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Hamiltonian Model of Lorentz Invariant Particle Interactions*
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A model is constructed of interaction in a quantum mechanical system of two spinless particles. The
interaction is shown to produce nontrivial scattering. Lorentz symmetry of the model is established by the
construction of generators of a unitary representation of the inhomogeneous Lorentz group. The total
momentum and angular momentum operators are the same as for a system of two free particles. This ensures
familiar transformation properties under space translations and space rotations. The Hamiltonian satisfies
the asymptotic condition relative to the Hamiltonian for a system of free particles. The use of the asymptotic
condition is shown to be Lorentz invariant. The scattering amplitude is a manifestly invariant function of
the particle momentum variables, and can be made to have a variety of analyticity properties by a suitable
choice of the arbitrary form factors which occur in the model.

I. INTRODUCTION

'HIS paper was motivated by a recent study of
special relativistic invariance in Hamiltonian

particle dynamics. '' This study has emphasized two
distinct aspects of relativistic invariance. The first of
these is the symmetry of the theory under the inho-
mogeneous Lorentz group, rejecting the principle of
special relativity that the laws of physics should be
invariant under transformations of reference frames.
This symmetry is guaranteed by the existence of ten
infinitesimal generators H, P, J, N, for time translations,
space translations, space rotations, and rotation-free
Lorentz transformations, respectively, satisfying the
Lie (Poisson or commutator) bracket equations char-
acteristic of the inhomogeneous Lorentz group. ' '

The second aspect involves the manifest invariance
or the explicit transformation properties of specific
quantities. The philosophy of recent work is to describe
particle interactions by an S matrix or scattering ampli-
tude. Relativistic invariance is taken to mean that the
scattering amplitude is a manifestly invariant function
of the particle momentum variables.

In this paper we construct a model of interaction in a
quantum mechanical system of two spinless particles.
The interaction is shown to produce nontrivial scatter-
ing. Lorentz symmetry of the model is established by
the construction of ten Hermitian operators H, P, J, N
which generate a unitary representation of the inho-
mogeneous Lorentz group. The generators P and J
are just the usual total momentum and angular
momentum operators for a system of two free particles.
This ensures that all quantities, for example the particle
position and momentum variables, will transform in the
familiar manner under space translations and space
rotations. The Hamiltonian operator H satisfies the
asymptotic condition relative to the Hamiltonian
operator Ho of a system of two free particles. We show
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that our use of the asymptotic condition is a Lorelltz
invariant procedure. The scattering amplitude is a
manifestly invariant function of the particle momentum
variables.

Theories of interaction in a quantum mechanical
system of two particles have been constructed previ-
ously by Bakamjian and Thomas4 and by Foldy. ""

These theories exhibit Lorentz symmetry by the exist-
ence of generators H, P, J, N of a representation of the
inhomogeneous Lorentz group. But the interaction in
these theories is described only by the Hamiltonian.
Our model goes further by providing a solution of the
scattering problem in which the asymptotic condition is
satisfied and in which the scattering amplitude is

manifestly invariant.
With a suitable choice of the arbitrary form factors

that occur in our model, the scattering amplitude can
be made to have a variety of analyticity properties as
a function of energy or angular momentum. In par-
ticular, causality conditions can be satisfied and Regge
pole behavior can be produced. Our constructions can
be used also to make a model field theory with non-
trivial scattering which satisfies all of the usual field

theory axioms except that it transforms nonlocally.
To build our model, we define two unitary operators

0+ and 0 . Then we construct the generators H, P, J, N
of the representation of the inhomogeneous Lorentz
group by using 0+ to make a unitary transformation of
the generators Ho, Po, Jo, No of the representation which
is characteristic of a system of two free particles. The
scattering amplitude is easily found because 0+ and
0 are carefully chosen, so that they turn out to be
the wave operators for the scattering problem defined

by II and Hp. Our constructions depend in a funda-
mental way on our use of variables in terms of which

Ho, Po, Jo, No have the form of a reduction into ir-
reducible representations of the direct product of the
two single-particle representations of the inhomogene-
ous Lorentz group. ' These variables are introduced in

