
THREE-NUCLEON SYSTEMS

and make a second. transformation to the variables s, e, m deined by

s=s, u= vs, t=zovs.

It can be shown in a straightforward manner that the Jacobian of the transformation

8 (s,zz, t)/tl (s,v,w) =vs',
whence

(A/)

(AS)

~~(g') = 9"/2)
1 1 oo

dy dv dw ds exp{sL—x (1+v)+(i'/3) (1+vs (w' —1))'Is]}s'v'(1 —w'v') .
0 0 0

Integrations with respect to s and y are simple and give

v'(1 —w'v') {fir(1+v)+ (ig/3) {1+v'(w' —1)}"']'—Ls(1+v) —(iq/3) {1+v'(w' —1)}'tz]'}
Ilv(q')=121P dv dw

(zq/3) {1+v'(w' —1)}'t'P'(1+v)'+ (g'/9) {1+v'(w' —1)}]s

(A9)
After some simplification this gives Eq. (5).
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It is shown that the neutron-hole and proton correlations play a significant role for beta decays in heavier
nuclei. The e8ective coupling constant of beta decay is estimated by using a soluble model and experimental
knowledge of (p,n) reactions. Systematics of fot values are re-examined qualitatively.

1. INTRODUCTION
"ANY attempts' 4 have already been made for.. understanding the fet values of beta decays.

Among others the so-called blocking eGect in the
pairing modeP ' can explain the relative fet values of
some isotopes successfully. However, these current
nuclear theories seem still imcomplete in explaining the
absolute magnitude of beta transitions.

The purpose of this paper is to call attention to the
neutron-hole-proton (in short, zz-P) correlation effects.
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The study' ' of n pcorrelati-ons' was motivated by the
experimental discovery' of isobaric resonances'" in
(P-zz) reactions. Existence of the well-deined isobaric
states is very important for beta decay theories, because
the transition amplitude to the isobaric state exhausts
the sum rule for J'1. In the previous note' it was shown
that the isobaric state can be interpreted as a coherent
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nllxtule of tllc (IV—Z) rI pst-ates Rlld fills lntcrplctatlon
led us to the other result' that the transition strength of
Gamov-Teller type J'e should also be concentrated in
tllc hlgllcl' excited states, being pllsllcd up by 's-p
correlations.

In this paper, simple soluble models are discussed,
which are based on the Fermi gas model. The mathemat-
ical structure of the models is completely analogous to
that used by Brown and others" for the discussion of
electromagnetic transitions. The argument given in
Sec. 2.1 is a simpli6ed version of the previous ones' '
using the shell models. This simple model will make
clear how the energy of the core polarized state is
related to the strength of residual interactions. In
Sec. 2.2, the effect of the nuclear core polarization to the
beta decay of an outside nucleon is discussed by using
the Fermi gas model and taking into account the
pairing energies. This model will make it clear that the
surplus (X—Z) neutrons are important for determining
the absolute magnitude of beta decay.

In Sec. 3, the formulas for nuclear matrix elements of
residual interactions are given in the case of the 1.—5
coupling shell model, which are applicable to the allowed
and forbidden transitions. By semiphenomenological
arguments the parameters in the expression of the
effective coupling constant are hxed, and the theoretical
results are compared with the observed logfot values.
It is concluded that the existence of the hindrance effect
due to the nuclear core polarization is consistent with
the experimental knowledge.

2. FERMl GAS MODEL OF NUCLEAR
CORE POLARIZATION

Suppose that a neutron with momentum y; decays
lllto R pl'0'toll wltll py= p~+ q outsKlc tllc Fcl'llll spllcrcs
(XWZ). We shall discuss how this transition could be
hindered when residual interactions are switched on.

The assumption that the outside nucleon has a
6xed linear momentum is not essential since the
momentum distribution in the initial and anal states
can be taken into account u posteriori. On the other
hand, another assumption, that the doubly closed core
is treated as a Fermi gas, necessarily means the omission
of effects of the nuclear core surface. However, for the
sake of simplicity, this model seems to be the best
starting point to understand the n-p correlation effects.

