp(iq rg)u'd'r, , (13)

F2(q) = — {[exp(iq r&) —exp(iq rp)]m&

+3'I' e~(iq r,)uv, }d8r

= —6'I' [exp(iq r~)

+exp(iq r2) (3'I'sq+vn)']d~r . (11)

As remarked in Sec. I, the accuracy of the experiments
is such that the terms in the form factors of order e'
are too small to observe. We therefore simplify Eq. (11)
by dropping these terms, to obtain

I .F-I"F~+(2/3)(I F .s"+P.F .I")F2 (12)

Fr=Fr (1/—3)F2, Fo=Fx+(2/3)F2, (16)

where the subscripts in (16) refer to the like pair of
nucleons (I) and the odd nucleon (0). In terms of
these, the four nuclear form factors are

2Fah (He') =2F.~"Fr,+Fa "Fo,
p(He')F „(He')=p„F, "Fp+(2/3)p+, I (Fp—Fr,)

+6 (He') —~-]F»,
F.g(H') =2F.g"FI,+F,h&Fp,

I (H')F-. (H') =I P-."Fo+ (2/3)I -F-."(F'o F)—
+[ (H') 1,]F»— (17)

Equations (17) bring out the primary association of
Ii~ with the protons in He' and the neutrons in H', and
Ii 0 with the neutron in He' and the proton in H'. The
Iio—Iiz, terms in the second and fourth equations
reQect the extent to which the spins of the like nucleons
fail to be precisely in opposite directions.

We shall also want an expression for the matrix
element of a spin-dependent two-nucleon interaction
between the normalized S and S' states. The normalized
S state is gou with J'u'd'r;=1, and the normalized S'
state is

where, with the help of Eq. (5),

P= (eP+vP)d'r;—exp(iq ra)]ug(12, 3)d'r, ; (14)

the latter form for F2 is obtained by making use of
Eqs. (4).

Now F2 given by Eq. (14) vanishes for q=0, and F&
is equal to unity there if P is normalized and the v'

terms are neglected in the normalization. Since Ii,g"
is normalized to unity at q=0, (12) is equal to p there,
whereas it should equal the static moment p(He') of
the nucleus. As discussed in Sec. I, we ascribe the
difference to the exchange magnetic moment (including
D state efFects), and multiply it by a normalized
exchange form factor F»(q) that is to be determined
empirically by comparison with the observations.
Adding this to (12), we obtain the following expression
for the magnetic form factor of He':

p (He') F,g (He')
=~.F-."F ~+(2/3) (~P-."+~.F-.")F~

+&(He') —u ]F (15)

=2 [g'(12,3)—g(12,3)g(13,2)]d'r;. (19)

It is sufhcient for our purpose to take the interaction
in the form

Z (1/4) {[3V»(r'~)+Vs(»' )]
+LV (';)—V (')]( ' )}, (2o)

where Vp and Va are the triplet-even and singlet-even
interactions, respectively. Because of the orthogonality
of the P's, only the second square bracket of (20)
contributes to the matrix element. A straightforward
calculation gives for the matrix element

M=2(6/P)'I' [V(rqa) —V(»~2)]ug(12, 3)d'r;, (21)

where

(22)The corresponding expression for H' is obtained by V(r) = (1/4)[Vr(r) —Vs(»)].
replacing He' by H' and interchanging p and u in

IG. ANALYTlCAL RESULTSThe body form factors F~ and Fn evidently arise from
the S state and from the SS' cross term, respectively, The three wave functions with which we work have
» that P2 is much smaller than F&. It is sometimes been chosen for analytical tractability and physical
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2 have the same sign, which is chosen positive for
definiteness, then P must be slightly less than a in order
to have P2 positive, as is observed. Further, if we define

plausibility. The "exponential" wave function

I=A (flsflsfss) exp[ sa(f12+f18+f28)j
(23)

g(12,3) =B(f»f»fss) —'a exp[ —sa(f13+f23) spf is)
would be more plausible physically if it did not contain
the reciprocal square root as a factor. It would be
possible to evaluate the needed integrals analytically
if this factor were to be omitted, but the labor required
would be much greater than with (23). The "Gaussian"
wave function

(26)3=a Pl

then to lowest order 8 and e enter into the expressions
for observable quantities only through their product.
Thus we could as well choose 8 and 2 with opposite
signs, and P slightly greater than a.