4 L. H. Thomas, Phys. Rev. 85, 868 (1952); B.Bakamjian and
L. H. Thomas, ibid. 92, 1300 {1953);B. Bakamjian, ibid. 121,
1849 (1961).' L. L. Foldy, Phys. Rev. 122, 275 (1961).' A. J. Macfarlane, J. Math. Phys. 4, 490 (1963).We follow the
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Sec. II. In Sec. III we define 0+ and 0 and construct
the generators II, P, J, ¹ Section IV contains the
solution for the scattering. In Sec. V we explain the
Lorentz invariance of our use of the asymptotic condi-
tion. In Sec. VI and VII we conclude with remarks on
analyticity properties and model nonlocal field theories.
All of the actual work involved in the construction of
our model is contained in three appendices.

In classical mechanics one can describe the motion of
particles by the time dependence of their positions in
space. It is natural to postulate, as part of the require-
ment of relativistic invariance, that the time-dependent
values of the particle position variables transform in the
familiar manner of space-time events under space
translations, space rotations, and Lorentz transforma-
tions. This postulate, together with the postulate that
there exists generators II, P, J, N establishing sym-
metry under the inhomogeneous Lorentz group, has
been used to prove theorems that there can be no inter-
action in a classical mechanical system of two or three
spinless particles. ' ' '

The transformation properties of particle positions
under space translations and space rotations are as well

established in quantum mechanics as in classical me-
chanics, but the role of Lorentz transformations of
particle positions in quantum mechanics is not so clear.
In quantum mechanics one cannot provide a direct
physical interpretation for the equations which are the
analogs of those characteristic of Lorentz transforma-
tions of particle positions in classical mechanics. '
In this paper we adopt the attitude that one may ignore
the Lorentz transformation properties of the particle
positions and require only that the scattering amplitude
be Lorentz invariant in a quantum-mechanical theory
of particle dynamics.

II. LORENTZ SYMMETRY FOR FREE PARTICLES

We consider a system of two particles with zero spins
and positive masses m~ and m2. We work with operators
defined on wave functions of the momentum variables
p' and p' for the two particles, the inner product of two
wave functions f and g being defined by

(f,g) = f(P', P')*g(P', P') (1/2Wi) (1/2Wo)doP'd'P',

(2 1)

where (Wi) = (p') +(m ) and (Wo) = (po)o+(m )
For two free particles we have infinitesimal generators

IIo, Po, Jo, No for a unitary representation of the in-

notation of this paper. In it the reader will hand an extensive list of
further references.
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homogeneous Lorentz group in the canonical forms'

IIo——Wi+ Wo,

P pl+ p2

Jo——q'Xp'+q'Xp',

No= Waq'+ Woq',

(2.2)

(2.3)

(2.4)

(2.5)

where p' and q' are the coordinate operators canonical to
p' and p' that are defined by the relations

(q "f)(p',p') =o(~/~p ")f(p',p') (2.6)

for n = 1,2;j= 1,2,3 and for any momentum space wave
function f. (We choose units for which A=c=1.) One
can check that the operators (2.2)—(2.5) are Hermitian
with the inner product (2.1) and that they satisfy the
commutation relations' characteristic of the inho-
mogeneous Lorentz group.

It will be convenient to make a change of variables
from p' and p' to M, K, and e, with M the total mass of
the two-particle system, K the total momentum, and e a
unit vector introduced" to describe the relative motion
of the particles. (Since e is a unit vector, only its spheri-
cal polar angles are variables and altogether there are
six variables as before. ) These variables are related to
p' and p' by the equations'

K—pl+ p2

M'= (Wi+ Wo)' —K',
e=q —(M+Wi+Wo) 'qoK,

Mg —I/2(M){pl po L(m 2 m 2)/M2]Kj

qo My —1(2(M){Wi W2 L(mio m22)/M2]

X (Wi+Wo)),
l~(M) = LM' —(m,+m, )']LM' —(m, —m,)']. (2 7)

We can write the momentum space wave functions as
functions of K, M, and e. Let us, at the same time,
make a spherical harmonic decomposition in the angles
of e and write

f(p' p') =2M"'X '"(M)P fi„(M,K)I'i„(e) (2.8)

