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We have made a preliminary calculation of the bare form factor Ftt(qs) for the three-nucleon systems H'
and He' with the wave function rp= Iq exp L

—(x/2) (rrs+rss+rrs) ).It is found that ii we adjust x so as to 6t
the experimental value of the Coulomb energy for He', or to Gt the bremsstrahlung-weighted integral cross
section for the photoe8ect of He', the agreement with experimental results for Ftt(qs) is quite good. Also, we
have made a variational calculation of the binding energy of the triton using two-body velocity-dependent
central potentials and P as a trial function with ~ as the adjustable parameter. Our preliminary results show
that the binding energy is much lower than the experimental value and that given by a static well-behaved
potential, though it is in fairly good agreement with similar calculations using repulsive hard core potentials.

I. INTRODUCTION

'HE three-nucleon systems H' and He' are next to
the deuteron in the order of simplicity. Their

study is important from the point of view of nuclear
forces. In Secs. II and III of the present paper we
calculate the bare form factor Ftt(qs) for H' and He'.
F&(q') is essentially the Fourier transform of the nuclear
~P~', where /=wave function for the system. We as-
sume /=X expL —(x/2)(rts+rts+r»)] both for H' and
He' and calculate Ftt(q') for (a) x adjusted to give the
experimental value of the Coulomb energy' for He' and
(b) x adjusted to give the experimental value of the
bremsstrahlung-weighted cross section for the photo-
effect' for He'. We compare the results of our calcula-
tions with those from a similar calculation by Koester
et al.' and with those obtained from the experimental
data of Hofstadter and his group at Stanford on e-He'
and e-H' scattering. ' The agreement between experi-
mental and our theoretical values is quite good.

In Sec. IV we compare the results of our variational
calculation for the binding energy of the triton using

velocity-dependent potentials with other variational
calcula, tions using (i) well-behaved static potentials and

(ii) repulsive hard core potentials. s It is found that both
velocity-dependent potentials and hard core potentials
give similar results for the binding energy —much lower
than the binding energy obtained experimentally or
with static well-behaved potentials. Both of these
agreements —that between experimental and our theo-
retical values for F~ (q') and also that between Ohmura's

and our values for the binding energy —are preliminary
since one might want to put additional parameters into
the wave function.

II. CALCULATION OF THREE-BODY
BARE FORM FACTOR

We assume the wave function for the ground state of
the three-body nuclear systems H' or He' to be

4 =& «p$ —(x/2) (rls+rls+rss)),

with I(: as the adjustable parameter and r,;=distance be-
tween ith and jth nucleons. The normalizing constant
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This is a good wave function~' for determining the

binding energy of the ground state of H' or He' if the

system is assumed to be a pure S state with well-

behaved forces. There is no assurance that this wave

function will be accurate enough to fit form factor data,
but it is worth trying.

The bare form factor is given by" '"

Fir(q')= ~ys(r) ~'exp(iq r)dr, (3)

where ~ps(r) is is the probability density of finding a
proton at a distance r from the center of mass. Using our
wave function, Fq. (1),and relative coordinates, we have

Fri(q') =il ' [exp(—x(r»+r»+r»))]((sin(q/3) ) r»+r»~ )/[(q/3) ~
ris+r»~ ]}r»r»rs:dr]sdrisdrss. (4)

In the Appendix we convert Fii into a universal function of qs/xs= x:

P0(1+o)4—(20/9) (1+tt)s{1+os(ws—1)}x+(2/gl) (1+its(ws —1)}sxsj
dv dwo'(1 w'—o')

Fii(q') = 1—aq'+
(6) where

a= 2/(7x') .
TABIE I. Calculated form factor. '

This integral has been evaluated numerically. TaMe I For low values of q, we expand the integrand in powers
gives Fii(x) against x. of q and obtain

For high values of g'

x Fs(x) x Fs(x) x Pg(x) x Fs(x)

III. ANALYSIS OF EXPERIMENTAL DATA AND
DISCUSSION OF THE RESULT ON THE

FORM FACTOR
0.0 1.000
0.1 0.972
0.2 0.945
0.3 0.919
0.4 0.894
0.5 0.870
0.6 0.846
0.7 0.824
0.8 0.802
0.9 0.781
1.0 0.761
1.1 0.742
1.2 0.723
1.3 0.705
1.4 0.687
1.5 0.670
1.6 0.653
1.7 0.637
1.8 0.622
1.9 0.607
2.0 0.593
2.1 0.579
2.2 0.565
2.3 0.552
2.4 0.539
2.5 0.527
2.6 0.515
2.7 0.503
2.8 0.492
2.9 0.481
3.0 0.470

