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The quantum numbers of the higher resonances in pion-nucleon scattering belonging to the nucleon and
3-3 isobar trajectories are shown to arise from the exchange of the nucleon and pion-nucleon resonances
themselves. In particular the members of the nucleon trajectory are created principally by forces due to the
exchange of members of the 3—3 isobar trajectory and vice versa. The quantum numbers obtained from
dynamical considerations agree completely with those conjectured on the basis of Regge pole considerations.
The dynamical scheme is approximately symmetrical under interchange of the two trajectories.

INTRODUCTION

&%0 dominant trends are discernible in recent
e6orts to unify the theoretical discription of

elementary particles and resonances. One approach''
groups particles of different angular momentum but
identical internal quantum numbers together into
families, the members thereof constituting the observ-
able points on "Regge trajectories. "On the other hand,
the similarities of particles of the same spin and parity
(e.g. , the eight baryons) suggests the existence of an
underlying symmetry, as exempli6ed' by the "eightfold
way. "While both of these approaches are very promis-
ing, there has not been much understanding of the role
of dynamics in these theories, although some suggestive
work has been done by Capps, ' ' Cutkosky, "Sakurai'
and others. It seems very important to discover which,
if any, symmetries and regularities of Regge trajectories
are determined dynamically.

The present work is a continuation of two previous
papers' " in which a scheme for the dynamics relating
the members of the nucleon and 3—3 isobar trajectories
was proposed. There it was shown that the observed
pattern of quantum numbers can be understood
qualitatively by means of the constructive collaboration
of the forces due to exchange of the baryonic states
themselves. The forces responsible for the existence of
the members of the nucleon trajectory arise principally
from the exchange of the members of the 3—3 isobar
trajectory, and vice versa. We thus obtain "coupled, "
mutually dependent trajectories, a circumstance we
expect to Gnd in the resonance spectra of other strongly
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interacting particles. To emphasize this interdependence
we call the six observed physical states of the nucleon
and isobar trajectories a constellation of resonances.
One of the most interesting results is the qualitative
invariance of the dynamical scheme underlying the
constellation to reflection about the horizontal axis
(Fig. 3). This resu1t generalizes the "dynamical equiva-
lence" of the nucleon and the 3—3 isobar discussed
by Chew"

It should perhaps be mentioned that none of the
present analysis depends on continuations in the
angular momentum, so that one really need not mention
the concept of Regge trajectories. However, the physical
situation is very similar to that suggested by the
situation in potential scattering, which considerations
led to the present work. In a sense, the existence of
Regge trajectories in the direct channel is a trivial,
u posteriori, result. We have not treated the exchanged
states as Regge poles, mainly because of the enormous
increase in the already burdensome computational work.
Perhaps such a re6nement eventually will be desirable.

In order to avoid. being overwhelmed by the enormous
number of angular momentum states demanding atten-
tion, we have pruned the theoretical apparatus to a
minimum. We start from 6xed-momentum transfer-
dispersion relations" and examine the inhuence of
resonances in the crossed channel. The observed set of
quantum numbers is seen by inspection of the crossing
matrix to be the most favorable situation so that when
examining a given partial-wave amplitude we treat the
crossed channel as experimentally known. We 6nd then
that the "forces" due to the exchange of baryonic
resonances become large in the appropriate states at
about the right energy for the above mentioned reso-
nances. The proper ordering is obtained automatically,
isospin- —,'states lying lower in energy than isospin —,', es-
sentially because the exchange of the latter gives stronger
forces in isospin ~~ than the other way round. In par-
ticular, the order of magnitude of the slope of the trajec-
tories is understood automatically when it is recognized
that centrifugal barriers associated with baryon ex-
change forces are involved. Nor is the approximate
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Phys. Rev. 106, 1337 (1957).

497



P. CARRUTH ERS

constancy of slopes a surprise although the precise
calculation of resonance energies requires the specifica-
tion of all significant forces. The calculate. on of reso-
nance energies on the basis of the present modeI is
deferred to a subsequent paper. The possibility that
3—3 isobar exchange gives rise to a I'~~~2 isospin —,

' reso-
nance near 900 MeV suggested by Feld and Layson" is
discussed in Sec. IV. This resonance, if substantiated by
further-work, would signal the beginning of a second
trajectory with the quantum numbers of the nucleon.

The situation in the D states is considerably more
complicated owing to the presence of forces of opposite
signs and different ranges. In particular, the possibility"
of a bootstrap operating between the 600-MeV res-
onance and the 850-MeV shoulder should be viewed
with suspicion pending a more thorough investigation
of the inelasticity that is so prominent in these phenom-
ena. It has been thought for some time that the
strong inelasticity (~N ~2~)V) is responsible for the
600-MeV maximum. Since it is dificult to treat properly
the inelasticity (except of course in the crossed channel)
in the present framework we do not discuss this state
(nor the very inelastic 850-MeV "shoulder" ) in any
detail in this paper, although in Sec. U we sha, ll review
previous theoretical work in the light of our results.

Thus the present work is incomplete in that proper
account has not been made for the strongly coupled
three-particle channels. We believe, though, that for
the even parity maxima the essential forces are created
by the exchange of baryonic states. The details, and in
particular the resonance energies may be changed
somewhat by inelasticity and the exchange of mesonic
systems. Recent progress in the mathematical descrip-
tion of the inelastic channels by Cook and Lee,"Ball,
Frazer, and Nauenberg, " Mandelstam et al. ," and
Hwa" can be utilized for this aspect of the problem.
One refinement, the use of the Mandelstam representa-
tion (along the lines sketched by Frautschi and
Walecka" for the 3—3 resonance) instead of the more
primitive fixed momentum transfer dispersion relations,
is already in progress. "We should like to emphasize
that the results of the present investigation cast doubt
on any theory of production amplitudes which neglects
the exchange of baryonic states. Previously such forces
usually have been neglected on the basis of their short
range. Ke find, though, that when these short-range
forces (which are after all quite strong) act in consort
they are quite important.
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All the members of the constellation are compatible
with the "spin-orbit rule" discussed by Kycia and
Riley."However for odd parity resonances the present
theory is almost certainly incomplete so that no fair
comparison can be made. The finer details of the rule
do not agree with our results, although this fact is
scarcely significant. For example, although Iiyg2 isospin
—,
' is repulsive in accordance with the rule, Ii 5~2 isospin —,

'
is slightly attractive. The origin of such results is
explained in Sec. III.

A most interesting question, now under investigation,
is whether the pion-hyperon resonances can be similarly
correlated. One can, in optimistic moments, hope that
by such calculations the meaning of such concepts as
isotopic spin wiB be dynamically determined in as
simple a way as (for example) the symmetry of crystals.
(Of course to calculate the symmetry of a given
crystal is often very dificult, but nobody is suprised
that crystals exist, or that their symmetry has a
decisive influence on their physical behavior. ) For
example from the present work one can see that isospin
—,
' is energetically unlikely for a P&~& nucleon. Moreover,
without isospin one would not have a 3—3 resonance to
"bind" the nucleon via Chew's reciprocal bootstrap.

Readers uninterested in computationa. l details are
advised to skim Sec. II and then go directly to Sec. IV.

II. BASIC EQUATIONS

The kinematical formulas required for the analysis of
pion-nucleon scattering have been given in many
places. ""Because our work depends in a crucial way
on the detailed isospin, angular momentum structure
of the problem we shall summarize here enough results
to make the paper reasonably self-contained. The
initial and final pion four-momenta are labeled q~ and

q2, for the initial and final nucleon four-momenta we
write p~, p~. From these four vectors one forms the
usual invarient variables s= (P~+q~)', u= (P~—q~)' and
t= (q&

—q2)'. s, e, and t are, respectiv—ely, the squares
of the c.m. total energy, "crossed" total energy, and
momentum transfer. We express all quantities except
laboratory pion kinetic energy in terms of the positive
pion mass, p. )We suppose all pions to have the same
mass (y) and take both nucleons to have the proton's
mass M=(6.72').] For computational purposes it is
useful to note that M'=45. 16@', (M' —p')'=1950.0 p'
and s=(59.60+0.0963 Tr) p', where Tl. is the lab
pion kinetic energy in MeV. Introducing the c.m.
momentum k and the cosine of the scattering angle
@=cos8, one finds the following useful relations:

s+t+I = 2 (M'+ y') (2.&)

t= —2k'(1 —x), (2.2)

k'= ~~s——', (M'+tl, ')+ (M' —p')'/4s. (23)
The total c.m. energy (s)'t' is called W. The c.m.

OT. F. Kycia and K. F. Riley, Phys. Rev. Letters 10, 266
(1963).