Lwhere it is to be understood that the summation is from
l=o to in6nity, m= —f to f, and that I'&„(e) is the
spherical harmonic function of the spherical polar angles
of the unit vector e]. Each state vector f can be repre-
sented either by the wave function f(p', p') or by the
sequence of functions fi (M,K). For functions f(p', p')
we have the inner product (2.1) which for functions

fi (M,K) takes the form'

1
(f,g) = —(M'+K') "'

m1+m2

Xd'K P fi (M, K)*gi„(M,K). (2.9)
lm

L. L. Foldy, Phys. Rev. 102, 568 (1956).
' A. J. Macfarlane, Rev. Mod. Phys. 34, 41 (1962).
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In terms of the new variables K, M, and e, the for any sequence of wave functions f&, with

operators H0, Pp, Jp, N0 are '
Bi~(M) =Bi(M&i e), (3.2)

(HQ f) i„(M,K) = (M'+K')'i'f i„(M,K),

(Pof)i (M, K)=Kfi„(M,K),

(2.10)

(2.11)

Gi(M)'
Bi(s)=1- dM. (3.3)

(JDf),„(M,K)= —iKXvfi (M,K)+(If)i (M,K),
(2.12)

(Na f)i„(M,K) =i (3P+K')'"v fi„(M,K)
+[M+ (M'+K')'"] '

KX (If)i„(M,K), (2.13)

where V is the gradient operator with respect to the K
variables and

(&„f)i~(M, K) = [l(I+1)]'i' P C(/1nrm) fi„(M,K)
(2.14)

III. LORENTZ SYMMETRY FOR
INTERACTING PARTICLES

At the heart of our model are two operators 0+ and
0 which are defined by

M'+K'
(n,y),„(M,K) =y,„(M,K)+

M"+K'

Gi(M)Gi(M')
X fi„(M',K) (3.1)

Bi~(M') (M' —Mais)

with C(l1nrm) a Clebsch-Gordan coefficient and with

r(=1, 0, —1) referring to a spherical component of I.
Here, the total angular momentum J0 of the two-

particle system appears as the sum of a term which

represents the orbital angular momentum arising from
the motion of the total system and the term I which

represents the intrinsic angular momentum arising
from the relative motion of the particles.

The reader who wants to understand why we choose
the variables K, M, and e, make the spherical har-
monic decomposition (2.8), and put the operators
H p, PD, Jp N0 in the forms (2.10)—(2.13), needs to
recognize that this is just what is needed to effect a
decomposition into irreducible representations of the
representation of the inhomogeneous Lorentz group
generated by H0, P0, J0, N&. ' In the forms (2.2)—(2.5)
these operators exhibit the structure of a direct product
of two irreducible representations with zero spins and
positive masses ini and m2. From the forms (2.10)
—(2.13) we see that for each fixed I and M the functions

fi (M,K) form a space which is invariant under H0,
Jp, Np. On this space these operators generate an

irreducible representation of the inhomogeneous Lor-
entz group with mass M and spin I.' Equations (2.9)
—(2.13) state how these irreducible representations are
combined to form a representation appropriate for two
free spinless particles.

[It is to be understood that integrations over M and M'
variables as in Eqs. (3.1) and (3.3), are to be from
mi+m2 to infinity. Quantities such as in Eqs. (3.1)
and (3.2) which contain an e are to be taken in the
limit as the positive number e goes to zero. 7 Our choice
of the functions 6& is limited only by the requirements
that they are real and that all the equations in which
they occur are meaningful. Otherwise the G~ are
arbitrary.

In Appendix A it is established that the operators
0+ and 0 satisfy the equations

0++0+=0 +0 =1,
0+.0++=0 0 +=1,

(3.4)

(3.5)

and are therefore unitary operators. [Here, as always,
we use the inner product (2.1) or (2.9).]

