N^* Regge Pole and Pion-Nucleon (3,3) Phase Shifts

S. K. BOSE AND S. N. BISWAS Tata Institute of Fundamental Research, Bombay, India

(Received 6 September 1963)

The consequence of the hypothesis that the N^* lies on a Regge trajectory for the low-energy pion-nucleon phase shifts in the $J=\frac{3}{2}$, $T=\frac{3}{2}$ state is investigated using the Khuri representation.

HE consequence of the hypothesis of Regge poles on the low-energy behavior of a scattering amplitude has recently been pointed out by Khuri.¹ The Khuri representation has subsequently been used by Khuri and Udgaonkar² to calculate the pion-nucleon phase shifts in the $T=\frac{1}{2}$, $P_{\frac{1}{2}}$ state on the basis of a model in which the scattering process proceeds through a single Regge-pole nucleon intermediate state in the direct channel. The case of neutron-proton scattering proceeding via a Regge-pole deuteron has been discussed elsewhere.³ The purpose of this note is to extend the method of Ref. 2 to calculate the pion-nucleon phase shifts in the $T=\frac{3}{2}$, $P_{\frac{3}{2}}$ state. We consider the scattering process to proceed via a N^* isobar [pion-nucleon (3,3) resonance] intermediate state and treat the isobar as a Regge particle with a variable spin.

Using the Khuri representation, the contribution of the N* Regge pole to the pion-nucleon $T=\frac{3}{2}$, $P_{\frac{3}{2}}$ partialwave amplitude can be calculated in a straightforward manner. The result is⁴

$$a_{-}(\frac{3}{2},W) = -\frac{\frac{\beta(W)}{2}}{\alpha(W) - \frac{3}{2}} \times \left[\exp(\alpha - \frac{3}{2})\xi_{1} + \exp(\alpha - \frac{3}{2})\xi_{2}\right].$$
(1)

In (1), $\alpha(W)$ is the N* Regge trajectory and $\beta(W)$ the corresponding residuum. W is the total c.m. energy. ξ_1 and ξ_2 are given by

$$\xi_{1} = \ln \left\{ 1 + \frac{2}{k^{2}} + \left[\left(1 + \frac{2}{k^{2}} \right)^{2} - 1 \right]^{\frac{1}{2}} \right\},$$

$$\xi_{2} = \ln \left\{ \frac{W^{2} - m^{2} - 2}{2k^{2}} - 1 + \left[\left(\frac{W^{2} - m^{2} - 2}{2k^{2}} - 1 \right)^{2} - 1 \right]^{\frac{1}{2}} \right\}. (2)$$

In (2), k is the c. m. momentum and m the nucleon

mass. The pion mass has been set equal to unity. Following Khuri and Udgaonkar,² we next approximate Eq. (1) based on considerations of the threshold behavior of $\beta(k^2)$. The latter is given by

$$\beta(k^2) \simeq [k^2]^{\alpha_0 - \frac{1}{2}}$$
 as $k^2 \to 0$; $\alpha_0 = \alpha(W) \mid_{k^2 = 0}$, (3)

while the terms involving the exponential behave as

$$\exp(\alpha - \frac{1}{2})\xi_1 \simeq [\frac{1}{4}k^2]^{-(\alpha_0 - \frac{1}{2})} \\ \exp(\alpha - \frac{1}{2})\xi_2 \simeq [k^2/(2m - 1)]^{-(\alpha_0 - \frac{1}{2})}, \quad \text{as} \quad k^2 \to 0,$$
(4)

so that the product $\beta \exp(\alpha - \frac{1}{2})\xi_1$ will be slowly varying and essentially real near threshold. We approximate it by a real constant C for the entire energy range under consideration

$$\beta \exp(\alpha - \frac{1}{2})\xi_1 = C. \tag{5}$$

We next consider the form of the N^* trajectory $\alpha(W)$. The real part of $\alpha(W)$ may be written in the form

$$\operatorname{Re}\alpha(W) = \frac{3}{2} + \epsilon(W - m^*). \tag{6}$$

In (6) m^* denotes the mass of the N^* isobar and ϵ the slope of the N^* trajectory. For the imaginary part of $\alpha(W)$ we assume the form

$$\operatorname{Im}\alpha(W) = C_1 [W - (m+1)]^{\frac{1}{2}}.$$
 (7)

The form (7) for $\text{Im}\alpha(W)$ satisfies the requirement that $\alpha(W)$ be purely real below threshold. It is also consistent with the requirement of the correct threshold behavior⁵ of $\operatorname{Im}\alpha(W)$, viz.,

Im
$$\alpha \simeq k^{2\alpha_0+1}, \quad k^2 \to 0.$$
 (8)