EXCITED STATES OF NUCLEON

(2 4)T= A+—2V (qi+q2)B

It is customary to regard T as a matrix in the nucleon
isospin space. The simplest crossing properties are
possessed by the amplitudes A +, 8~ defined in terms of
the amplitude for a pion of charge state i scattering to
charge state j (i, j=1, 2, 3) by

A;,=S,;A +-,'[;...]A-,

»'=&'2B +2[r2 r']B .
(2.5)

(2.6)

The v., are the 2X2 Pauli isospin matrices.
The crossing symmetry connecting the channels

where s and I are physical is then expressed by

nucleon total energy is then E= (s+M' —/2')/2W. The
invariant amplitude u(ps)TN(pi) may be expressed in
terms of the two invariant functions A(s, l,ss) and
B(s,t,ss) by

y2 (g2,)i) =1P2(x)+i2r $2&(qiP2'(x). (2.20)

We adhere to the inaccurate custom of calling l the
"orbital momentum" although the label l~ signi6es
more precisely the total angular momentum and
parity of the state. (Although I' is not conserved, the
centrifugal barrier of a state is determined by / rather
than J.) For each value of l, then, one has to consider
two values of j and two values of isospin I'. To keep
track of all these states, we use a spectroscopic"
notation (l) r22 in, accordance with established practice
in low-energy pion physics. For instance the low-energy
j=T=), p-wave resonance is in our notation labeled
&33.

It is also useful to express f(8) in terms of angular
momentum projection operators g2+()2,q&):

8+(&Pi)=(l+1)P (*)— 0 &&q P '( ), (2»)

A~(s, t,w) = +A+(m, t,s),

B+(s,/, s/) = WB+(I,/, s) .
(2.7)

(2.8)
f(0) is then given by

Ke Gnd it more useful to work with isospin-diagonal
amplitudes. The appropriate projection operators are

r . .1/2
3 9 &)

I; 3I'=8;—-3r;7;.

(2 9)

(2.10)

The connection between the plus-minus amplitudes and
the isospin amplitudes Ar (T signifies isospin) is

f(l) =E [f/+8/+(q2, qi)+f/-9/-(q2A2)] (2 21)

We often use various crossing matrices. For isospiri
we have the two operators I,where n=1, 2 corresponds
to T= ', , ~ (i.e.,-isospins antiparallel or parallel). We
can express I,, (crossed indices) in terms of the I; s

with the indices in the proper order by means of the
isospin crossing matrix M q.

A+ 1
(A 1/2+ 2A 3/2)

A =-', (A"'—As/2).

(2.11)

(2.12)
I/2 =Q M, //'I2, s,

P

(2.22)

f= f2+& qs& qif2, '' (2.13)

The differential cross section is given by do/dQ
=

2 Tr(f+f) where f is given in terms of the "direct"
amplitude fi+xf& and the spin fhp complitude f& by

where M' is the transpose of the matrix M

1/-1
4)M= —

/

3E 2
(2.23)

where q, —=q;/q;. In terms of the partial-wave amplitudes
f/~ ——[exp(2i5/~) —1]/2ik for states of angular momen-
tum j=l+-,' and parity (—1)' we have

f =Z[f~P~'(*)-f~ '(*)], (2.14)

f2= Z(f/- —f2)P~'(x) . (2.15)

Equations (2.14) and (2.15) are inverted by
1

2
&*[f.P (*)+f.P, (*)] (2.16)

fi and fs are related linearly to A and B (of the
appropriate isospin) by the matrix n(s):

We have written (2.22) in an unnatural way (transpose
of M) so that in the dispersion relations M appears in
a matrix product in a natural way. In the same way we
consider Eqs. (2.19) and (2.20) for given l; write
1i„($2,$2), where n=1, 2 corresponds to j=l—-', and
j=l+2~ (antiparallel and parallel spin and orbital mo-
mentum). The "crossed" projection operator 1i (q&,q2)
is then given in terms of the g/2(q2, qi) (for the same l)
by the "static" (see below) angular momentum
crossing matrix lV p.

A. (qi, q2) =& &-AS(q2 qi)
P

where X' is the transpose of

1

(
—1 22+2)

(2.25)

We have called .V the "static" crossing matrix because
in the heavy mass limit, where exchange of an object

('i=- (")
1 (P+M) (P.+M) (W —M)

n(s) = — . (2.18)
82rW —(F M) (I'- M) (W+M—)—
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where A' is the transpose of A:

1 —(2l+2) —4 4(2l+2)

A=
3 (2l+1) —2 2 (21+2) —1 2l+2

. (2.2S)

with given j, l only couples with states of the same l,
(2.25) is the complete crossing matrix.

For the complete characterization of a state in terms
of T, J, / we write the projection operators

(p„(k',k) =I, , g„(k',k),

where p, =1, 2, 3, 4, corresponds to T=-'„j=t——,';
T=s, j=l+s, T=s, j=l—s; T= ', , j =-l+s, resPec-
tively. On the left of (2.26) k', k stand for all the
relevant (charge and angle) variables. The complete
static crossing matrix A„„is given by

(P„(k,k') =P A„„'(p„(k',k), (2.27)

(M+ii)' to pp. We suppose that the t-dependent terms
which must be added to L(2.30)—(2.31)]are adequately
represented"" by the p exchange contribution (and
possibly some T=O pr —pr exchange). Since we are
interested mainly in high partial waves (D through H),
the p exchange contribution, estimated in Appendix 8,
turns out to be small. We ignore the T=0 xx interaction
entirely, since exchange of such states cannot dis-
criminate between T= ~ and 2 m —Ã scattering.

The nucleon pole in 1/(M' —s) (2.31) contributes
only to the J=—,

' amplitudes and will be dropped except
insofar as it is germane to our discussion of bootstrap
mechanisms.

The pole at u=M', due to nucleon exchange, is
very important. In terms of isospin amplitudes Bp,i,'"
=g'/(M' —si), B»~,PI' —2g'/(M——'—I). In order to
obtain simple formulas for the partial-wave contribu-
tions of the pole and u-channel terms it is helpful to
rewrite the denominators of the form z —u using
Eqs. (2.1)—(2.3) as

2l w —ss—=2k'(y+ x), (2.32)

y =1+(w—Np(s))/2k'. (2.33)The contribution of crossed xE scattering to the
amplitude f„(a) is then, in the no-recoil limit x is again the cosine of the scattering angle and sip(s)

—= (M' —p')'/s is the value ss takes along the line cos8,

(2 29) = —1. We shall make frequent use of the expansion"
Imf„( ')

g A„,— —
~

d~',
k) %+co

1 1
Z (»+1)I'i(—z)Qi(y).

zo —u 2k' &=0
(2.34)a straightforward generalization of the familiar crossed

term of the Chew-Low theory. " In Sec. III we discuss
in detail the physical consequences of Eq. (2.28), or
more precisely, its relativistic refinement. Here we only
note that from (2.29) one can find the effect of a sharp
resonance in state v~ on the scattering in the states p
(of the same l) by inspection of the vith column of
(2.28). For example, exchange of the 33 resonance gives
the following coefFicients A„4 for the states P~~, 8~3,
Ppi, Pp, , respectively: 16/9, 4/9, 4/9, 1/9.

The entire discussion is based on the fixed-momentum
transfer dispersion relations

The centrifugal barrier 6nd its mathematical realization
in terms of the Q functions.

For w=M' in Eq. (2.32) we find the "Born approx-
imation" phase shifts from Eqs. (2.16), (2.17) for
isospln k

8iy ——(g'/1&rkW) L(—1)'(E/M) (W M)Ql(y)—
+(-1)+(~-M)(14+M)Q, (y)r. (235)

ds1
A+(s, i) =-

PI $ S
ImA+ (s, 't)

1 du

1 1 d$
B+(s,t) =g' W +-

m~ Sm2u ~ s' —$

For isotopic spin -„Eq. (2.35) is to be multiplied by
—2. The sign of the phase shift is determined by the Q of
lowest index, despite the difI'erence in size of the two
coefficients of the Q functions in (2.35). For odd l, states
with minimum T and J (-', and l —-', ) and maximum T
and J (-,' and l+-', ) are attractive while the other states
are repulsive. For even l the pattern is reversed. The
largest phase shift occurs for the "stretched" configura-
tion of angular momentum and isospin vectors since

1mB~(s', t) then the largest Q occurs with the largest coeflicient.
Thus the Born terms give strong attractions in P~~,
Illy, 83,~~

. and strong repulsions in D35, G39,

1mB+(N& ~) (231) Further discussion and numerical results are given
below.