The values of A, B, a, and P are of course different
in the three cases. However, there is no need to dis-

tinguish them with subscripts since the analysis for
each case is carried through by itself.

I=A exp[—sa'(f12+f13+f23)],
(24)

g (12,3)=B exp[——2'02(fla'+f28') —
2p'fls j

is extremely tractable analytically, but its rapid
falloG for large internucleon distances makes it rather
implausible physically. Finally, the "Irving" wave
function'

Exyonential Wave Function

The evaluation of the integrals needed for this case is
discussed in Appendix A. The form factor Il j given in
Eq. (13) is

(25)

I=A exp[ ——',a(fis'+f13'+f23)'"j,
g(12 3)=Bexp[—(asflss+a'fsss+psflss)'" Fl (4/x') tan ———'[x'/(3x'+4) j, x= g/3a. (2'/)

Here, use has been made of the normalization condition
is not too difFicult to deal with analytically, and has a
high degree of physical plausibility. ' A'=as/22rs, (28)

In each case we expect B to be much smaller than A, which is obtained with neglect of the v' terms. The
and p to be very close to a. It turns out that if B and form factor Fs given in Eq. (14) is

8(6)'lssrsAB Q(es+as+ys) 2' 8(6)'I' 'AB Q(4Q'+a'+3ys)
Ii 2= tan —' —tan —~ tan ''

e(e+- -~) -(e+- -~)- Q+- -~ e(2Q --+~) ~(- -v)

,-Q(4Q+3-+7)-, -e(e+ '+v') 2Q /Q'+2 ' (2—tan ' +tan ' —tan ' +tan '~ —tan '~—
-(- -7) — v(e --+~) e --+~ ~ e- &Q

Q= sq, V =2(a+I) (29)

Ee= es (I'/fis)d'f;= 2esa,

where use has been made of Eq. (28).

(30) We are only interested in obtaining Fs, P, and M
to lowest order in B and c. Equations (30) and (26)
then give

1622'Bs (a—P)'
P=

a(a+P)'(3a+P)'

The matrix element (21) may be calculated with an
exponential form for the interaction (22):

V(f) = —C exp( —pf). (31)

(34)P—(srsB232)/ (4a') .

Equation (29) may be expanded out if it is assumed
that 3 is small in comparison with Q'/a as well as with a.
The leading term is proportional to ABe, if we substi-
tute for A from (28) and for Bc from (34) we obtain

The result is

M =—1282r'(6/P)'12A BC
X([(2 +p)(3 +P)(3 +0+2')3 '

—[2a(3a+P+2p)2$ '} (32)

It is sufhcient in calculating the Coulomb energy of
He' to keep only the 5 state in f, since there is no

9 It is easy to show that the exponent of g in Eq. (25) is negative
unless the three nucleons coincide.

24(3P)'" — x'(x'+2)
p ~

x' 2(x'+1) (x'+4)

X g
tan '——

, x=—.(35)
3x'+4 3a

The inverse tangents can of course be combined in cross term between the S and S' states. We neglect
various ways if desired. the Gnite size of the protons, and obtain

The quantity P given in Eq. (19) is the 5' state
probability if this probability is small enough to
neglect in the normalization of f, which we assume to
be the case. With the wave function (23), we find that
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The sign here implies that vrith A positive, Be is also
positive. We return to this point after writing Eq. (32)
to lowest order with the help of (34):

~—=—8~CLy/(y+2)'j y=//a (36)

Since the triplet-even interaction is more strongly
attractive than the singlet-even interaction, Eqs. (22)
and (31) show that C is positive. Thus if Bc is positive,
Eq. (36) shows that M is negative. Now the amplitude
of the admixed S' state is approximately equal to M
divided by E8—E8, where the F.'s are the expectation
values of the full nuclear Hamiltonian for the two
states. Since this energy denominator is negative, a
negative M corresponds to positive amplitude of the S'
state relative to the S state, and hence to positive Be.
Thus F2 is expected to be positive, and Fo greater than
F~, in agreement with observation.