2.1. Polarization of the Closed Core

First, let us discuss the collective states, which can
be made by adding a rI and a P to the doubly closed core
(lV&Z). These are closely related to the resonance
peaks in {p,l) reaction. '

Ke shall denote the wave function of the doubly
closed core as IO). According to the assumptions, the

"G. E. Brovrn and M. Bolsterli, Phys. Rev. Letters 3, 472
I'1959); G. K. Brown, L. Castillejo, and J. A. Evans, Nucl. Phys.
22, j. Ij.96&).

where p„and p represent the s components of the
proton and neutron spins, respectively. Because of the
p«li principle, we hav«h«estrictlons,

I
k

I (p&„and
Ik+ql&pr», . If 0(q(pr —pr„, the rI ppairs c-an

take (X—Z) values of k and spin directions. In partic-
ular, when the relation q((pr —pr~ is satis6ed, as in
the usual beta decay, all the (X—Z) states can be
regarded as degenerate. Namely, if we write the energy
of

I
k+ q, k; 8(8,)) as EI,+~,), ,s, for small q we may put

+k+q, k; S ~pair y

which is independent of k and 5.
Now lct us switch on thc residual interaction,

H = P V(ij),

(2)

where

V(ij) — LV (3+~(»).~(i))(1 11(») g(i)).
+V»(1—~&"~I»')(3+e&').s&»))]5(r;—r;)/16. (3b)

On the right-hand side, V, and V~ represent the
strengths of the residual interactions in the singlet and
triplet spin states, respective1. y.

A nuclear matrix element between two Ippair-
states can be given by

Ps=(k'+q, k', 8(8.) IH'lk+q, ~; S(8.)),
=(I'+q, klan(r, —r,) Ik', k+q)

(3V»—V,)/2 (8=0),
X (4)

(V,+V,)/2 (8= 1) .

In the case of a Rosenfeld mixture,

Fs=1.2V,/n (S=0)
=0.8V»/0 (8= 1), (3)

where 0 stands for thc nuclear volume {4~/3)ro'A.
Since V, and V~ are positive quantities from the dehni-
tion Eq. (3b), Eq. (4) shows that the residual interac-
tions between (n p) pairs are effe-ctively repulsive.

When the residual interactions Eq. (4) are switched

on, the most symmetric states are pushed up" and
become collective states,

Icoll(q S(8.))}=(~2/(&—Z)'")2 2 (—)~""

Fcl'Illl Illonlcllta have different values» Pr»» Rlld Pr»»»

for the proton and the neutron, respectively. The
annihilation operator of a proton (neutron} will be
written as a (f)). Then an unperturbed )I p-pair state
with total momentum q, total spin angular momentum
5 and its 2 component 5, is given by

I&+q, &;8(8.))= 2 (—)~""(k(I.)k(—I -) IS(8.))
Is@»lsn

Xot~+, ,.„&),,.I0}, (1)
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E~&{{{s) Epmp+ (1V Z)—P~/2 (q small) . (6h)

agree with J'1 and J'e as {7 goes to zero,

m (9) g+ 2 o ~+0 py~~ pn~py pn 1 (7a)

It is interesting to note that, if the residual interactions
are spin-independent V,= V&, we obtain E„»(q 0~

=E„»(»)as expected from the supermultiplet theory. '
Now we consider the beta-decay operators, which

and

~ '"'({1)=g~ 2 (—)~""~2(l(~.)l(—~.)11(~))
~~Py~lt{n

Xo'~+, ,„,b~„„, (.7h)

" —5-0 Q-0

~".= S 1% 0

iIIIIII
Kp r

FIG. 1. Schematical picture of (p,n)
reaction and beta decays. (a) and (b)
correspond to the two idealized models
which are discussed in Secs. 2.1 and 2.2,
respectively: (a) even-even (Ã,Z) to
odd-odd (X+1,Z—1):(b) odd (X+1,Z)
to odd (X, Z+1). Ti, Ti+-', etc., in the
6gure represent the predominant values
of total isotopic spin. The effective cou-
pling constant g, ff is estimated from the
fictious transition amplitude (J'0)„; in
the 6gure (b).
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It is easily seen that the collective state with S=O
exhausts the beta decay sum rule for m(")(q), while
that with S=1 exhausts it for m(")(q). Of course, the
collective states (6a) are energetically not accessible,
and can be observed. only in (p-e) reactions.