"G.F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

g' is the renormahzed ~—lir coupling constant ~s/4x M. Cini and S. Fubini, Ann. Phys. (N. Y.) 10, 352 (1960).
» J.Bowcock, W. ¹ Cottingham, and D. Lurie, Nuovo Cimento=15. In these equations the integrations run from 16 918 (1960)

'

'4 K. T. Whittaker and G. ¹ Watson, Modern Analysis (Cam-
bridge University Press, New York, 1952), 4th ed. , p. 321.
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In the following we do not. write the pole terms
explicitly. Using relations (2.11)—(2.12), one finds
dispersion relations for the isospin amplitudes:

A&(s t)= ImA '(s', t)
$ —s

dQ

+p M,i, ———ImA" (I',t),
u —I (2.36)

I d$
8&'(s, t) =-

s —s
ImB&{s',t)

ImB" (u', t) . (2.37)

The coeKcients of the isospin crossing matrix are given
by Kq. (2.23). From these equations one can find f,
and f2 and in turn equations for the partial-wave
amplitudes. This problem is discussed in the following
section.

substantially smaller than those of O'. D' is given by

(W—M) (E+M) (W' —M) (E+M)

W(E' —M)W(E'+M)
D' (s,s') =

(W' M)—(L~' M)—

W(E' M)—
(3.6)

{W+M)(E M)—
W(E'+M)

Ke are especially interested in the effect of res-
onances in the crossed channel, i.e., what forces are
generated by the exchange of various x—)7 "isobarsP"
(We shall find such forces to be essential in generating
the resonances themselves. ) Thus we represent the
scattering amplitude under the integrals by the usual
truncated Legendre series, Eqs. (2.14)—(2.15). The
cosine x' of the scattering angle at energy $' and rnomen-
tum transfer t is related to that (x) at energy s and
momentum transfer I, by

III. COUPLING OF PARTIAL-VIVE AMPLITUDES
x'= &x+a; &

=k'/(k')', a= 1—$. (3.7)

f,(,t)

2, (s,t)

ds' f„(s', t)
C(s,s') Im

s' —s f,;(s &))',
fii (u', t)

+Q M, l,
— D(s, tt') Im, (3.1)I'—I f2', (e', t)

In order to find the partial-wave dispersion relations
we convert the simple equations for the invariant
amplitudes to those for fi;, f2; From E. qs. (2.17)—(2.18)
and (2.36)—(2.37) one gets

For brevity, we label an f amplitude with a prime
whenever it refers to the (s', t) variables. A given
Legendre function Pi(x') under the integral can be
expressed as a sum of P„(x) where I runs from 0 to t
using identities given in Appendix A. This procedure
simpli6es and systematizes the task. of working out the
partial-wave projection of the right-hand side of Eq.
(3.1).

We now discuss in detail the first ("direct") term in
(3.1). From (3.1) and (2.16) we find, suppressing the
diagonal lsospln index)

where the matrices C and D are given by

C(s,s') —=n(s)n —'(s'),

D{s,s') —=n(s) o Sn
—'(s'),

(3.2)

(3.3)

dS
fi+"(s)=-

$ —s
Im[g C„(f )'

+C.;(f,")"']; (38)

where 0.3 is the diagonal Pauli spin matrix. Explicitly
C(s,s') is given by

(3.9)

Throughout the following it is assumed that the
influence of waves of orbital momentum /'&1 can be
neglected where / is the orbital momentum of the state
of interest. (This assumption is valid for P, G, H states
but not D. See Sec. IV.) It follows immediately that
Ci2 does not contribute to (3.8), since f2'~Pi i(x)
+ . . where + denotes I'„'s of order lower than
1'—1.Similarly no partial wave with /' &1can contribute
to ft" in the Cii term. For t'= t—1 there is a C~i contribu-
tion to (fi')'—' (for j=l—-', ) from the j'=t'+ ,' ampli--
tude. However C2i is extremely small (C2i(k'/8M')
even at a pion lab energy of a BeV. We ignore C2~
henceforth. [For t'(t —1 there is no C2i contribution to
ft+"(s).] Thus, with the neglect of the very small
coeKcient C2i, we have found that terms in f' with
t'&t do not contribute to ft~ Using the definit. ion (3.9)

t (W+W')(E+M) (W—W')(E+M).

2W(E' —M)

Instead of writing out the full expression for D(s,s') we
6nd it convenient to separate D into two parts:

(3 5)D(s,s') =D'(s,s')+D'(s, s'),

D'(s, s') =C(s,s')o3,

D'(s, s') =n(s) [o ~, n '(s') j;
(3.5a)

(3.5b)

except for the 12 element, the elements of D' are

( )
C (s,s') = (3 4)

(W W') (E M) (W+ W'—) (E M)— —

2W(E'+M) 2W(E' M)—
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and the results of Appendix A, we Gnd

ds'
fi+'(s) = ——— —— Cii(s, s') Imfi+(s'),

s' —s
(3.10)

ds
fi "(s)=— — C22(s, s') Imfi (s')

$'—s u'

ds' k
fi~'(s) = —— Im ji~(s') .

$' —s
(3,12)

LThe relation to the static nucleon theory is direct,
since ds'/(s' —s) =d~r, '/(~i' —~1).] In Fig. 1, Cii,
C221$, and Cii —C2a/] are plotted for representative s
and s'. It is clear that if Imfi is very small but fi+
resonant then (3.12) will be a poor approximation to
(3.11). But in this case the contributions of the other
terms in (3.1) will be more important than the direct
t.erm.

Ke now turn to the more complicated analysis of the
"crossed" contribution )the second term on the right-
hand side of Eq. (3.11)]to the 1th partial waves (fi')
Again we ignore contributions to f' having l')L. The
essentially new feature of this term as compared to the
direct term Lapart from the substitution of D(s,s') for
C(s,s') j is the occurrence of the angular dependence
in the denominator (I'—is) '. In our work this quantity
has the physical signi6cance of the propagator of the
exchanged baryonic resonances. The angular depend-

1 ds' (k+— — -! — Cii(s, s')
s' —sk k'

X (1—C22/Crit) Imfi+(s'). (3.11)

From (3.4) it is observed that C» is practically unity
and C22 (E'+M——)'(Ciif)/(E+M)' is nearly )Cii (for
s=s', Cii= 1 and C22 ——Cii). Even for s' rather different
than s these approximations are fairly good. Moreover,
in applications the contributions of s' nearly equal to s
are especially significant for l'=l. Although it is not.
diflicult to carry along the exact factors in (3.10)—(3.11)
we shall write these equations in the compact approx-
imate form

(
f ()&

fi '(s)/ 2~k'

s —So)
ds'Q, (1+

XA'(s, s')(—) Im( ) (3.13)
k' fi+(s')

leaving implicit the isospin sum implied by (3.1). A

is given by

ence permits states of arbitrarily small l' to contribute
to fp. To find these contributions we expand the propa-
gator in a "multipole expansion, "Eq. (2.34). Frequent
use is made of the following essential property of the Q
functions: For arguments y relevant to the kinematical
variables in the region of the higher resonances the Q
functions decrease rapidly with increasing index.
Physically the Q functions represent a centrifugal
barrier effect. For example if /=3, L'= 1, the I'2 term
of (2.34) is the lowest that contributes to the F state
(1=3).The factor P2(x), which represents the minimum
orbital momentum (2 units) needed to supplement the
"spin" of the exchange p state to give an P-state contri-
bution, is accompanied by a centrifugal barrier (Q2)
appropriate to l'=2. The p-state angular factor occurs
in the numerator and is not inhibited by a centrifugal
barrier. The height of this barrier is determined by the
average mass (s')'~' of the exchanged state. The factors
governing the relative importance of the exchange of
small l' states are thus (a) the mass of the exchanged
object and (b) the order of the Q function. However it
is not true that one can terminate the series as soon as
the first (lowest index) significant Q contribution is
found; because of the structure of D(s,s') it is essential
to keep the next higher index Q as well to obtain all
contributions of the same order of magnitude. All these
remarks are clarified by the explicit calculations carried
out below.

%'e first discuss the contribution of the l'=l compo-
nent of f' to f'. The non-negligible contribution comes
from the term Qo—3xQi in the expansion (2.34). The
analysis of the angle-independent Qp term parallels
the discussion of f . Neglecting D2i as we did C,i, the
Qo contribution is

A'(s, s') =

(2M+ W W') (E'+M)—
2W(E+M)

(W+ W') —E+M E'+M
+ +~

2W E'+M E+M

(2M+ W' —W) (E+M)

2W(E'+M)

(3.14)

(3.15)

In Fig. 2 we have plotted the elements of 3' as functions

of 8' for an especially interesting case, 8"'=8'»=8.86.
The general features are given by the special case

tV= t4":

2'(s, s) =—
( ) (3.16)
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which yields just Kq. (2.25). The qualitative features of
the static crossing matrix persist in the energy-depend-
ent crossing matrix A =A'+A'.