Equations (27) and (35) show that for small 5'-state
admixtures, there are only two parameters that can be
adjusted to fit the electron scattering data once the
form of the wave function is chosen: n and P. The
Coulomb energy (33) provides an independent value for
o.. Variational calculations of the binding energy of H'
provide independent values for both 0, and P, but
involve uncertainties in the interactions as vrell as in
the wave function. A quantity that depends much
more sensitively on P than the binding energy is the
rate of capture of slow neutrons in deuterium. This
process, vrhich goes by magnetic dipole radiation, is
forbidden if the H' wave function contains only the S
state"; the rate is now being calculated, and will be
reported at a later time.

All of the remarks of the last two paragraphs apply
as vrell to the other choices of vrave function, and will
not be repeated in the next tvro subsections.

Gaussian Wave Function

The integrals in this case are almost all trivially
simple; however a remark concerning their evaluation
is made in Appendix S. The expressions for F~ and A'
are

F~——exp( —q'/18a') A'= (3'/'a )/s' (37)

and the expressions for F2 and P are

(6)~/2' AB
F2- exp( —q'/18a')

as (2a2+p2) 3/2

—exp —q' + (38)
/2a' 8(2a'+p')

P= 2x'B' (39)
aa (a2+ 2P2) 3/2 (a2+P2) 3/2 (5a2+P2) 3/2

ML. I. Schiff, Phys. Rev. 52, 242 (1937); M. Verde, Helv.
Phys. Acta 22, 453 (1950); see also N. Austern, Phys. Rev. 85,
147 (1952), who suggests that the exchange magnetic moment
contributes to this process.

&c= (6/vr)'/2e'a.

Irving Wave Function

(44)

The evaluation of the necessary integrals is discussed
in Appendix C. The expressions for Fq and A' are

Fg= $1+(2q'/9a )] "/' A'= (3'"a6)/(12(hr'), (45)

and the expression for F2 is

120(6)'/'8'AB 2q'
Fn —— 1+

a3 ((P+2P2) 3/2 9a2

( 1 1
-—?/2

1+
~

+ q' . (46)
(18a' 2a'+4P'

It is only convenient to calculate P when e is small:

F~(420s-'B'c')/(3'"a') (47)

If it is assumed that e is small in comparison vrith
a'/qm as well as with a, Eq. (46) becomes, with the
help of (47):

F~(21F)'"(2q'/9&)L1+(2q'/9a')7 '" (48)

The calculation of the matrix element (21) with the
form (31) for the interaction is rather lengthy, but
still much simpler than it would be with the interaction
(42). The result for small e is

M~ —(3/7)'/'(4C/5~) Ls'/2/(s —1)')
X(L105s '(2s+1)/(s —1)' 'g lnLs"+ (s—1)"j

+ (4s' —40s' —247s —32)), (49)

where the quantity z=2/c'/3a is assumed to be greater
than unity; a similar expression could be obtained for
s(1.Equation (49) is not convenient for computation
unless z is much greater than unity; for example, even
with z=2, the tvro terms in the curly bracket differ

For small e, Eqs. (39) and (26) give

F~(s.3B2cI)/ (33/2a8) (40)

Equation (38) may be similarly approximated if it is
assumed that e is small in comparison with a'/q' as
well as with a; with the help of (40), it may be written

F2—(F/6)'/'(q'/6cP) exp( —q'/18a') . (41)

It is much easier to calculate the matrix element (21)
in this case with a Gaussian than vrith an exponential
interaction, and just as useful for our purpose. We
therefore take (22) in the form