3.1 0.460
3.2 0.450
3.3 0.440
3.4 0.430
3.5 0.421
3.6 0.412
3.7 0.403
3.8 0.395
3.9 0.387
4.0 0.379
4.1 0.371
4.2 0.363
4.3 0.356
4.4 0.349
4.5 0.342
4.6 0.335
4.7 0.328
4.8 0.322
4.9 0.316
5.0 0.310
5.1 0.304
5.2 0.298
5.3 0.292
5.4 0.286
5.5 0.281
5.6 0.276
5.7 0.271
5.8 0.266
5.9 0.261
6.0 0.256
6.2 0.247

6.4 0.238
6.6 0.230
6.8 0.222
7.0 0.214
7.2 0.207
7.4 0.200
7.6 0.193
7.8 0.187
8.0 0.181
8.2 0.175
8.4 0.169
8.6 0.164
8.8 0.159
9.0 0.154
9.2 0.149
9.4 0.144
9.6 0.140
9.8 0.136

10.0 0.132
10.2 0.128
10.4 0.124
10.6 0.120
10.8 0.117
11.0 0.114
11.2 0.111
11.4 0.108

0.105
11.8 0.102
12.0 0.099
12.4 0.094
12.8 0.089

13.2 0.084
13.6 0.080
14.0 0.076
14.4 0.072
14.8 0.068
15.2 0.065
15.6 0.062
16.0 0.059
16.4 0.056
16.8 0.053
17.2 0.051
17.6 0.049
18.0 0.047
18.4 0.045
18.8 0.043
19.2 0.041
19.6 0,039
20.0 0.038

az Pia&. Fz(z) is given in Eq. (5). Fp(z) has been integrated nu-
merically.

7 Herman Feshbach and W'illiam Rarita, Phys. Rev. 75, 1384
(1949).

R. L. Pease and H. Feshbach, Phys. Rev. 81, 142 (1951);
88, 945 (1.952).

We have used Hofstadter's data on e-He' and e-H'
scattering4 to calculate Fii(qs), the "bare" form factor
according to the following formula":

Fii(qs) = L2Fii(He')+Fs(H')]/3(FE„+Fx„). (9)

Values for the proton (Fx~) are taken froni Kirson's fit
to measurements"; for the neutron we use" Il g„
=0.021q'. This fits known Fa„'(qs) for q'=0 and also
fits (Stein et al. '4) FE (q') for q'=5 F '.

The error in Ii ~ has been estimated as 0.015 from the
mean of the percentage errors taken from the graphs of
Fz(Hes) and Fx(Hs) in Hofstadter's paper. The results
have been tabulated in Table II.

The above formula for F&(qs) has been deduced by
SchifP' on the basis of isotopic spin analysis and is valid
under the assumption that the dominant completely
symmetric "S"state alone is present.

The theoretical values of Fii(qs) have been calculated
for a value of x found by two methods: (a) i4 obtained by
fitting the experimental value of the Coulomb energy'

9 J. H. Smith, Ph.D. thesis, Cornell University, 1951 (unpub-
lished); Phys. Rev. 95, 271 (1954).

"R.Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957).
"L.I. Schift, Phys. Rev. 133, $802 (1964) and private com-

munication.
"M. W. Kirson (private communication).
"L.L. Foldy, Rev. Mod. Phys. 30, 471. (1958).
' P. Stein, R. W. McAllister, 8. D. McDaniel, and W, M.

Woodward, Phys. Rev. Letters 9, 403 (1962).
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TAnrE II. Calculation of Fs(g') from the experimental data of
Hofstadter on e-He', e-H' scattering and comparison with theo-
retical values of Iia(g2). '

q'
(F~) Fs(He') Fs(H')

~en
fol

neutron

pg
for

proton
Fs(g') » (g')
Exptl. Theoret.