Figure 2 shows the behavior of —D&p/(2)y) as a
function of 8' for W fixed at the F33 resonance value.
For other values of W' [e.g., W'=W, W'=W(pzp)]
the curve may be lowered by as much as 10% at low
values of W. When —D»/(2)y) is multiplied by the
correction 3Qzy/Qp, the curve almost coincides with
that for A&zP. Thus the crossing matrix elements [Eq.
(3.15) plus Eq. (3.21)] are aRected by kinematical
corrections as follows. A ~i is essentially the same as the
static value but scaled down by the factor

~
A &zp

~

=
~
D&p~/2(y. This element is rather small in any case

due to the near cancellation between A~~' and A~~'

[see Eq. (3.21) for the static value]. In the static A,
A» is very sma, ll due to cancellation; this cancellation
is even more complete in the present case. For large
W(TI,)1 BeV) A 22 may become slightly negative.
Since A»' —0, A» is given by the static value reduced
by the factor (3yQz/Qp) (—D»/2&y) shown in Eq.
(3.21). This amounts to about 35% reduction at 900
MeV lab energy (Fig. 2) for Ppp exchange. AzpP is
rather smaller than the static value, as is A~2', which
has a smaller negative value and therefore compensates
somewhat the decrease of A~~'. If we consider mod-
erately large $, then the Dzz term in (3.19) tends to
cancel the Dzp term. Thus for large $ (A')zp is smaller
than given by (3.22) so that A» is roughly equal to
A&20, which is not very different from the static value
of A». In summary, the unimportant diagonal terms
are reduced to values even smaller than their "static"
values. The eRect of exchanging a j=l+-,' object on a
j=l——,

' state and the effect of exchanging a j=l——,
'

object on a j=/+ p state is decreased character-
istically by 20—30% for typical choices of kinematical
parameters.

It is appropriate to summarize the results obtained
thus far before deriving the contributions due to the
exchange of low partial-wave resonances. By neglecting
contributions with l')l and neglecting certain small
kinematical factors we have found the approximate
partial-wave dispersion relations

ds' /P
f(„(s)=

~

— Imf(„(s')
zr s' —sk k'

P (—1)"(2zz+1)P. (x)-
n 2m.k'

f
D(s,s') Im . (3.25)

2

Consider the zz and (zz+1) terms; using identity (A1),

(2~z+1)P„(x)Q„—(2zz+3)P„+z (x)Q„~z
= (2zz+1)P„(x)(Q„—[(2zz+3)/(zz+1)]xQ z}

+constP„z (x), (3.26)

where the term constI' ~ does not contribute for
g=l —l'. Dropping P„~, we note further that because
of the asymptotic form appropriate here, Q„+z (y)—(hz+1)Q„(y)/(2zz+3)y Eq. (3.26) is eRectively

(2zz+1)P„(x)Q (y) (1—x/y), (3.27)

in exact analogy to the case 1'=I,. As there we need not
commit ourselves to the approximation (3.27) but can
insert the ratio Q„+z/Q„explicitly in the crossing matrix.
In the case 3'= / we learned that the angular momentum
composition of (1—x/y) f,' is given by the second term
of (3.24) (for 7, —+ 7,'). Thus the zz and (zz+1) terms of
(3.25) contribute to fz+e jze t7zfz the amount (recall
that we are taking one value of 1' in the f amplitudes
and systematically dropping angular factors that do not
contribute to f():

1 s —zzpi

(—1)"(2zz+1)P„(x)- — ds'Q „1+
2V )

pip (gz gz)Ap ' (s,s')
~

—
~

Imf, (s'), (3.28)
t kq"
4 k')

large components A&4 and A4& are especially relevant
for the operation of the bootstrap mechanism for
arbitrary /, as discussed in a previous note. ' We defer a
discussion of the physical content of Eq. (3.24) to
Sec. IV.

Ke next consider the effect of states in the crossed
channel having l'&t. As in the preceding case, one
cannot terminate the series at the first nonzero contri-
bution Q„(zz=l—l'). Here too, part of the Q +z term
gives a contribution of the same order of magnitude.
In fact, by a slight modification we can take over the
results found above for l'= t. Consider the sum

)&A„„(s,s') Imfl„(s') . (3.24)

One still has to add to (3.24) the contribution of the
pole terms [Eq. (2.35)],p exchange (Appendix B) and
the yet-to-be-found contributions of partial waves with
l'(/. Equation (3.24) shows that coupling of states of
the same / is very similar to that obtained using the
static crossing matrix, Eq. (2.28). In particular the

where the indices p, v and the crossing matrix A„„'
refer to orbital momentum P [more precisely A„„will
diRer slightly from that used before in that 3Qz/Qp
will be replaced by a diferent ratio, discussed above
Eq. (3.27)]. It is then straightforward to compute the
coeRicient of g ~~(jz,jz) occurring in the product
P) ( (x)y(~(jp gz). The general crossing matrix will then
involve in a crucial way the coeflicients C (t,l'; zzP)
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defined by

To illustrate the simplicity of the procedure, we work
out in detail the contribution of P 33 exchange to the
F waves. First note that the exchange of isospin —,

' leads
mostly to isospin —,

' since the second column of the
isospin crossing matrix, Eq. (2.23) gives -', for T=-,2
and 3 for T= -,' ~ In the following, A „„is the angular
momentum part of the crossing matrix, given by
Eqs. (3.14) and (3.17).Thus (3.28) gives

X(Pgl—((I2k(I1)A12 (Sk$ )+ply(92kIIl)A22 (Sk$ )}

Pi(2') 82-((I~Bi)= (14/35) 82-(i,IIi)+ (3.39)

Pi(~)8 +((I,(Ii) = (1/35) 82-(II2k)
+ (15/35) 82+(kAi)+ ", (3 40)

which yield the crossing coeKcients

(The static values of A for f'=2 are Ail'= —ixand
A 2k'=-,'.) We can use the general formulas

Pi(~) 8(k-i)-(kAk) =L(1—1)/(2I —1)3A(-((t2Ai)

+ (3 37)

Pi(~) A(k i)+((72kQi) = L1/(41' 1)jLA&—((t2kQ))

+t(21—1)g(+((I2 Ql)]+ (3 3g)

(where + indicates the noncontributing terms of
low l) to obtain

XImfk „($'), (3.30)
"= (14Aii+A i)/35 (Fk) ), (3.41)

where the 4, 1 standing in front refer to isospin -,'and -'„

respectively. The largest coeKcient is A», so we expect
the P2(2:)gi angular factor to be the decisive one. (The
static values for P =1 are -', and -', ; the ratio A l2/A22 is
substantially larger in the exact expression. ) Using the
definitions (2.19) and (2.20), Appendix A, one finds

P2(*)8i-(II2 (ti) = (7/35) 82-((I2A))+, (3 31)

P2(2:)A i+(II2k(ti) = (2/35) 82(II2k9))

+ (9/35) 8:+(k,(ti)+ (3 32)

&2 = (7A i2+2A22)/35, (Fk(2)

and for F7/~
I 2+ =9A 22/35 k

(I'2) 2) (3.34)

The "static" values Aii 2 A22 —
2 give I'2 ——10/35

and I'2+ ——3/35 for F2~2 and F&~2, respectively. Thus we
obtain the contribution of P33 exchange to the F states:

dS' 2 1

X I'2~($, $') Im f2 „($'). (3.35)

For the static values of I'2+' the ratio of (attractive)
forces in the F states in F».F]7,F35.F37=40:12:10:3,
so that the F» force is by far the most signi6cant one
induced by P» exchange.

To make clear the pattern of forces we consider
another case in detail, the contribution of a~3 exchange
(the 600-MeV resonance) to the F states. Here the Qi
term is relevant:

X (A ll@$2—(II2 gl)+A21$2~(Ikk2, jl)}Imfn„($') . (3.36)

where + indicates contributions to p waves. Thus
for F5/2 we obtain the energy-dependent crossing
coeKcient

(3.33)

I' ~=15A /35 (F2) ). (3.42)

The "static" values of I'2+" are I'2 "=—2/35, I'2~~

=15/35. In this approximation the ratio of forces
Fi&.F)2.F22.F22) is —2:15:4:—30. The result for Dii
exchange in the F states is thus summarized by

k —2) 2 k' ( 2k' )(k')
XI'2+" Im f))„($'). (3.43)

From the preceding examples one can see some simple
rules. The isospin crossing matrix shows that exchange
of a T= -,' object gives primarily a T= -,' force; similarly
T=—,

' is favored by exchange of T= —,'.A similar situation
holds within the set of states of the same l: the off-
diagonal elements (A2l and Al2) dominate so that
exchange of an object with spin and orbital momentum
"parallel" induces the strongest force in the "anti-
parallel" configuration and vice versa. Putting together
the above considerations, one arrives at the bootstrap
situation where the exchange of T=—'„j= l——,

' helps
create a T= ', , J=/+2 state, the -exchange of which
enhances the T= -,', J= / —-,'state. The case of /' (l is
slightly more complicated. First there is a factor
(—1)'—' from the expansion of the denominator (I'—2l),
which factor causes an alteration between repulsion
and attraction. If a state of J=l+-'2 is exchanged, the
behavior is determined mainly by P& l. (x)gi. because
of the dominance of A» relative to A». Prom Eqs.
(3.31) and (3.39) one sees examples of the way Pi pgi
contains mainly g(—. Similarly when j=/ ——, is ex-
changed the resulting amplitude is principally deter-
mined by Pi k. gk+, as A» dominates A». As in the
special cases of Eqs. (3.32) and (3.40), P) &.gv+ gives
substantially more gk+ than g(—~ Thus the large forces
due to exchange occur in the states of oppositely
directed isospin vectors and angular momentum
vectors; the sign of the force is determined by the



coeflicient (—1)'—' in the "multipole expansion" of the
"propagator" (I'—I)-', except when 2'= -', is ex-
changed, in which case the sign is opposite in the
'1=-, is exchanged, in which case the sign is opposite in
the 1=~ state. The following formulas are useful:

dropping additional terms containing g~+ and g&~ 2&+

contributions.
To obtain a compact notation, we observe that the

exchange contributions can all be written in the form

~ 2+&'
ds'Q, ; (1+ ~(

—
)