It is well known that m(v)(q=o) is only a lowering
operator for the s component of total isotopic spin.
Here let us briefly discuss the isospin property of the
collective states. For simplicity, we will assume that
neutrons and protons are con6ned within the same
sphere. Then, the state lo) is an eigenstate of total
lsotoplc spin:

lo)=
I
T=rq (A' —Z——)/2, T,=T)& (Sa)

every relevant state, we can rewrite Eq. (11) as

I f&=cia( )~—""'(p(I.r)2( I—.~) IS(I n~ u—-~))
S

X I u'+e, n" S(1"r—I -)&'

+ g C), ,sly+ q, k; S(p,,g
—p„;)&'. (12)

It is clear that we may treat S=O and i separately
because our residual interactions are given by Eq. (3).
Therefore our model includes one isolated level and Tj
degenerate ones for each 5 in the unperturbed state.

Now, let us restrict ourselves to the case of q=0,
corresponding to the allowed transitions. It is clear that

bt„.,„l0&=
I T,y ,', r,+-',), -(13a)

bt„.,„lk, k; 1(s.))= I r,—'„r, ,'), —(1—3b)

(I/(2rl+I}'")~' Io&+((2T )"'/(2rl+I)"'}I'p p

X I co11{q=o,S=o})= I
T +-,', T ',), (13c)—-

I o11{q=o;S=O})=LI/(A"—Z)' 'fr lo&
=

I T=rg, T,=T)—1). (Sb)

Because of the charge independence of nuclear
forces the energy difference between

I
T),T)) and

and
I Tq, T) 1) can b—e easily calculated. ' Namely,

E,.()(, p, s=p) =Z„,.+5V,—2.5m, c', (9)

where Z~„represents the energy of lo). 2.5m,c' is the
neutron-proton mass difference. The single-particle
Coulomb displacement A V, has the magnitude of aZ/R
a,pproximately.

((2T )'I'/(2T +I)'i')ut
I 0)—(1/(2T +I)'i')bt

X I coll{(t=0, S=o})=
I T)—-'„T~—-', ). (13d)

Since we are interested only in the lowest perturbed
level, Eq. (12) can be written as

I f&=ca 2(—)I-""'(26,8-'(—) -) IS6.~—) -~)&

2.2. Effective CoupHng Constants of Beta Decay

Now we are at the stage to discuss the beta decay of
an outside nucleon. Using the notation, which was
introduced in the beginning of this section, we can
express the initial state as

On the other hand, we consider the small admixture of
the collective state of the core in the 6nal state;

lf&=C,o'„.„,„„IO&+ZC, ,,'I'„.,„„,.

X lk+ q, k; S(~~~—~-)& (II}

All the other excited states, which have nothing to do
with the beta decay under consideration, are omitted.
This procedure is expected to be good insofar as Cy is
close to 1. The unperturbed energies of at,I,„,~IO&,

b p;,p„ lo)) and IVp(, p„ lk+Q) k) S(spy p ')) are written

(n) jv .(&) and F .(~)+F

g=F.„(~)+(F„„., F. „) F +(n,).
the 6 can be understood as the pairing energy of the
core neutrons when q is small.

Now, writing btp, „„,. I 0) as
I
0)' and adding a prime to

x I p~+q, p" s() ~)
—~ '))'+(Tx}"'Z c'

X I coll{II=0; S(p —p„~)})'. (14)

When each unperturbed state is required to have a
de6nite total isospin, the most important consequence is
that C8='=0. Small corrections" might arise from the
admixture due to Coulomb forces, which we neglect in
this paper. Equation (13d) tells us that the use of (14)
as an approximate eigenstate of total isospin is justi-
fied for the part of S= 1 when (2rq)'~' is large in com-

parison with i.
By solving the 2&2 secular equation, we obtain

(T~)'"c'='/{cr(—)~""'(p(s n))2( —) -) II().)—I -~))}
(T~)ll2Fl/(T1F). +++p) (15s)

where

2&= L(r,+1)F,+ay
—

I {(T(—1)Fg+d,}'+4rgFPj'". (15b)

The right-hand side of Eq. (15a) agrees with the usual
6rst-order perturbation results (T&)'~'Fi/d, when

T~F~&&h. On the other hand, as TJIiJ, becomes larger
than 6, the factor is changed into (T )'~')F~/(T~F ~+5) .

From Eqs. (7b), (10), (14), and (15) we obtain

(fl~ (")(q=o}lp&=~g,(—)~-
X(p(~.r}k(—) -~}I I(~}&f (16a)
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where the hindrance factor f is given by

f=1—T1F1//(T2F1+~+ 2)

= (/2+ e)/(T1F1+/2+ e) . (16b)

When F1 is zero, apparently no hindrance occurs, f=1.
On the other hand, f goes to zero in the limit of large
F1T1/A. The latter result is quite reasonable, because
in this limit the discrimination between the outside
and the core nucleons disappear and the beta-decay
strength is exclusively concentrated at the uppermost
collective states.

