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We obtain a simple analytic expression for an L=O stripping amplitude, using a Coulomb wave for the
relative motion of the incident particles, and a plane wave for the relative motion of the products. If the
initial and final-bound states may be considered asymptotic, having wave functions of the form e "'/r, the
cross sections predicted have an angular dependence identical to that predicted by a plane-wave calculation.
The use of a Coulomb wave for the incident relative motion modihes only the absolute magnitude of the
cross section.

I. INTRODUCTION

~ VER since the pioneering theories of stripping proc-
esses were developed, it has been known that

simple expressions which depend entirely on momen-
tum transfers, binding energies, and orbital angular
momenta are often spectacularly successful in the de-
scription and interpretation of di6'erential cross sections
of stripping reactions. ' These expressions have been
deduced from first-order calculations, in which the wave
functions of the relative motion in the entrance and
exit channels have been taken to be plane waves. This
assumption cannot be justified because of the enormous
strength of the distorting forces, either the Coulomb
repulsion or the strongly attractive nuclear forces.
Although it has been argued that the distortions are
unimportant if the reaction proceeds chief in the
extreme periphery of the target, ' and even that the
reaction must proceed in the extreme periphery if the
energy release is very small, ' all plane-wave theories
are suspect because they invariably predict cross sec-
tions which are too large. Some authors have com-
mented that the good fits of the plane-wave expressions
couM be the result of an accidental near cancellation
of the trends of two eGects, the Coulomb repulsion
and the nuclear attraction. This has been checked by
numerical calculations which take account of distor-
tions on the basis of the optical model, which have
been successful in reproducing many details of stripping
cross sections, yet the results are not uniform: Oc-
casionally the plane-wave theory gives a better 6t, and
the role of the various parameters of the optical model
in such a calculation is not yet fully understood. 4

In this paper we obtain a very simple analytic ex-
pression for a stripping amplitude which includes the
effects of a pure Coulomb repulsion in the incident
channel. It is appropriate if the reaction process may

be described as the capture of a particle into an I-=0
orbit about the target. The amplitude obtained de-

pends only on momentum transfers, binding energies,
and the wave number of the incident motion; it differs
from the amplitude obtained in a corresponding plane-
wave approximation by a factor whose angular de-

pendence disappears in the cross section if we keep
only the stripping amplitude. Thus, the angular dis-
tributions at a given energy are identical to those of
the corresponding plane-wave theory. These results
make it evident that the good fits obtained by plane-
wave expressions are not necessarily due to any acci-
dental cancellations; a pure Coulomb repulsion of the
incident particles makes no change in the angular dis-

tribution, only a reduction in magnitude results.

(JfB)+C —+ 2+ (BC) . (2.f)

The total Hamiltonian consists of a kinetic energy
term T plus all the interactions. The asymptotic forms
of the initial and final states may be taken to be eigen-
states of truncated Hamiltonians which neglect inter-
actions between the unbound pairs

Total Hamiltonian H= T+Vaa+Vstc+Vsc, (2.2a)

Initial Hamiltonian Hp= T+Vgtt,

Final Hamiltonian Hy= 2'+Vsse.

(2.2b)

(2.2c)

II. FORMAL EXPRESSIONS FOR STRIPPING
AMPLITUDES

A simple model which reproduces the essential fea-
tures of stripping reactions considers three distinguish-
able nuclear particles A, 8, C as fundamental. Stripping
reactions occur through the exchange of one particle,
B. Initially, 8 is bound to A, and it ends up attached
to C in the Anal state:

If we denote the plane-wave eigenstates of the trun-
* Supported by the U. S. Ofhce of Naval Research. cated Hamiltonians by wave functions po and qy*,' A convenient review monograph is W. Tobocman, Theory of o g e

Direct +Nc)ear Reactions (Oxford University press, London, 196]~ then, according to the general theory of scattering,
S. T. Butler and O. Hittmair, Ãecleur Stripping Reactions the transition amplitudes are given by either of the

(John Wiley 5r Sons, Inc. , New York, 1957).' D. Wilkinson, Phil. Mag. 3, 1185 (1958). ' This could have been seen from the work of K. A. Ter-Mart-
4 A good account of the status of direct interactions in Septem- irosian, J. Eksperim. i Teor. Fiz. 29, 713 (1955) Ltranslation: So-

ber 1961 is available in the papers presented at the Rutherford viet Phys. —JETP 2, 620 (1956)j;however, his procedures cannot
Jubilee International Conference. Proceedings of the Rutherford be extended to J&0, as is done in a paper now in preparation.
Jubilee International Conference, edited by J. B.Birks (Heywood A. Messiah, Mecanique Quantique (Dunod Cie., Paris, 1961),
and Company Ltd. , London, 1961). Vol. II.
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expressions

(&~l&—&xlA+)= (p yl ~»+I'~clA+), (2.3a)

«» I&—&pI «)= Qr I ~~c+~~cl v o), (23b)

where Pp+ and Pf denote eigenstates of the complete
Hamiltonian B, which asymptotically consist of a
plane-wave yp or yf*, plus either outgoing (+) or
incoming (—) scattered and reaction waves.