V(r) = —C exp( —/c'r'),

and find, for small e, that

3f'=—27v2CQ'/(2y'+3)'" j y =/c/a (43)

The Coulomb energy is
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by less than 6 parts in ten thousand. The following
approximation to (49) is useful for the values of z, quite
close to unity, that are of experimental interest (s may
now be greater or less than unity):

A different kind of "hole" can be put into the Irving
wave function by excluding the region of con6guration
space in which the sum of the squares of the three
internucleon distances is less than a'. This corresponds
to multiplying Eq. (25) by GDrts'+res +rss')'"] )

where G is given by (52). A three-nucleon rather than a
two-nucleon repulsive core is implied by this change.
The result of the calculation is that Ii t given by Eq. (45)
is replaced approximately by

M= —(3/7)'"(8C/s)s '~'

X{(16/165)+ (192/715) L (z—1)/z]
+ (32/65) [(z—1)/~j') (5o)

The Coulomb energy is

Eo= (2/3)'Is (8/5s) ssn.

Effect of a Reyulsive Core where w=2qs/9n'. The approximation in deriving (53)
consists in assuming that ee(&1; the first neglected
q-dependent term is (wnsas)/241 920.It would be of considerable interest to obtain analytic

expressions for the body form factors when the two-
nucleon interaction has a repulsive core. A method for
taking a core into account would consist in multiplying
the wave functions (23), (24), and (25) by the factor
G(rts)G(rts)G(rss), where

2.0

P,(1—(2tra/5) (~+1)+(tr'a'/15) (to+ 1)'
(51) X[1+2(to+1)'"iL1+(w+1)'"j '), (53)

G(r) =0 for r(a,

G(r) = (r a)/r for r)—a.
(52)

l.5

However, it does not seem feasible to evaluate the
resulting integrals for any of the wave functions. The
Gaussian case can be done if we choose G(r) to corre-
spond to a "depression" for small r rather than to a
"hole"; this implies a soft rather than a rigid repulsive
core. Thus with

G(r) =
I 1—exp( —y'r')]'",

the integrals are quite manageable. The expression
for F» is lengthy and not very enlightening, so it is not
quoted here.

0.5

0
0

FIG. 2. Straight-line plot of F1 for the Gaussian case. The ratio
of extreme n values is 1.20, and the Coulomb value lies well
within the electron scattering range.

0
0

FIG. 1. Straight-line plot of F~ for the exponential case. The
ratio of the extreme values of o. that enclose the central values of
I&ef. 7 (error bars are omitted) is 1.42. The value of n obtained
from the Coulomb energy of He' lies outside of the electron
scattering range.

IV. NUMERICAL RESULTS

All of the formulas (27), (37), and (45) for Iit are

easily compared with the experimental data. For the
exponential case, a single curve of the right side of Eq.
(27) can be plotted against x, from which the value of x
that corresponds to an experimental value of F~ is

obtained. A graph of these values of x against the
experimental values of q will yield a straight line

through the origin if (27) describes the observations;
and if it does, n is determined by the slope of the line.

Figure 1 is such a graph; the experimental values of

F~ are obtained from the FI. and Fo central values of
Ref. 7 with the help of Eqs. (16), and error bars are
omitted. The extreme values of n (in units of 10"cm ')
that correspond to the straight lines that enclose the

best experjmen&aI Iiq values are 0.298 and 0.425, and
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the ratio of the larger to the smaller value of o, is
1.42. The Coulomb energy of He' provides independent
information on 0,. The experimental value of 0.764
MeV, together with Eq. (33), gives n(C.E.)=0.266;
this value underestimates n(C.E.) since the finite size of
the protons was neglected in computing the Coulomb
energy. The straight line that corresponds to this value
of 0. is also shown in Fig. 1.

The corresponding graph in the Gaussian case is a
plot of —lnF~ against q', and is shown in Fig. 2. The
extreme values of 0. are 0.337 and 0.404, their ratio is
1.20 and n(C.E.)=0.384. For the Irving case, Fi "' is
plotted against q', as shown in Fig. 3. The extreme
values of n are 1.20 and. 1.35, their ratio is 1.12, and
n(C.K.)= 1.27.