The numerical values of f are shown in Fig. 2 as a
function of T1 (S——Z—)/2 and Fr//2. If we put T1F1=6,
f=s is obtained within the error of order 1/T1. Since
T~Ii j,)6, in the actual case, the first-order perturbation
gives misleading results.

t.0-

0.8

0.6

0,4

3. DISCUSSIONS AND COMPARISON
WITH EXPERIMENTAL DATA

Let us consider what kind of modifications will be
necessary if we adopt more realistic models.

The next simplest model is to assume that the
nuclear core is made of I.—S doubly closed shells.
Then an unperturbed n ppair state is -written as

lr, s, x, j,=o)

0.2

20
Tf = (N-Z) /2

mI, teI', P,I,yI',I(—) '&'-"1'+1-»'(l, (222,)l,'(—222,')
I
I.(M))

F (flf2f1 f2 ) ~ all ( )1~r*; ( 1)~r- l'r(r)
2

XZ.;1,.(.)r d. . (18b)

In this model, the nuclear matrix elements are not the
same simple constant any more, and they depend on the
relevant states. After averaging" over states, Ii' can
be regarded as a constant depending only on I., 5, and J.

Another important assumption was that all the

x(-;(1,)-;(—~,') Is(—m)&(Lyr)s( —m) I J(o))

Xot11mv P~&Im2~peIO), (17)

which has the orbital, spin, and total angular momenta,
I, S, and J, respectively. The nuclear matrix element
of residual interaction Kq. (3) can then be expressed
as follows after several standard manipulations;

F(LSJ)

= (Lszz.
l
a'I Lszz.)

=P'(lrlglr'l2') ( (2l1+1)(2ls+1) (2lr'+1) (2lg'+1) }"'
X (2L+1) '(frolr Ol Lo) (fsols 0l Lo)

(3V,—V.)/2 (S=0)
X (18a)

(V +V.)/2 (S=1)
where

Fro. 2. The hindrance factor f of Eq. (16b) in the Fermi gas
model is shown as a function of Tr (N —Z)/2 an——d X=F1/a,
where F1 is given by Eq. (4) and a stands for the average pairing
energy of relevant neutrons. The broken line in this figure corre-
sponds to the "theoretical curve" in Fig. 3, which was obtained by
the procedure described in Sec. 3.

unperturbed state of core n ppairs are degener-ate. It is
easily seen from the j—j coupling level scheme that
the assumption of degeneracy is good' only in the case
of an isobaric state (L=s=o). The n pstate with-
L,=O and 5=1 are distributed over the region of
several MeV because of the spin-orbit splitting. Further-
more, only the isobaric state' is known to be a well-
defined eigenstate with width of order 100 keV. The
other possible collective states (SWO or L&0) must be
understood as broad resonance states similar to the
giant peak in nuclear photoeffect.

Now, it is apparent that, even if we start from more
realistic models, we should get an expression for the
effective coupling constant, similar to (16b), assuming
we may regard the relevant n plevel as approximately-
degenerate and the relevant nuclear matrix elements of
residual interactions as some constant.

In this semiphenomenological spirit, we would like to
look at the experimental logfef values. First it is
interesting to compare the weighted average of F' in
shell model with the corresponding quantity 22r/0
=(0.87/A)1022 cm '. Using the wave functions of
harmonic oscillator potential, we have

(P'(ll/2lrl2)) (0.494/A) 10" cm—',
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FIG. 3. Empirical logf0t values of
the ground-ground allowed beta trans-
itions, which were brought together
from Nuclear Data Sheets. (Ref. 6)
TI = (X—Z) /2 corresponds to the
parent (daughter) nucleus for P (P+)
decay in accordance with our model.
The theoretical curve in the 6gure was
obtained by the following assump-
tions; log f01=3.72 —log3f', where f
is the calculated hindrance factor. In
Sec. 3 the reason is discussed why our
theoretical curve seems to give the
lower limit of empirical log f0f, values
in the figure.

set|col Cur ve

B

0
T, -(N.-z) xa

we obtain
E„.&"&—(E, &»+2.5',c'))0,

{A—Z)F,/2 &a V,—A.