XI'„„(s,s') Imf, (s'), (3.46)

where the index p signi6es t+-,' and the isospin of the
state of interest [cf. Eq. (3.24)$ but the v sum runs
over the various t' terms contributing, and includes the
information of l'+-', and isospin. The I'„,(s,s') includes
the I"s defined in Eqs. (3.33) and (3.34), (3.41) and
(3.42), e.g., and also contains the factor (—1)' '
X[2(t—l')+1] as well as the appropriate component
of the isospin crossing matrix. Explicitly I „„is given by

I'„„=(—)' '(2t —2l'+1)M,„Q,A' „(s,s')

XC~,. (&,f'; pu). (3.47)

In all numerical calculations we have taken into account
the energy dependence of the F„, coefficients. For
illustration we write out the result for the Fi5 state,
including the Horn terms, P» and D~3 exchange and the
I'-wave "bootstrap":

I ds'
= fr,P (~)+ — — Im—fp, ,(s')

s' —s

XImf. (s')+
2xk'

X —
~

Imf~„(s')+

tkXi'(F;D )i
— Imf „(s'). (3.48)

kk'

3l(l+1)
P2(&)'Ji-(AAi) = 8~+2)—+ (3 44)

2 (21+1)(2l+3)

3(1+1)
Pg(x)yt~(j2, jg) = ((2t+1)(1+2)

2 (23+1)(2l+3) (2l+5)

Xg((+g) +2/(~2)+)+, (3.45)

The sum over v in Eq. (3.48) runs over the four F
states. The "static" values are A i4= 32/21, A i&

———4/21,
A ig ———8/21, Aii ——1/21, I'(Fig, P33) =40/21, I'(Fw, Di3)
=—2/35.

IV. FORCES DUE TO EXCHANGE OF
NUCLEONIC STATES

In the preceding section we obtained an approximate
system of coupled partial-wave dispersion relations.
Kith an assist from experiment these equations can be
decoupled by inspection, i.e., the qualitative pattern
of forces coincides so completely with the experimental
results that one has confidence that representing the
crossed channel by empirical results (the energy, width,
and quantum numbers of each resonance) will be
sensible. By virtue of its small mass, the nucleon
occupies a critical place in the sequence of nucleonic
states. As discussed in Sec. III, the strongest attractive
forces due to nucleon exchange occur in P33, F~7,

I73» . , i.e., in the states of "stretched" isospin,
angular momentum configurations of Al=2. I.ikewise
strong relatively long-range repulsive forces are induced
in a~5, G39, The well-known theory of the P&:&

resonance is especially simple in that the contributing
force is primarily due to one process, nucleon exchange,
though in the usual approach" the effects of short-range
forces are lumped into one adjustable constant, the
high-energy cutoR. The "reciprocal bootstrap" relation
advocated by Chew, "whereby P~3 exchange generates
nucleon-sustaining forces in the P» state is the crucial
notion which we here generalize to the entire set of

(j,l,T) states. The first step was the recognition that
the qualitative character of the static p-wave bootstrap
generalizes to arbitrary t, i.e., the exchange of 2'=-'„
j=l—-', induces T=-', , J=l+-', and vice versa. 'This was
done within the heavy mass approximation [cf. Eq.
(2.28)] but as shown in Sec. III the kinematical
corrections do not change the qualitative conclusions
regarding the significant couplings among states of the
same l.

Thus for alternate f the bootstrap mechanism (we
reserve this appellation for the mutual inhuence of
states having the same f) cooperates with the nucleon

pole terms. The known existence of an F~~ resonance at
900 MeV thus leads one to suspect that the 1.3-3eV
~+—p maximum must be largely due to an F3~ res-
onance. The dynamical similarity of P» and P» then
suggest. the (verified) observation that P33 exchange
gives its strongest attractive forces to the F~5 state. It
will be noticed that the "trivial details" of spin and
isospin so often abused as "inessential complications"
are in fact directly responsible for nearly everything
that is significant and interesting in the observed
systematic pattern of quantum numbers. Nucleon
exchange gives a negligible force in Fis (the contrary
was incorrectly claimed in a previous paper") and
P~3 exchange has a negligible effect on F37. Qualitatively
(except for the energy differences) the major features of
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FIS H19

311

FIG. 3. The dynamical relations among the members of the
nucleon (P&r) and isobar (Es~) trajectories are shown. Each arrow
indicates that the exchange of the state at the base of the arrow
induces a strong attractive force in the state at the tip of the arrow.

833 and P». Similarly we find II» to be the image of
I'33, I"37 and B3~~, and B3,~~ to be the image of P~~,
Fts (very weak) and Hts. We call the operation of the
mutually dependent pattern of forces a sgper boots-transp

to distinguish it from the simple bootstrap within
states of the same /. Vfe also think it is 6tting to call the
mutually dependent grouping of resonances on the
nucleon and isobar trajectories a constellation of

IO

the above discussed resonances are invariant under
the reflection (cf. Fig. 3) P t t ~ Pss, Frs &-+ Fsr (and also
Hrs~Hsrr as discussed below). This "symmetry"
corresponds to a reflection (or rotation of 180') of
I'ig. 3 about its horizontal axis, or equivalently to an
interchange of the nucleon and P» trajectories. Whether
this symmetry has any deep significance is a quest. ion
deserving further attention.

It is to be observed that the significant nucleonic
exchange (we use the expression nucleonic" in the

8 O

(deg)
~ 2

10

"IO
2 3 4 5 6 7 8 9

T„(Mev/60)

FIG. 5. Contributions to D33 are shown.

(deg)
-2-

resonances. Physically it seems appropriate, in view of
the results of the proposed theory, to speak of the
resonances on the E'» and P» trajectories as legitimate
"excited states" of the nucleon.

In the present section we give the results for the
"forces" due to the exchange of various resonances. To
facilitate numerical work we use the sharp resonance
approximation

-IO- Imf((s) = (wI', .W,/k„)b(s —s„), (4 1)

-12-

0 I

I I

2 3 4 5 6 7 8 9
TL Mev/ 100

IO

FiG. 4. The "forces" in D~3 due to the exchange of the states
labeling the various curves are given in terms of an effective phase
shift, equal to the amplitude f& divided by k. The curve labeled
Dg~ shows the eGect of an assumed D3~ state at 850 MeV with
I'=1 (7=i may over estimate this eGect due to the large in-
elasticity at 850 MeV). F stands for nucleon.

8
(deg) 2

generic sense, to describe all the nucleonic objects:
nucleon and its excited states) forces giving rise to
the F33 trajectory are due to the exchange of the states
belonging to the nucleon trajectory and vice versa,
The object-image relationship between exchange state
and induced state suggests the name image resonances.
Thus F33 is the image of P~~, which in turn is the image
of P'33. F37 is the image of P~~ and F~s, Fj5 the image of

L
I

'
2 3 4 5 6 7 8 9

TL f Mev/IOO)

FIG. 6. Various contributions to D~5 are shown. D13 was
assumed to have a I' of unity.
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FIG. 9. The P» nucleonic exchange forces are shown.
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FIG. 7. Forces in D» are shown. I" was taken to be unity for D».

where I'„ is the full width, 8 „ the total c.m. resonance

energy, and k„ the c.m. resonance momentum. These
"Born" terms are then essential ingredients for any
complete calculation and much can be learned from
them. For example, the effective phase shift by which

we classify the various contributions, rises rapidly at
about the proper energy for the F» and F» states.
F3& is (in the same approximation) weakly attractive
while Fj7 is quite repulsive. Thus it is quite reasonable
to suppose, in analogy to the 3—3 resonance, that
repeated resonance exchange will enhance FI5 and
leave F» small, unless inelasticity drastically modihes
the dynamics. In these calculations we have taken into
account the exchange of the nucleon, F33 DI3 F$5,

F37 H] 9 and H»&. The parameters used are, in the
same order, 8"„=6.72, 7.79, 10.80, 12.08, 13.58, 15.70,
17.03 corresponding to lab energies, , 190, 600, 900,
1300, 1950, and 2400 MeV. The widths were chosen as
follows, noting that inelasticity lowers the effective I':
P... I'= 1.1; DI3, F=-, ; FI5, I'= 1; F„, I'= 2; HI9,
I'=0.78; H3II, I'=0.48. We have not included the 850-
MeV shoulder because we are not sure what the assign-
ment of quantum numbers is. This phenomenon, and
the second resonance (D'3) are so inelastic that we

hesitate to make any 6rm commitments on the basis
of the present theory. The omission of the 850-MeV
object is not serious (because of its high mass and large
inelasticity) in that few results are substantially altered
by it. A more complete discussion is given in Sec. V.
(Also the chosen values of F for the H states may be
too large; we have taken values greater than suggested
by a simple subtraction from a smooth background. )
The resultant 6 phases are very small when positive, or
else are negative, consistent with the probable lack of
resonant phenomena in the /=4 states. The pattern of
forces in the H states is qualitatively very similar to
that in the F states, though the H forces seem to be
somewhat weaker than the F forces at the corresponding
energies of the observed resonances, largely because of
the weakness of the H bootstrap mechanism.