The piece of the amplitude (2.3) due to the interac-
tion Vgg is known as the heavy-knockout, or the
pushout amplitude. It is ordinarily omitted because it
can be removed in case the particle C is much more
massive than 8, by simply choosing a scattering state
of A on C, instead of a plane wave, for the final relative
motion. We concentrate on the piece of the amplitude
due to Vgg or V~q, which is known as the stripping
amplitude.

The plane-wave Born approximation (PWBA) neg-
lects the scattered or reaction waves; it sets fp+= yp

or fy qf*. If —
w—e describe the bound states by wave

functions Xo and Xf, and the relative motions by
plane waves having wave vectors k and k', the plane-
wave amplitudes are the following

'pp=Xp(rg —ra) exp(ik

'P(rAMA+rBMB)/(M~+Ma) —rc$}, (2.4a)

rpf*= Xy*(rc r~) exp{——ik'

Lu (rcMc+rsMa)/(Me+Ma) j), (2.4b)

(p f*lI'»I p p)

=(—A/ m2»)X~*(Q) (F'+n)'Xp(p) (2.4c)

where m» is the reduced mass of the system (AB), its
binding energy is A'n'/2m», Xf and Xp are the Fourier
transforms of the bound-state wave functions, and the
vectors P and Q represent the change in linear mo-
mentum of the particles A and C during the collision:

d'q
4v.Xp I'(q)xf*(q —K'), (2.7)

2m» (2v)'

where K'=k'M c/(M c+M v). We note that the form
of Eq. (2.7) is that of the Fourier transform of a
product of functions, hence we may convert Eq. (2.7)
to a space integral

—4''2VO
exp( —iK' r)X~~(—r) I'(r)d'r. (2.8)

III. COULOMB WAVE AMPLITUDES FOR AN
L=O FINAL STATE

In this section we compute explicitly the reaction
amplitude as specified by Eq. (2.8) for the case that
the final state is of zero orbital angular momentum,
having an asymptotic wave function Xf(r) =N~e &"/r,

and the function F(r) represents a Coulomb wave.
The binding energy of (BC) is O'P'/2mac, and Ef
=P/2v-. The same mathematics may be used to gen-
erate the amplitude for the case of a Anal state de-
scribed by a Hulthen wave function; all we need to do
is to take a difference of amplitudes corresponding to
two decay parameters, P and P', and make appropriate
adjustments in the normalization. The amplitude may
be written as~

(peal

&»I XpI') =D.I(P,Q,k,n), (3 1a)
where

D= 4v gV ~—q(A'/2m») I'(1+in) e "~", (3.2b)

e is the Coulomb parameter

n =ZZ'e'/Av

and
(3.1c)

component q, and sum the result to get the answer:

(~il I'»IXpI')

P=k' —kMg/(M~+M~),

Q = k'M c/(M~+M—c)+k.

(2.5a)

(2.5b)
I(P,Q,k,n) = exp(iQ r)e &'

XrF( in, 1, ikr ——ik r)drdQ. (3.1d)

Xp(r) =Epe—"/r

X,(P)=XpC pp+~p)-~

(2.6a)

(2.6b)

It is customary to assume the initial bound state (AB)
to be asymptotic, having a wave function and transform

We shall carry out the integral (3.1d) using an inte-
gral representation of the confluent hypergeometric
function, which is strictly valid only if (—in) has a
small positive real part'

cVp'= n/2v. , (2.6c) F(u,c,s) =
I' (u) I'(c—a)

c*'t, —'(1—t)--'dh (3 2)

so that the dependence of the amplitude (2.4c) on F
cancels out.