In. Fig. 3 the empirical log foI values of the ground-
ground allowed beta transitions are shown as a function
of T~ (X—Z)/2. In the ——6gure a theoretical curve is
drawn. The curve was obtained by the fo11owing

'2H. Noya, A. Arima, and H. Horie, Progr. Theoret. Phys.
(Kyoto) Suppl. 8, 33 (1958).

which gives a reasonable value" for Pb. Therefore, the
difference between the Fermi gas and the usual shell
model is less than factor 2 for Ii'.

Another restriction on F' is obtained from Eqs. (6b)
and (9);

(N Z)Fo/2 =E~,.&"' —(E„'»+2.5m~'—).
+ (A V,—A) . (20)

Using the relation

procedures; assuming that the residual interaction is a
Rosenfeld mixture, we get from Eqs. (5) and (19).

Fs (2/3)Fo-—
= (2/3) (V,/4s. )2(F'),
= 61.4/A MeV,

where
V&=/'7. 7&10 "MeV cm'

is assumed. " This value of V& is known from our
previous analysiss to satisfy the above restriction,
(V Z)FO/2&LV, —A. Fo—r the numerical value of A,
the empirical values of pairing energies for neutrons"
were taken~

6=2 X11.56/A' '" MeV.

The choice of 6 is a little ambiguous, because in our
model 6 should correspond to the averaged pairing

"P. E. Nemirovsky and Y. V. Adamchuk, Nucl. Phys. 39,
551 (1962).
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energies of relevant neutrons. Also, the approximate
relation X=1.71Z—14.2 was used. ' Now by using
Eq. (16b) we can calculate the hindrance factor f and
the estimates of logfg values are obtained"; D= fg
X

I
J'o'I', where logD=3. 72 and

(
J'e)'=3f'. Our

theoretical curve is a sort of Keisskopf estimate, which
neglects all the individuality of the nucleus but takes
into account only the nuclear core polarization.

It is interesting to note that our theoretical curve
seems to give the lower limit of empirical logf pt values
in Fig. 3. This is consistent with the idea tha, t there
exists the hindrance effect due to the nuclear core
polarization in heavy nuclei, since the other sects are
believed to have tendency of increasing fot values but
smaller magnitude than required.

It must be remembered that in our Fermi gas model
the final state with momentum pr =p; is not the ground
state of our model. Namely, it becomes an important
problem to what extent this higher momentum state is
contained in the actual final-state wave function.
Originally, the beta-decay operators for allowed transi-
tions a,re those which select components with the same
momenta in initial and final states. In order to discuss
this overlapping effect, the individual transition must
be studied in detail. Already the overlapping effects
have been studied; (a) /-forbidden transitions, (b)
overlapping' of the nuclear core in the initial and final
states, (c) the particle-phonon coupling, (d) the
blocking effect in the pairing model, ' ' Rnd so on.

Unfortunately it seems dificult to study only the
effect due to the nuclear core polarization. However, as

'4 J'1=0 is assumed: D. C. Camp and L. M. Langer Phys, Rev.
129, 1782 {1963).

was shown in this paper, the hindrance factor fwould be
a smooth function of (X—Z) and A. In order to
determine the magnitude of the hindrance factor f
experimentally, we should statistically investigate the

log fat values of heavy nuclei by introducing the
phenomenological coupling constant g,gg=fg~&g~ in-
instead of gg. When the relative fof, values will be
thoroughly understood, the magnitude of the core
polarization e6'ects will be exactly known as well.

This can be easily extended to the case of forbidden
transitions, "especially straightforwardly to the second™
fol bidden tl Rns1tlons. In the CRse of first- or thlrd-
forbidden ones, situation is more complicated because
R-p pairs must have odd parity. The importance of
n Pc-orrelations has previously been suggested' in the
case of RaE.

ACKNOVKED6 MENTS

One of the authors (J.I.F.) would like to express his
sincere thanks to the Department of Physics, University
of %ashington for their kind hospitality which was
extended to him during the summer of 1963.Especially
he is grateful for stimulating discussions with Professor
J. S. Blair, Professor E. M. Henley, Professor B. A.
Jacobsohn, and Professor 1.. Wilets.

Also, the authors would like to thank Professor
M. ramada and A. Arima, who are pursuing similar
problems from slightly different points of view, for
valuable conversations.

Finally, Professor A. Goldberg's reading of the
QlanuscIlpt 1s appreciated.

"L. N. Zyryanova and V. M. Mikhailov, Bull. Acad. Sci.
USSR 25, 57 {1961).