The D states are complicated by the presence of both
attractive and repulsive forces of differing range but
comparable absolute value. For DI3, nucleon exchange

)4-

3
(«9) 8- 8

(deg)"2-

')3

«4

2 4 6 8 10 )2 )4

TL. {Mev/Ioo)

FIG. 8. The I'» nucleonic exchange forces are shown.

-I I I I I I

0 2 4 6 8 IO )2 )4
TL ( Mev/ IOO)

FIG. 10. The F]7 nucleonic exchange forces are shown.
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FIG. 11.The Fsz nucleonic exchange forces are shown.
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FIG. 13.The G37 nucleonic exchange forces are shown.

gives an unimportant contribution while F33 exchange
gives a strong repulsion. If the shouMer at 850 MeV is
D35 then the bootstrap contribution gives a short-range
D~3 attractive force that is rapidly increasing at 600
MeV. Similarly, for D», P» exchange is very small
while N exchange gives a strong, rather long-range
repulsion. However D~3 exchange induces a short-range
attractive force. Whether these "long-range" repulsions
actually sharpen the resonances (the 600-MeV maxi-
mum is rather narrow) or are in fact deleterious to the
existence of resonances is not clear. There seems to be no
escape from accounting for production amplitudes in a
detailed way in order to understand the 600- and 850-
MeV phenomena. For D~5, N exchange gives a non-
negligible attraction while D~3 and I 33 exchange give
small repulsions. P33 exchanges makes D33 repulsive
while N and D35 give small positive contributions. It is
entirely possible that the (longest range) repulsions can
be essentially neutralized by the ease with which the
2xN channel can be reached: the pion and nucleon can
undergo a transition to 2m.N rather than exchange a
state obnoxious to it. In Figs. 4—7 we summarize the
above results for the D states. It should be said that the
exchange of P~5 and F3y has a non-negligible influence
on the D states. These results will be described elsewhere
in an attempt to describe the 600- and 850MeU
phenomena.

The nucleonic exchange contributions to the F states
are shown in Figs. 8—11. Especially interesting is the
predominance of N, F~5 exchange in the F37 state and
F33 F3'/ exchange in the F» state (cf. Fig. 3). In F» the
nucleonic exchange forces are of mixed character, being
weakly attractive on the whole. The non-negligible
nucleonic exchange forces in F» are all repulsive.

The results for the G states are shown in Figs. 12—15.
The G» state is very repulsive; G37 is also repulsive. In
Gjg weak "long-range" attractive forces due to N and
E» exchange are overcome by shorter range repulsive
forces (F» and F3r exchange) that increases rapidly
with energy. In G» there is a short-range attraction via
F~5 exchange that is compensated for by a longer range
repulsion due to nucleon exchange. Clearly any maxima
occurring in G states must have a dynamical mechanism
diferent from that considered here.

The results for the H states (Figs. 16—19) are qualita-
tively similar to those obtained for the F states,
although there are more contributions to the former.
However the H» —H»& bootstrap is quite weak, because
of the rather weak development (as compared to what
unitarity permits) of these maxima. Thus at the posi-
tions of the highest energy observed maxima the H~9
and H3~~ forces are somewhat weaker than those in P~5
and P3y at their respective resonance energies. Of course
this circumstance may be responsible for the under-
developed character of the newest maxima.

F
15 Pls

33

FxG. 12. The GI7 ~ e9~ 2
nucleonic exchange
forces are shown.

3 0
(deg)

1 . I I I I l . I . I

10 12 14 16 18 20
TL (MeY/l00)

. I I. I t I I I I I I ' I I I

10 I2 14 16 18 20 22 24
Tt. tMeV/100)

FIG. 14. The G19 nucleonic exchange forces are shown.
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Fio. 17. The H39 nu-
cleonic exchange forces are
shown.
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plane. ) In this approximation the forces due to nucleonic
exchange are represented by cuts below the threshold
(M+@)s on the real axis, due to the Q functions. From
the integral representation'4

10 l2 I4 I6 l8 20 22 24
TL (MeV/ IOO)

Fzo. 15. The 639 nucleonic exchange forces are shown.

1 ' I'„(x)dx
Q'. (y) =-

2 ] x
(4.2)

We have not performed any calculations for states
with /&5. Although the same pattern will persist at
even higher energy the exchange forces become less
effective and inelasticity more complete. It is not clear
that any further variations in the total cross section
should be observable in experiments of plausible
accuracy. However the e6ects of the nucleonic exchange
terms might be observable in large angle s —p scattering
at high energies.

In Fig. 20 we have summarized the nucleonic
exchange forces for D through H waves. In this graph
no account has been taken of the e6ect of /')l states
on / waves.

Next we examine in more detail the analytic proper-
ties of the nucleonic exchange terms, using the delta-
function approximation of Eq. (4.1). (We discuss the
amplitudes f1/k" as a function of s, though W= (s)'" is
more convenient for actual computation, as emphasized
by Frautschi and Walecka. Our results are easily tran-
scribed to the 8' variable if the MacDowell symmetry"
is invoked to define the amplitudes in the left-hand 8'

(deg)
2-

where y= 1+ (s„—us)/2ks, one sees that the amplitude
is discontinuous for real s such that y lies between —1

and 1. The branch points (y=+1) occurs for s=0,
oo and S+, where S~= (Ms —las)s/S„and S =2(M'+p')
—S„(seeTable I).A qualitative difference distinguishes

Tash. E I, The positions of the cuts arising from the exchange of
resonances of mass (S,)'~' is determined by 8+ /see discussion
following Eq. (4.2)7.

Tl, 190
S, 77.9
S+ 25.0
S 14.4

600 850 900 1300 1950 2400
117.2 141.5 146.0 184.4 247.4 290.0

16.6 13.8 13.4 10.6 7.9 6.7—24.9 —49.1 —53.7 —92.1 —155.1 —197.7

the cases s„~~2(M'+p') For s„(2(Ms+p') one has
cut from 5 to S+ and a second cut from —~ to 0, as in
the case of the well-known nucleon exchange contribu-
tion. For s„)2(Ms+ps) the two cuts run from —~ to
s and from 0 to s+ (cf. Fig. 21). In Fig. 22 we have
plotted ks(s), and y(s) for P» and Pr; exchange to
illustrate both situations. In constructing such 6gures it
is useful to use y (+~ )=y (s+) = —y (s )= 1, yL(M+ p)s
+j=K(M—I )'—j=+", yL(M+I )' j=yL(M I )'— —
+j=—~ and

y'(0) =2Ls„—2 (M'+ys)]/(Ms —ps)'.

As a function of y, ImQ„(y) = (s./2)P„(y), as is seen

i I l i l J i 1 i l 4 l.
I4 l6 IS 20 22 24

TL (MeV/I00)

FIG. 16. The H&9 nucleonic exchange forces are shown.

"S.W. MacDowell, Phys, Rev. 116, 774 (1960).
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FIG. 18. The Hg, y I nu-
cleonic exchange forces are
shown.
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FIG. 19. The H3, I.I
nucleonic exchange
forces are shown.
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(b)

s+ (M+@,)
2

from Eq. (4.2). From this point the calculation is of
the standard X/D type, easily sohrble in the pole
approximation.

Because of the extensive numerical work involved we
have decided to defer the discussion of the calculations
now in progress to a subsequent paper. Thus the results
shown in Figs. 4 to 20 are "raw theoretical data, "
not yet in shape to be confronted with experiment.
LThat resonances occur in the proper F states (Frs and
F») at some energy is almost beyond doubt in view of
the rapidity of increase of the exchange terms at high
energy. ) However the qualitative features of our results
should be useful in selecting a preferred set among
competing phase shift solutions.

As an example, we discuss recent Berkeley results"
near the second resonance. It was hoped that polariza-
tion measurements would provide a definitive deter-
mination of the quantum numbers of this maximum.
However, equally good fits were obtained with either

24,

20-

i6-

IR

I I I I I I I I I I I I I I I I I

-80 -60 -40 -20 0 20 40 60 80S~
Pro. 21.The left-hand cuts in the s plane due to (a) F33 and (b)

Fqs exchange are shown Lthe sharp resonance approximation,
Eq. (4.1), has been used j.