1.0 0,57
1.5 0.43
2.0 0.32
2.5 0.25
3.0 0.21
3.5 0.16
4.0 0.13
4.5 0.11
5.0 0.08

0,62
0.50
0.38
0.30
0.25
0.2Q
0.14
0.14
0.125

0.0210
0.0315
0.0420
0.0525
0.0630
0.0735
0.0840
0.0945
0.1050

0.891
0.843
0.800
0.760
0.724
0.690
0.660
0.631
0.605

0.643
0.518
0.4Q4
0.328
0.284
0.227
0.179
0.158
0.134

0.618
0.499
0.407
0.337
0.282
0.238
0.2Q3
0.174
0.151

a Fz(Beg) and Fz(ng) are electric form factors from Ref. 4. {Fa)expti. is
from Eq. (9};the error is about 0.015. Theoretical values of PB are taken
from Table I with tr =0.74 F I.

of He', and (b) x from the bremsstrahlung-weighted
cross section for the He' photoeffect. t See Eq. (10) for
the definition of the bremsstrahlung-weighted cross
section for the photoeffect. j

(a) We calculate x by the equation

Coulomb energy (C.E.) of He'= e'J' I&I'(I/r»)~r
=experimental value' of C.E. of He'

or (3/7)e'x=0. 764 Mev (x in F ')

This gives x=0.74 F '. (We assume point protons. )
(b) Also, Gorbunov' measures He' photoeffect o (IF)

and finds the bremsstrahlung-weighted cross section 0 ~

(o/W)dW= (3+0.3) mb

= (4 '/3) (r )„=0165/".

x=074 F '

Using this value of x we have calculated Frr(q')
from Table I. The results have been given in the last
column of Table II. Also, the experimental results and
theoretical curve for Fs(g') against tI' are shown in
Fig. I.

Figure 1 and Table II show that experimental and
theoretical values of Frr(q') are in close agreement for
the value of ~ obtained from the experimental Coulomb
energy of He' and Gorbunov's photoeffect measure-
ments on He'.

Also, we have compared the theoretical curve for the
form factor obtained from Koester's calculation' with
ours. Koester ef a/. have used the wave function of Gunn
and Irvtng~ with 1/p= 2.6 I':

expt —~( 2 r.i')'"j/( 2 r*P)"' (12)

While the two curves are similar for low values of q',
experimental results tend to favor our curve for high q'.

FiG. 1. The bare nucleon form factor Eg for the three-nucleon
system plotted against q' expressed in units of F '. The continuous
curve shows our theoretical Fs(q') from Table II while the dashed
curve gives Fs(g') according to Koester's calculation with 1/p
=2.6 F in (12). The points show the experimental Fs(q') from
Table II. The error is about 0.015.

SchiP' has used the following three wave functions:

(I)

(ii)

(iii)

(rrsrrsrss)-'" expL —(~/2) (its+«s+rss) j,
exP t

—(rx'/2) (rr ss+ rr st+ rsss) j,
expL( —n/2) (rtss+rrss+rsss)'~s1.

His results show, in agreement with ours, that there is
good agreement between the parameter in the wave
function obtained, by fitting electron scattering observa-
tions and that required to give the Coulomb energy of
He'. The agreement is excellent for (13-ii) and (13-iii)
and fair for (13-i). This behavior is because the wave
function (13-i), like the wave function used by Koester
et a/. , is probably too highly concentrated toward small
internucleon distances.

All these comparisons support the view that the shape
of the wave function &=X expt —(x/2) (rts+rts+rss)]
is quite good but some other wave functions also give
good fits to present data. Also, to confirm these results
it is worthwhile to make calculations with a wave func-
tion having additional adjustable parameters.

IV. VARIATIONAL CALCULATIONS OP THE BINDING
ENERGY OF THE TRITON

There have been a number of variational calcula-
tions' for the binding energy of the triton. In all these
calculations the approach has been to use only two-body
nuclear potentials and adjust their parameters to 6t the
best two-body experimental data existing to date. We
consider only central potentials.
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V(r) = —100 exp (—1.25r) MeV,

(a(r)=2 exp( —2.8r).
(15)

For triplet-even states we increase the strength of V(r)
and co(r) to fit the binding energy of the deuteron. With
this velocity-dependent potential, a variational calcula-
tion gives x=0.57 F ' and the corresponding binding

energy of the triton= 5.9 MeV.
%e note that the repulsive core and velocity-de-

pendent potentials give binding energies that agree
rather well with each other. But neither value agrees
well with the calculation for a static weB-behaved

potential, or with the experimental value of 8.5 MeV.
Also, the value of ~=0.57 F ' found for our velocity-
dependent potential gives poor agreement with the
Coulomb energy, the brernsstrahlung-weighted cross
section and the three-body form factor Ii~.

In view of the fact that we have only one adjustable
parameter and we have not taken tensor forces into
consideration, these conclusions are preliminary in
nature.

(i) Blatt and Weisskopf' have used static well-be-
haved exponential potentials both for spin singlet and
triplet states. They have used Eq. (1) as the trial
function. They 6nd ~=0.93 F ' and the binding energy
of the triton=9. 79 MeV, a value much higher than the
experimental value of 8.5 MeV.