Figures 1, 2, and 3 show a definite preference as
regards straight-line 6ts for the Gaussian and Irving

0.4

0.3

0.1

1.8 0
0 I 2 3

q
2

1.6

FIG. 4. Straight-line plot of F2 for the Gaussian case. With the
Coulomb value of a, the S' state probability is 3.5%.

cv 1.4
I
LL,

1.2

1.0
0 2 3

qR

Fto. 3. Straight-line plot of Ii~ for the Irving case. The ratio of
extreme a values is 1.12, and the Coulomb value lies well within
the electron scattering range.

the same wave function and an exponential interaction;
the H' binding energy was not much different in the
two cases. This is a much greater spread in 0. than is
obtained from the electron scattering data, and there
is not as good agreement with the Coulomb energy.

Once a value of 0. has been obtained from fitting Ii ~,
it is easy to plot Ii2 so as to determine whether or not
it is in agreement with Kq. (35), (41), or (48), as the
case may be. The S'-state probability is obtained at the
same time. It is only worth doing this for the Gaussian
and Irving wave functions. Figure 4 shows a plot of Fm/F i
against g', which should be a straight line through the
origin in the Gaussian case. The best straight line,
together with n(C.E.)=0.384 gives P=0.035. Figure 5

wave functions over the exponential wave function,
and a slight preference for the Irving over the Gaussian
wave function. Also, the agreement between the
Coulomb energy and electron scattering values of 0. is
good except in the exponential case, where the dis-
crepancy is in such a direction as to suggest that the
wave function should not be as peaked as Eq. (23)
is at small internucleon distances. "

As remarked in Sec. III, variational calculations
involve uncertainties in the interactions as well as in
the wave function. For example, Irving' obtained a
best value for n of 1.84 with the wave function (25) and
a Vukawa interaction, arid a best value of 1.37 with

"This conclusion is confirmed by a preliminary result of B.
Srivastava, who calculated an average body form factor by
numerical integration, using an exponential wave function that
omitted the reciprocal square root in Eq. (23), and found good
agreement between the Coulomb energy and electron scattering
values for n. The writer thanks Professor J. S. Levinger for
informing him of this result.

0.7
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0
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FIG. 5. Straight-line plot of F2 for the Irving case. With the
Coulomb value of n, the S' state probability is 4.4%.
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shows a plot of Fs/(Fssi') against q', which should be a
straight line through the origin in the Irving case. The
best straight line, together with cs(C.E.)=1.27, gives
8=0.044. Again, the Irving 6t looks slightly better
than the Gaussian. This S'-state probability of about
4% is considerably larger than has been estimated in a
variational calculation. '

Finally, the matrix element M that mixes the S and
S' states may be calculated from Eq. (36), (43), or
(SO). We use the values C=19 MeV and p=1.7X1018
cm ' for the exponential interaction (31), and C=7
MeV and p=0.75&(10" cm ' for the Gaussian inter-
action (42)." The value of M then turns out to be
about —3 MeV in the Gaussian and Irving cases, so
that a F value of 4% is obtained if the energy de-
nominator E8—E8 is about —15 MeV. This value for
the energy denominator is quite reasonable, and
supports the conclusion that the variational calculation
substantially underestimated the S'-state probability.

It is evidently not worth while at the present stage
to attempt 6tting a repulsive core form factor like
Eq. (53).
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of its Fourier transform

r ' exp( c—sr) = (2x') ' (ks+css) ' exp(ilr r)dsls)

replacing the r's by y and r„and integrating over y and
r to obtain 5 functions in the three k variables. Inte-
gration over two of the k's yields

322r I ($2+cs2) ($2+P2) ($2+p2)j—1$2dp (A3)
0

which can be evaluated by residues to give the right
side of (A2). Assignment of particular values to n, P,
and y in (A2) leads to the expressions (28) for As,

(30) for F, and (32) for M. Equation (33) for Ez may
be obtained by integrating Eq. (A2) with respect to n.