D$3 ol E$3 for the 600-MeV resonance. For both solutions
the change of D35 from strong repulsions at 523 and 572
MeV to a weak attraction at 689 MeV is consistent
with the eGect of DI3 exchange described above.
(In fact, the T= s D and F waves are nearly the same
for both solutions. ) Besides the theoretical reasons for
preferring Drs to Frs (and also considering the photo-
production analysis" for the same purpose) the Frs
solution has Djs rather repulsive at 523 MeV, surprising
in view of the substantial (theoretical) attraction due to
nucleon exchange, The T= —,

' F waves provide important
clues. The DI3 solution has a large positive F~5 phase
and a small F~7 phase shift, in agreement with the
baryonic exchange forces giving strongest attractive
forces in F~5 and moderate repulsions in F~7. On the
other hand the 8~3 solution gives large positive FIT
phase shifts at all three energies and smaller Fi~ phase
shifts. In making these comparisons one should bear in
mind the qualitative inAuence of the neglected but not
insignificant contributions due to p exchange, and
T= J=Oem exchange. The effect of the latter is to give

p
4

(deg) c

4

ops
60

40-
& ("lS)

-8-

-IR-

-16-

I I I I I I I

0 R 4 6 8 )0 IR l4 )6 i8 RO ZR R4
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bJ ~g( P~))0—
& 'FiS) -5&.68

-20-

$=M -ps
l

T$- $+
I442 25.03

-y(Ps~ex)

FIG. 20. The total "forces" due to exchange of nucleonic states
are shown for D through II states. Although this 6gure obscures
the fact that each curve receives contributions of differing range,
the general pattern is significant in showing the emergence of
the resonance states of even parity. For comparison the E»
"force" due to nucleon exchange is shown. The P~~ (attractive}
force arising from Ega exchange is not shown, but would lie
above the F33 curve.

"R. D. Eandi, Lawrence Radiation Laboratory Report,
UCRL-10629 (unpublished}.

- (-M2)
.P(F)S ex)

-60—
I
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(M-p)'5272 (Map) * 5960

FIG. 22. The c.m. momentum squared k', and the variable y
Lfor F83 and F&q exchange, of Eq. (4.2) g are given as a function of
s. S~ locate branch points occurring for y= &1.y=0 and ~ are
also branch points.

"R.F. Peierls, Phys. Rev. 118, 325 (1960}.
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an attraction in all states, while exchange enhances
T= 2 twice as much as it diminishes T= 2 (Appendix 8).
Another virtue of the D~3 solution is the substantial P~~
phase shift, possibly associated with the maximum in
m. +p ~A+ED at 900 MeV." Previously it was
suggested" that the p exchange force, which is fairly
substantial in this state, might be important in generat-
ing this maximum. Numerical evaluation" indicates
that P3~ exchange is substantially larger than both the

p exchange and the repulsive E exchange term, at high
energy. Although more work is in order concerning the
origin (and even the assignment of quantum numbers)
of this maximum it is very appealing that this object
be P~~, induced by P3~ exchange, In this case one has
the beginning of a second trajectory with the nucleon
quantum numbers. Is it possible that another P33
resonance lies obscured by the broad maximum we have
previously associated solely with the Ii» stateP

V. DISCUSSION

In the previous sections the forces due to the exchange
of nucleonic states have been analyzed. It was found
that a self-sustaining dynamical entity, a constellation
of resonances, composed of two Regge trajectories
originating in the nucleon and P33 resonances was
suggested by the structure of the crossing matrix.
Moreover the members of one trajectory are "images"
of the resonances comprising the other trajectory, as
discussed in Sec. IV. Although the involved numerical
calculation of the resonance energies has not yet been
completed, it was found that the states in which
resonances are expected surmount the centrifugal
barrier at roughly the proper energies and in the right
order (e.g., F~5 precedes F37 as the energy is increased).
Thus the energy spacing between the members of the
trajectories, or equivalently the slope of the trajectories,
is qualitatively correlated with the range of forces due to
the exchange of baryonic objects. As we do not expect to
achieve especially accurate results in the calculation of
resonance energies because of divergences in the X/D
solutions we cannot understand why the slopes should
be so remarkably constant. For instance As= 100'' for
the three members of the nucleon trajectory and about
106@,' for the P» trajectory. The principal inadequacy
of the analysis presented above resides in the assumed
unimportarice of inelasticity as a generator of res-
onances. As already remarked such a position cannot be
maintained for the 2nd resonance and the 850-MeV
shoulder. Similarly the inhuence of inelasticity on the
constellation will probably be significant though we
believe it to be a secondary consideration. Thus it may
be significant that the P~5 resonance lies near the
threshold for p production and the H~9 maximum near
the f threshold. Although the precise resonance
energies may thus be influenced by inelastic thresholds
we do not agree with the position maintained by many
people to the effect that the even parity higher res-

onances are "cusps" or sundry threshold effects
Rather we claim that the constellation exhibits and
interprets in a systematic way the compellingly
beautiful empirical regularity of the excited states of
that most fundamental object, the nucleon.

While the attractive isospin-~ forces caused by p
exchange and production no doubt cause the T=~
resonances to develop at a lower energy than would be
the case with purely nucleonic forces we view the

p admixture in much the same way that proponents of
the eightfold way regard the "symmetry-breaking"
terms. (It is possible, though, that there is a subtle
conspiracy wherein all these forces cooperate in a
simple way as yet undiscovered. )

As already mentioned it appears that one dare not
neglect the inhuence of the exchange of nucleonic
states on the production process. We now discuss
qualitatively the D-state forces due to E, P33 and D
exchange. The situation is considerably more intricate
than might be gathered from the discussion of a
previous paper, " in which we perhaps overemphasized
the "6ltering" action of the D-wave crossing matrix. P33
exchange creates a moderately strong repulsion in D».
If the shoulder is D35 then there is a substantial short-
range attraction as well. The attraction in D~5 due to
nucleon exchange is helpful in understanding the
positive value of the phase shift in this state. Both Dg;
and D33 receive strong repulsions due to E and P33
exchange. This is most likely the reason why the m+p

cross section is so small in the natural domain of the D
waves (around 600-MeV pion lab energy). However at
about 800 MeV the cross section suddenly increases
giving rise to the shoulder predicted in an earlier paper. "
In that work D33 was suggested on the basis of (a) the
anomalously small charge exchange n +p ~m'+rI
near the second resonance, which indicated substantial
interference with the D~3 state on the basis of a simple
resonance model, and (b) the small size of the shoulder
which seemed to rule out J=~5 unless the latter were
almost completely absorbed. It now appears that the
absorption is very strong indeed in the shoulder, so
that J=~ cannot be so easily disposed of. Moreover
the simple resonance model [point (a)$ is probably not
too reliable since so many states seem to be signi6cant.
It was subsequently pointed out" that D~3 would be
generated if p production (threshold: 890 MeV) had a
significant effect. On the other hand, one can make a
good case for D3;. As the lab energy is increased to
850 MeV the short-range attraction due to D~3 exchange
suddenly sets in. The longer range repulsion due to Ã
exchange possibly confines the pion to shorter distances,
enhancing the amount of inelasticity. (Experimentally'0
it appears that the most interesting feature of the m —p
angular distribution near the third resonance, the

"P.Carruthers, Phys. Rev. Letters 4, 303 (1960).
29 P. Carruthers, Phys. Rev. Letters 6, 567 (1961).
30 J. A. Hellard, T. J. Devlin, D. E. Hagge, M. J. Longo,

B. J. Moyer, and C. D. Wood, Phys. Rev. Letters 10, 27 (1963).
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TmLE II.The angular distribution for the reaction m+N -+ N*
+x is given for various channels. The notation Ig means that the
incident xN channel of angular momentum J and orbital momen-
tum L undergoes a transition to the N*—x conhguration of
orbital momentum l. X is the cosine of the production angle in the
total c.m. system.

~1/2 ~ &
I'1/2 ~ P
~3/2 ~ P
~3/2 ~f
D3p2 ~ s

const.
const.

7—6X'
1+2X~
const.