(ii) Kikuta (Ohmura) eh ah. ' have made a variational
calculation with repulsive hard core potentials. Of
course, our wave function, Eq. (1), cannot be used as a
trial function if there is a repulsive core in the potential.
They have used a more complicated trial function and
And a binding energy of the order of 6.7 MeV with
exponential potential for a core radius equal to 0.5 F.

(iii) We have used velocity-dependent potentials for
our variational calculation. If the two-body potential is
velocity-dependent it can be wel1.-behaved and still 6t
the observed change of sign of 'S phase shifts. Kith a
well-behaved potential we can again use Eq. (1) as a
trial function. For the potential we use the form of
Rojo et aL15

&(&)= V(&)+(1/iid)LP'~(r)+M(r)P'j, (14)

where V(r) is the static part and the rest is the velocity-
dependent part. The parameters for singlet even states
adjusted to 6t two-body data are given by v4 in Rojo's
thesss15.

APPENDIX

For the sake of completeness we give in this part of
the Appendix the coordinate system used in the paper
for the three-nucleon systems.

We use the relative coordinate system shown in Fig. 2.

FIG. 2. Coordinate system for
the triton (H'). 1 is the proton;
2 and 3 are neutrons.

As we are working with central forces, the total orbital
angular momentum is conserved. The Hamiltonian is
independent of the location or orientation of the system.
Therefore, the only noncyclic coordinates are r12, r13,
and F3 or a system derived from them. The volume

element in the above coordinate system is

~1ElP23d~12d~13d~23 (A1)

in which we have dropped the numerical factor.
On account of the triangle relation only two out of the

three variables are independent. Hence in an integral
involving the above set of variables, for the erst variable

integrated, the integration limits are the sum and. the
absolute value of the difference of the other two. This is

unwieldy for integrals involving exponentials, so we

change the variables of integration to the following:

s rls+rls q
h mls fls y u ass ~ (A2)

and
rrsrrsrss«rsdrrsdrss= u(s' h')dsdhdu— (A3)

f(s,h, u)dr= ds du dhu(s' hs) f(s h u) (—A4).
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Equation (4) now becomes

Prs(ip) =Ps exp( —ss)ds exp( —Ku)du

Next we use the relation

" sin((q/3) (s'+hs —us)"s}
u(s' —hs)dh.

s (q/3) (s'+hs u')'I'—
+1

(sino)/u=- exp(ivy)dy
—1
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and make a second. transformation to the variables s, e, m deined by

s=s, u= vs, t=zovs.

It can be shown in a straightforward manner that the Jacobian of the transformation

8 (s,zz, t)/tl (s,v,w) =vs',
whence

(A/)

(AS)

~~(g') = 9"/2)
1 1 oo

dy dv dw ds exp{sL—x (1+v)+(i'/3) (1+vs (w' —1))'Is]}s'v'(1 —w'v') .
0 0 0

Integrations with respect to s and y are simple and give

v'(1 —w'v') {fir(1+v)+ (ig/3) {1+v'(w' —1)}"']'—Ls(1+v) —(iq/3) {1+v'(w' —1)}'tz]'}
Ilv(q')=121P dv dw

(zq/3) {1+v'(w' —1)}'t'P'(1+v)'+ (g'/9) {1+v'(w' —1)}]s

(A9)
After some simplification this gives Eq. (5).
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It is shown that the neutron-hole and proton correlations play a significant role for beta decays in heavier
nuclei. The e8ective coupling constant of beta decay is estimated by using a soluble model and experimental
knowledge of (p,n) reactions. Systematics of fot values are re-examined qualitatively.

1. INTRODUCTION
"ANY attempts' 4 have already been made for.. understanding the fet values of beta decays.

Among others the so-called blocking eGect in the
pairing modeP ' can explain the relative fet values of
some isotopes successfully. However, these current
nuclear theories seem still imcomplete in explaining the
absolute magnitude of beta transitions.

The purpose of this paper is to call attention to the
neutron-hole-proton (in short, zz-P) correlation effects.
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The study' ' of n pcorrelati-ons' was motivated by the
experimental discovery' of isobaric resonances'" in
(P-zz) reactions. Existence of the well-deined isobaric
states is very important for beta decay theories, because
the transition amplitude to the isobaric state exhausts
the sum rule for J'1. In the previous note' it was shown
that the isobaric state can be interpreted as a coherent
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