Evaluation of the body form factor integrals requires
a more complicated integral than (A2); the most
general example of this type is

1(q,~,p,y) = (r»rssrss) '

Xexp(sq r1 csr12 Pr18 yrss)d r' (A4)

where r1= (2/3)p is the vector from the center of mass
of the nucleus to nucleon 1. We proceed as with the
evaluation of (A2) and obtain, in place of (A3),

APPENDIX A

Integrals involving the exponential wave function
(23) are evaluated by first expressing the internucleon
distances in terms of two vectors ID and r, and then
making use of Fourier transforms. " We let r be the
vector from nucleon 2 to nucleon 3, and I0 the vector
from the midpoint of nucleons 2 and 3 to nucleon 1.
Then

g (L(i-Q)'+ '3

XL(it+ Q)2+P2] ($2+~2) j—ldsp Q q/3

It is best to do the integration over the magnitude of lr

first, by residues, and then do the integration over the
angle between lr and. Q. The calculation is rather
lengthy, and yieMs

r»= lp+srl r»= Ip —srl, r»=r,. (A1)
1(q,~,p,v)

integrations fd'r; become ffdspdsr, where each
rectangular component of y and r ranges from —~
to+~.

The most general integral of the type that is required
for calculation of A, I', M, and Eq in the exponential
case is

(r12r18r2$) exp( &r12 Pris Vrss)d r '

=16 '/L( +P)(P+v) b+-)1 (A2)

The evaluation of (A2) may be carried through by
expressing each of the factors in the integrand in terms

8H -Q(4Q2+ 2+3P2)-
tan '

Q(2e+ +P —2v) — P( ' P')—
(Q4Q+ ~3'+ )p-e(e+~'+v')—tan —' +tan '

o (~2 P2) ~ (Q2+ 182 p2)

2ev Q(e'+P'+v')—tan —
'I +tan '
&e+ —~ p(e'+p' —v')-

2ey—tan-' . (AS)
Q2+P2 2

"J.M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 {1949).
'8 L. L SchiB, Phys. Rev. 125, 7'17 (1962); see the Appendix.

Substitution of particular values for n, P, and 7 in

(AS) then gives Eqs. (27) and (29) for F1 and Fs.
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I=(nP) ' exp(iQ R R)d6R (C2)

A comprehensive treatment of plane and spherical
waves in a multidimensional Euclidian space has been
given by Sommerfeld. ' In six dimensions, the spherical
coordinates are R, 8, &I, , p4, and the corresponding
rectangular coordinates are

APPENDIX B

Integrals involving the Gaussian wave function (24)
are evaluated by using the coordinate transformation
(A1). In most cases it is then best to do all integrations
in terms of the rectangular components of y and r.
The most complicated integral that arises can be
reduced to a product of terms of the form

x]=E.cose,

$2 =R S1I18 cospl,

x3 ——R sin8 sin&I cosp2,

x4=R sin8 sin&I sin&2 cos&3,

$6=R s1118 sin/I sin/2 sings cos$4,

g6 ——R sin8 sin/I sin/2 sings sin/4.

exp ( ax2 —by2 —2cscy—2iQ—x)dscdy, ab) c2,

It is apparent that successive differentiation of Eq. Then Eq. (C1) becomes
(A4) with respect to n, P, and y leads to the body form
factor integrals for a true exponential wave function,
that is, for the wave function (23) with the reciprocal
square root omitted, The labor involved in differ-
entiating (AS) is, however, substantial, and it has not
been done,

where x and y are corresponding rectangular com-
ponents of y and r. It is evaluated by rotating axes in
the xy plane, with the result:

7r(ab c') '" exp—L
—Q'b/(ab —c')].