D3/2 ~ &

D6/2 ~ ~
Ds/2~ g
~5/2 ~ P
~s/2 ~f

const.
1+10X'—10X4

13—10X'+45X4
1+2X~
7+34X'—25X4

"backward bump, " requires a substantial interference
between resonant F~~ and attractive Ds, 2.) Moreover
one can entertain the thought that the 850-MeV
shoulder is associated with ~+X—+P3s+~ through
the F35 channel. The rapid rise occurs at a natural
F-wave threshold energy. (It will be recalled. that the
nucleonic-exchange forces are weakly attractive in
Fa~.) The F35 assignment has been advocated by
Peierls. " In this regard Peierls has emphasized" the
importance of analyzing production data in terms of
the angular distribution for m. +X-+X*+m. The one
example known" for m.++p —+ vr++P+s' at 820 MeV
gives a distribution of the form 4.1—10.5 cos8+8.7
cos'8. This seems to favor Fss —pPss+p wave pion-,
which gives a distribution proportional to 1+2 cos'8.
The point here is that all other states (leading to s
and P-wave recoil pions) give negative coeflicients for
the cos'8 term. " For d (or higher) wave recoil pions
(e.g. , Ds~2 —&P3~2+d wave) large cos'8 terms appear.
Of course complicated interference eKects can occur
but the analysis of the data in this manner might prove
very informative. In Table II we give some of the
relevant angular distributions. This table was computed
for the author by I. M. Simmons and agrees with
unpublished results of Peierls. "

APPENDIX A: USEFUL LEGENDRE IDENTITIES

In this appendix we summarize the identitites needed
for the partial-wave reduction in Sec. III. Identities
1—4 are the common ones. The relations between
P„(x') and P (x) (x'=gx+a) can be proved simply
from Rodriguez' formula, e.g.,

xP((x) = [//(2/+1)]Pg g(x)

+[(/+1)/(2/+1)]Pg g(x), (A1)
"R. F. Peierls, Phys. Rev. Letters 5, 166 (1960)."R. F. Peierls (private communication)."R. Barloutaud, C. Choquet, C. Gensollen, J. Heughebaert,

A. Leveque, J. Meyer, and G. Viale, Proceedings of the Air-en-
Proeence International Conference on Elementary Particles, edited
by E. Cremieu-Alcan, P. Falk-Vairant, and O. Lebey (Centre
d'Etudes Nucleaires de Saclay, Seine et Oise, 1961),Vol. 1, p. 27.
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APPENDIX B: ESTIMATE OF y-EXCHANGE
CONTRIBUTION

For a simple estimate we use perturbation theory
with the interaction Hamiltonian

P =fpppN8"'frpg4p+fp 8"'$X8pp, (B1)

where 8P, P, and. f are, respectively, the p, pion, and
nucleon fields. The vectorial symbols refer to isospace.
The conventional transition matrix for scattering from
k to k' is then

T= 2fpppppfpwwtkk'jr/
=1

M ci(p') (k+0') yg(p)
X (&2)

(4F. F. (ega&J, )'~' (k /s')' ppsp'— —
where ppsp is the p mass and p and p' label the initial and
final nucleon four-momentum. The amplitude 8 in
Eq. (2.4) for isospin -', is then (8"=——,'8")

8"=f,ppppf. ../(m, ' /)—(a3)

The corresponding phase shifts for isospin ~~ are then

(y = 1+m, '/2k')

8„U2= (yps/4aW) [(Z+m) (W—~)g, (y)
+(~-~)(~+~)O, (y», (~4)

where yp'= fpppppfp, /4Ir as estimated from the width of
the p, and also from low-energy pion nucleon scattering,
is about 2.'4 "For reference we also give the differential
cross section in isospin ~ following from (82):

da'~' {(s M' p')—'+/(s—M')}-
V/ (B5)

dQ 4s (/ pwp')'—
34 J. J. Sakurai, in the International Conference on High-Energy

NNclear Physics, Geneva, edited by J. Prentki (CERN Scienti6c
Information Service, Geneva, Switzerland, 1962), p. 176.

35 J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick,
Phys. Rev. 128, 1881 (1962).

xPi'(x) = [//(2/+ 1)]Pi+ad (x)
+[(/+1)/(2/+1)]Pi-~'(x) ~ (A2)

xP('(x) =/Pg(x)+Pg x'(x), (A3)

P~(x) = [1/(2/+ 1)][Pi+~'(x)—Pi-~'(x)]

P (x')=&'P (x)+(2/ —1)a&' 'PE g(x)

+(2/ 3)—$' 'a(/a 1)—P$ Q(x—)+ ~, '
(A5)

dPg(x')/dx= P+'(2/+1)P((x)+ (4P—1)
Xa~&P, ,(x)+ ", (A6)

Ps(x)Pg(x) = [3/(/ —1)/2(4/2 1)—]P( 2(x)

+[3(/+1) (/+2)/2(2/+1) (2/+3)]P(ig(x)
+[/(/+1)/(2/ —1)(2/+3)]P(+2(x), (A7)

P2 (x)Pg'(x) = [3/(/+ 1)/2 (2/+ 1)(2/+3)]P,+,'(x)
+[3/(/+1)/2(4/2 —1)]Pg p'(x)

+[(2/3+3/2 5/ 3)—/(4/—2 1) (2/j—3)]
XP,'(x) . (Ag)
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/Using (84) and y,'=2 we find for Drs, 8=0.38',
0.51', 0.86', 1.31' at 300, 400, 500, and 600 MeU. For
Di; one finds 0.22', 0.25', 0.4', 0.6', 0.84', 1.1', 1.37'
at 300, 400, 500, 600, 700, 800, 900 MeV. For F15 5 is

0.36', 0.50' and 0.68' at 700, 800, and 900 MeV.
Fol II]g 8 is 0.37', 0.56' and 1.05' at 1700, 2000, and
2500 MeV. The same parameters give for P11 5=12'
at 900 MeV. 7
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Effect of the Baryon Excited States on the N wan—d x—x Forces
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The X-h. and h.-h. potentials caused by the exchange of two pions are calculated in the static theory, taking
into account the resonance y'&* in the s —h system and the (3—3) resonance in the s Zsy—stem The .recoil of
the baryons is included in an approximate way. It is shown that the presence of these resonances diminishes
the spin-dependent part of the central potential and the tensor potential, and increases the spin-independent
part of the central potential. The triplet potential turns out to be slightly stronger than the singlet potential
at large distances, and slightly weaker than it closer in. If the resonances are omitted, the triplet potential
is the stronger over the whole range. This last result is in mild disagreement with other work. Its relation
to the choice of a one-channel or two-channel formalism is discussed.

1. INTRODUCTION

S OME experimental evidence on hypernuclei and on
double-hypernuclei is now available and some phe-

nornenological analyses of this evidence have been made
with a view to determining the nature of the N —A~ and
A —A forces. '

Various workers' have estimated the two-pion ex-
change contributions to these potentials using meson
theory. However, no account seems yet to have been
given of the effect upon these forces produced by the F&*

resonance in the x—A. system and the 3—3 resonance in
the m —N system together. 4 The main purpose of this
paper is to estimate this eGect.

We shall take the Z —A parity to be even, as has now
been almost conclusively established, ' and we shall
make the experimentally probable assumption that the
I'&* resonance at 1385 MeV in the x —A. system is a PS~2

*National Research Council Postdoctorate Fellow.
f Present address: Department of Physics, Battersea College of

Technology, London, England.
f. Present address: Department of Applied Mathematics and

Theoretical Physics, University of Cambridge, Cambridge,
England.

See R. H. Dalitz, Enrico Fermi Institute for Nuclear Studies
Report No. EFINS-62-9, 1962 (unpublished) for a review of the
E—A. interaction.

~ H. Nakamura, Progr. Theoret. Phys. (Kyoto) 30, 84 (1963);
S. Iwao, Nucl. Phys. 26, 1 (1962); R. H. Dalitz, Phys. Letters 5,
53 (1963).' J.J.de Swart and C. K. Iddings, Phys. Rev. 126, 2810 (1962)
and references cited therein; J. J. de Swart, Phys. Letters 5, 58
(1963);A. Deloff, ibM. 5, 147 (1963);R. Schrils and B.W. Downs,
Phys. Rev. 131,390 (1963).

4 M. Uehara'LProgr. Theoret. Phys. (Kyoto) 24, 629 (1960)jhas
discussed the effect of the (3-3) resonance upon the E—A.

interaction.' R. D. Tripp, M. B.Watson, and M. Ferro-Luzzi, Phys. Letters
8, 175 (1962);H. Courant, H. Filthuth, P. Franzini, R. G. Glasser,
et al. , Phys. Rev. Letters 10, 409 (1963); R. H. Capps, Nuovo
Cimento 26, 1339 (1962).

state, ' having the same mechanism as the I=X=~ reso-
nance in the z —N system. The Chew-Low theory for
the pion-nucleon interaction can then be extended in a
straightforward way to the pion-hyperon interaction,
and the N —A and A.—A potentials can be calculated by
the method given by Miyazawa, ' a method in which the
resonances of the m —N and ~—A systems can be
treated.

It has been pointed out by Charap and Fubini and by
Gupta' that the static limit of the two-pion exchange
potential is not well defined. The difhculty comes from
the fact that, when the two-pion exchange potential
V(x) is written in the form

dtgsp(ms) exp( —mx)/x, (1.1)
(2m~) '

the inverse baryon mass expansion of the spectral func-
tion p(m') does not converge at the lower mass end
(m ~ 2rN ).The relativistic effect is therefore important
in the asymptotic region (a —+~), where the static limit
would appear to be most justified. Akiba' has examined
the accuracy of the inverse nucleon mass expansion,
showing that this expansion provides us with a reason-
able numerical approximation. Our calculation will be
meaningful except for extremely large distances where

~
V(x)

~

will be negligibly small, and of course for very
short distances.
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