We want to consider a distorted wave in the initial
channel, setting fp+=Xp I'(r), where r is the coordi-
nate of the center of mass of (AB) relative to C. If we
denote the Fourier transform of F'(r) by I'(q), we may
write an expression analogous to Eq. (2.4c) for each

however, since we use Eq. (3.2) only as a catalyst in

7 For the Coulomb wave, Coulomb parameter, and conQuent
hypergeometric function we use the definitions as given by L. I.
Schiff, QNaetum Mechaeics (Mcoraw-Hill Book Company, Inc. ,
New York, 1947).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(Mcoraw-Hill Book Company, Inc. , New York, 1953).
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arriving at the answer, we may proceed without worry-
ing on this account. Using Eq. (3.2) in the integral
(3.1d), the radial integration may be done at once; the
angular integration is trivial if we choose our polar
axis along the vector Q —kt. There remains an inte-
gration over the parameter t. By means of the substitu-
tion m(t) =t(1+6)/(1+Gt), where G= —2(k Q+ikP)/
(p'+Q'), we change this over into an integral which
is proportional to Eq. (3.2) when x=0. Since F(a,c,0)
=1, we have our answer. ' The result is

1 (p'+Q' 2k—Q 2i—kp)'"
I(p, Q,i,e) =4 (3.3)

(Q'+p') E Q2+P2

momf k—
I (~f1 1'»

I A+) I',
dQ (2mb')' k

(4.1)

where mo, mf are the reduced masses of the initial and
6nal relative motion. If we use our approximate ex-
pression (3.1) for the transition amplitude (we may
call this the Coulomb-Wave Born Approximation
CWBA), then the predicted cross sections are the
following

(47r)2da momq k' nP 27rs

dQ (m»)' k (2m)' (Q'+P')'e' "—1

2kP
&&exp 2n arctan . (4.2)

2+It &2 k2

The arctangent is to be chosen so as to lie between 0
and x. The only difference between this cross section
and that obtained by using the plane-wave amplitude
(2.4c) is in the appearance of the two factors on the
right, which are explicitly dependent on the Coulomb
parameter n; since these are independent of the angle,
the plane-wave cross sections are exactly proportional
to Eq. (4.2) except for an energy-dependent factor.

OThe same value for the integral is obtained, in connection
with the problem of photoelectric excitations of atoms, by A.
Sommerfeld, Atombau und Spektrallinien (Friedrich Vieweg und
Sohn, Braunschweig, Germany, 1939),5th ed. However, Sommer-
feld's method is somewhat more cumbersome.

IV. DIFFERENTIAL CROSS SECTIONS

The differential cross sections are related to the reac-
tion amplitudes (2.3) as follows

V. DISCUSSION AND CONCLUSIONS

The preceding results show that the inclusion of a
pure Coulomb distortion of the relative motion in the
incident channel may lead to predicted angular dis-
tributions identical to those obtained by plane-wave
calculations. Because of the symmetry of incident and
exit channels, it is evident that an analogous result
would have been obtained had we used a Coulomb
wave in the exit channel, and a plane wave in the
incident channel; this would be a reasonable approxima-
tion whenever the Coulomb parameter e' in the exit
channel is large, but n is small in the entrance channel.
Our result is correct to the extent that the bound
states involved may be considered purely asymptotic;
it is usually a good approximation when the momen-
tum transfers Q and I' are small (that is, at forward.
angles), and when the Coulomb repulsion is strong
enough to make the wave function very small near the
origin. The magnitude of the eGects to be associated
with the interior region may be estimated by using a
Hulthen shape rather than an asymptotic shape for
the 6nal-state wave function; the larger Hulthen decay
parameter p' defines the dimensions of the region in
which the 6nal state may not be considered asymptotic.

The cross section as given in Eq. (4.2) has no second-
ary maxima such as are sometimes observed in 1=0
stripping reactions. These secondary maxima appear
at relatively high momentum transfers Q, so they
represent an eGect due to the inner nuclear region,
which we have not considered in this paper.

These results remove some of the mystery associated
with the unexpected adequacy of plane-wave expres-
sions in Gtting angular distributions of stripping reac-
tions. Apparently something analogous to what happens
in scattering by a pure Coulomb 6eld is occurring here;
the erst-order plane-wave approximation gives an am-
plitude which when squared has an angular dependence
identical to that obtained by a Coulomb wave calcula-
tion. Only when there are interfering terms in the am-
plitude will the difference show up in the angular
distribution. Since our result CWBA (4.2) has a nu-
merical value smaller than the corresponding PWBA
expression, we may also claim that these calculations
help to obtain a clearer understanding of the role of the
Coulomb repulsion in modifying the absolute magni-
tudes of stripping cross sections.
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