APPENDIX C

Integrals involving the Irving wave function (25)
are also evaluated by using the coordinate trans-
formation (Al). Then 2, I', and Ec can be calculated
by using a further transformation introduced by
Irving, ' according to which the magnitudes of the
vectors y and r are regarded as the rectangular com-
ponents of a single new two-dimensional vector, and
the integration is performed in polar coordinates. "

Although this method might be made to work for Ii~

and F2 as well, the calculation is greatly simpli6ed by
using a diGerent transformation, according to which the
three rectangular components of y and of r are regarded
as the rectangular components of a single new six-
dimensional vector. The most general integral of the
type we require is

d'R =R' sin 8 sin'&I sin'&2 sin&3dRd8dfld$2@3lAfl4.

We choose the x~ axis along the direction of the
vector Q, so that 0 R=QR cos8. Then the @ inte-
grations in (C2) can be performed to give

0 0

exp(iQR cos8—R)R' sin48dRd8. (C3)

The 8 integration in (C3) can be done by straight-
forward methods, or more elegantly by using Sommer-
feld's expansion of the plane wave exp(iQR cos8) into
products of Bessel functions and Gegenbauer poly-
nomials. The result is

Each of the x's ranges from —~ to +~, R ranges from
0 to co, 8, 4t I& $2, and &3 range from 0 to sr, and g4 ranges
from —m to m. E' is equal to the sum of the squares of
the x's, and the six-dimensional volume element is

I(gl, gs,n,P) = exPF 2411 8+iq2 r
exp(iQR cos8) sin'8d8= (32r/Q2R2) J2(QR)

(632p2+P2y2) I/2 jdsfld3y (C1)

We de6ne the six-dimensional vector R such that its
first three rectangular components are equal to n times
the rectangular components of y, and its last three
components are P times the components of r. Similarly,
we deine the vector Q such that

Ql, 2, 3=43 (gl) , , ~a2Q443, 6=P (g2) , ,, ~6o24

Substitution into (C3) and evaluation of the R integral
then gives

I(ql, qs,cr,p) = 120(sr/esp) 3(1+Q2)
—'12

Q'= (Ifl/~)'+ (&2/P)'
(C4)

Equation (C4) is readily used to obtain the expressions
(4S) and (46) for FI and F2.

The calculation of the matrix element M is somewhat

"An extension of this technique has also been used by M.
Morita and T. Tamura, Progr. Theoret. Phys. (Kyoto) 12, 653
(1954).

» A. Sommerfeld, Partiaf Digerer4fiaf Eqla&or4s il Physics
(Academic Press Inc., New York, 1949), pp. 227-235.
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more involved. We express the interaction (31) in terms (C1).There remains the integration over k, of the form
of its Fourier transform

(ks+fIs) '(ks+ys) 'Isksdk,

exp( —pr) = (fs/Ir ) (ksyius) —I exp(jk. I)dsk

which is elementary, but tedious to evaluate. Kith
which makes the coordinate integrations of the form suitable substitutions, this leads to Eqs. (49) and (50).
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Three-Pion Decay Modes of Eta and X Mesons and a Possible New Resonance*

LAvRIE M. BRowN AND PAvL SINGER)

Northwestern University, Evanston, Illinois
(Received 2'7 September 1963)

A model which postulates a spin-zero T=0 dipion, proposed earlier to explain an apparent enhancement
of the three-pion decay mode of the q meson, is applied to obtain detailed predictions concerning the three-
pion decays of the p and E mesons. Good agreement is found with all the available data on & and E spectra
and branching ratios if the dipion mass and full width are taken as about 400 MeV and 75 to 100 MeV,
respectively, thus providing positive evidence for the existence of a two-pion resonance reported by Samios.

I. INTRODUCTION

INCR its discovery, ' study of the three-pion decay
~ ~

~

mode of the eta meson has helped to establish the
correctness of the assignments'' spin and parity 0,
isospin and G parity 0+, so that its observed pionic decay
is a 6-forbidden one. Several diGerent theoretical
models have been proposed' " to explain and correlate
the following features of the three-pion mode: (a) an
apparent enhancement of the partial rate relative to
rf —+ 2y and alSO relatiVe tO rf ~rr++Ir +7, (b) the
density of the Dalitz —Fabri plot, (c) the ratio
Rf=F„(000)/F„(+—0)] of neutral to charged decays
in the 3m mode. Models of g decay have implications
for E-meson decays to three pions which permit addi-
tional tests to be made of the theory.