The constant C_1 , occurring in (7), may be expressed in terms of the width Γ of the (3,3) resonance using the relation

$$\Gamma = \frac{1}{m^*} \left[\operatorname{Im}\alpha(W) \middle/ \frac{d}{dW^2} \operatorname{Re}\alpha(W) \right]_{W=m^*}.$$
 (9)

From (6), (7), and (9), we obtain for the trajectory

$$\alpha(W) = \frac{3}{2} + \epsilon(W - m^*) + \frac{1}{2}i\Gamma\epsilon \left[\frac{W - (m+1)}{m^* - (m+1)}\right]^{\frac{1}{2}}.$$
 (10)

The partial-wave amplitude $a_{-}(\frac{3}{2},W)$ finally becomes,

¹ N. N. Khuri, Phys. Rev. 130, 429 (1963). Khuri's formula was independently obtained by C. E. Jones, University of California Lawrence Radiation Laboratory Report UCRL-10700 (unpublished)

² N. N. Khuri and B. M. Udgaonkar, Phys. Rev. Letters 10, 172

^{(1963).} *S. K. Bose and M. DerSarkissian, Nuovo Cimento (to be

published). ⁴ We are following the notation of V. Singh [Phys. Rev. 129, 1889 (1963)]. The odd J-parity amplitude $a_{-}^{0}(J,W)$ interpolates to $a_{-}^{(\frac{3}{2},W)}$. We have assumed that the former amplitude has no other singularity in the complex J plane except for a pole corresponding to N*.

⁵ A. O. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962).

from (1) and (10),

$$a_{-}(\frac{3}{2},W) = -\frac{C}{2\epsilon} \left\{ \frac{\exp(-\xi_{1}) + \exp(-\xi_{2})\exp[(\xi_{2} - \xi_{1})(\alpha(W) - \frac{1}{2})]}{W - m^{*} + \frac{1}{2}i\Gamma\left(\frac{W - (m+1)}{m^{*} - (m+1)}\right)^{\frac{1}{2}}} \right\}.$$
(11)

If we now specify the values of the parameters m^* and Γ from experiment, i.e., $m^* = 8.91$, $\Gamma = 0.72$, and estimate ϵ from the observed location of the next higher resonance, viz., the pion-nucleon resonance with $J = \frac{7}{2} + \operatorname{at^6}$ 1920 MeV (ϵ turns out to be 0.41), the trajectory $\alpha(W)$ then is completely fixed. The (3,3) phase shift which is related to the partial-wave amplitude through the

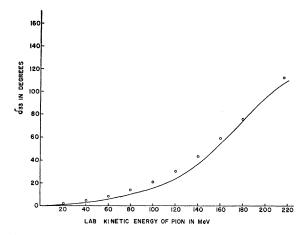


FIG. 1. Plot of the δ_{33} phase shifts in degrees as a function of the kinetic energy in MeV of the incident pion in the laboratory. Experimental points are denoted by circles.

relation

$$a_{-}(\frac{3}{2},W) = (e^{i\delta_{33}}/k)\sin\delta_{33}$$
 (12)

can now be calculated from (11). It is not necessary to known the value of the over-all multiplicative constant C appearing in (11) as the expression for phase shift $\delta_{33} = \tan^{-1} \lceil \operatorname{Im} a_{W} \rceil \rangle |\operatorname{Re} a_{W} \rceil$ is independent of the latter. The situation here is quite different from that in Ref. 2, where it was essential to determine the constant C (which was done by an extrapolation procedure). The difference between our case and that of Ref. 2 arises because, in the latter, the imaginary part of the (nucleon) trajectory was explicitly neglected. However, once the phase shifts are determined the amplitude $a_{-}(\frac{3}{2},W)$ is completely fixed and the constant C can then be determined by comparing the amplitude $a_{-}(\frac{3}{2},W)$ calculated at a fixed energy using (12), with that given by (11). This can, in particular, be done at the resonance energy $W = m^*$. The value of C, thus determined, is $C \simeq 0.3$.

The (3,3) phase shifts calculated from (10) are plotted in Fig. 1. As can be seen from the figure, our result for the energy dependence of δ_{33} is in good agreement with the experimental data.

We are thankful to B. M. Udgaonkar for useful correspondence, to S. C. Frautschi for a communication regarding the form of the imaginary part of the (3,3) trajectory, and to A. S. Anikhindi for help with the numerical work.

Note added in proof. A closely analogous approach to the present problem has been made by DerSarkissian [M. DerSarkissian. Louisiana State University, 1963 (unpublished)].

B790

⁶ We have assumed the spin of πN resonance at 1920 MeV to be $\frac{\pi}{2}^+$. We understand that this point is not yet completely settled, although the presence of a large $\cos^6\theta$ term in the pion angular distribution strongly favors this assignment. This assignment of spin $\frac{\pi}{2}^+$ has also been suggested by Glashow and Rosenfeld [S. L. Glashow and A. H. Rosenfeld, Phys. Rev. Letters **10**, 192 (1963)].