The model proposed by the present authors5 assumed
the dominance of a resonant S-wave T=O two-pion
component of the three-pion final state to explain
qualitatively the enhancement of this partial rate. At

*Work supported in part by the National Science Foundation.
f Present address: Columbia University, New York, New York.
'A. Pevsner, R. Kraemer, M. Nussbaum, C. Richardson, P.

Schlein, R. Strand, T. Toohig, M. Block, A. Engler, R. Gessaroli,
and C. Meltzer, Phys. Rev. Letters 7, 421 (1961).' P. L. Bastien, J. P. Berge, O. I. Dahl, M. Ferro-Luzzi, D. H.
Miller, J. J. Murray, A. H. Rosenfeld, and M. B.Watson, Phys.
Rev. Letters 8, 114 (1962).'L M. Brown and P. Singer, Phys. Rev. Letters 8, 155, 353
(1962).' G. Barton and S. P. Rosen, Phys. Rev. Letters 8, 414 (1962).

5 L. M. Brown and P. Singer, Phys. Rev. Letters 8, 460 (1962).' M. A. Baqi Bbg, Phys. Rev. Letters 9, 69 (1962).
~ K. C. Wali, Phys. Rev. Letters 9, 120 (1962).

Riazuddin and Fayyazuddin, Phys. Rev. 129, 2337 (1963).
Claude Kacser, Phys. Rev. 130, 355 (1963).' S. Okubo and B. Sakita, Phys. Rev. Letters 11, 50 (1963)."B.Barrett and G. Barton (to be published).

the same time, it was noted that a mass near 370 MeV
and a width of about 50 MeV for the resonance would
give approximate agreement with the Dalitz —Fabri
plots then available. A feature which distinguished our
model from others subsequently proposed was the
ratio E, which was calculated with our theory im the
limit of zero wiChk as 0.5 or 0.55 if correction is made for
the ~+—zo mass difference, while the others give 8=1.7.

We are presenting here the results of a detailed
investigation of the consequences of a strongly attrac-
tive energy-dependent S-wave two-pion interaction in
the T=O state, represented phenomenologically as a
dipion "particle" (o.) having a finite width. Good agree-
ment with the Dalitz —Fabri plot for g ~ 3m is obtained
for m, =400 MeV, F.=75 to 100 MeV. For these values,
we 6nd 8=1.35, which can be compared with a recent
direct experimental measurement" '" yielding 8=0.83
+0.32. The same model, with the same parameters,
applied to the E —+ 3+ decays gives a good 6t to the
momentum distributions of the unlike pions in both
the v. and the r' modes and gives the branching ratio
Fx(++—)/Fx(+00)=3.32 (for F.=100 MeV), as
compared to the experimental result" 3.36&0.28. We
also verify that sufBcient enhancement of the 3x mode

~ F. S. Crawford, Jr., L. J.Lloyd, and K. C. Fowler, Phys. Rev'
Letters 10, 546 (1963). We note, however, that these authors
obtain P„(3va or 2v)/P„(charged) =1.65+0.53, while the average
of other experiments is 2.7&0.6.'"C. Bacci, G. Penso, G. Salvini, A. Wattenberg, C. Mencuccini,
R. Quenzoli, and V. Silvestrini, Phys. Rev. Letters 11, 37 (1963).
These authors have found P„(2y)/LP„(3vo)+P„(Irony) j=0 S
~0.25, where I'„(2r yy) is believed to be small.

"G. Alexander, S. P. Almeida, and F. S. Crawford, Jr., Phys.
Rev. Letters 9, 69 (1962).The authors whose experimental values
have been averaged are quoted in this reference.