The generators H, P, J, N of the representation of the
inhomogeneous Lorentz group are defined in our model

by
H =0+H pOp+,

P=0+PpQ++,

J=n,J@,+,
N=II,Ng, +, (3.6)

py

Qy

0 HQQ +=H,

(Hf) i„(M,K) = (H0f) i„(M,K)

M2+ K2 1/4

dM'~
~

G (M)G (M')
kiv 2+K2)

(3 7)

(3.8)

(3 9)

X[1+Fi(K',M,M )]pi (M', K), (3.10)

where Fi(K',M, M') is a function which depends on the

where Hp, P0, J0, Np are the generators (2.2)—(2.5) or
(2.10)—(2.13) for a system of two free particles. Since
HD, P0, J0, Np are Hermitian and 0+ is unitary, H, P, J,
N are Hermitian [in the inner product (2.1) or (2.9)].
The unitary property of 0+ also ensures that the
operators H, P, J, N satisfy the same commutation rela-
tions characteristic of the inhomogeneous Lorentz group
as are satis6ed by Ho, P0, JD, Np. The Lorentz syinxnetry
of our model is established by the unitary representa-
tion of the inhomogeneous Lorentz group generated by
H, P, J, N. '

In Appendix B it is shown that
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function Gi(M) .The term containing Fi(K',M,M')
represents a "relativistic correction" to the Hamil-
tonian II which otherwise appears as the sum of the
free-particle Hamiltonian Hp and a separable potential
operator.

By applying the unitary transformation Q+ to the
free-particle Hamiltonian IIp, we have constructed a
Hamiltonian H which contains an interaction term. XVe

maintain the Lorentz symmetry of the theory by apply-
ing the same unitary transformation to Po, Jo, No to
produce a complete set of generators H, P& J, N for a
unitary representation of the inhomogeneous Lorentz
group. The fact that P and J are the same as Po and Jo
means that all quantities, for example the particle
momentum operators y' and y', will transform under
space translations and rotations just as they do in a
theory of free particles. Of course N is not the same as

IV. SCATTERING

HQ~= Q~IIp, (4.1)

The third, which is proved in Appendix C, is that

lim e'LIIotQ e %H pt

t~~~
(4 2)

These can be taken as the defining properties of the
wave operators for scattering by the Hamiltonian II
relative to the free Hamiltonian Hp."

The asymptotic condition is satisfied by our model;
from the three properties of Q+ stated above, one can
show that"

eiII te—iHot

tm~co
(4.3)

"E. C. G. Sudarshan, D'6l Brandeis 5ummer Institute Iectures
ie Theore&'cal I'hysics (W. A. Benjamin, Inc. , New York, 1962).~ J. M. Jauch and F. Rohrlich, Theory of I'hotons md F/ectrons
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1955},Chap. 7; J. M, Jauch, Helv. Phys. Acta 31, 127
and 661 (j958); T. F. Jordan, J. Math. Phys. 3, 414 and 429
(1962).

We now show that the interaction introduced in the
preceding section produces nontrivial scattering in the
two-particle system and that the scattering amplitude
is a manifestly invariant function.

We have already remarked that the Hamiltonian
operator II has the form of the free-particle Hamil-
tonian Irp plus a separable potential operator. Our
construction of this model has been guided by knowl-
edge of solutions of scattering problems with a separab1e
potential. " In fact the solution has been built into the
model. For Q+ are the wave operators for the scattering
problem defined by II and II()."This follows from three
facts that are proved in the appendices. The first,
which we have already noted in Eqs. (3.4) and (3.5), is
that Q+ are unitary operators. The second is a combi-
nation of the unitarity of Q~, the definition (3.6) of
H, and Eq (3.9), w. hich we state as

It also follows that the Hamiltonian operator H has no
bound states. For the ranges of the operators (4.3) are
known to be contained in the subspace of continuum
"eigenstates" of B".But we know that every state is
contained in the range of each of the operators Q+
because Q+ are unitary.

The scattering operator 5 is defined by"

(4 4)

By using Eq. (4.1) and the adjoint of Eq. (4.3) we find
that

5= lim e'~ "e—i~tQ+
t—+co

lim eiH PtQ (,—i' 0t+'
t~oe

One can use either Eq. (4.4) or Eq. (4.5) to evaluate the
5 operator. In Appendix C it is shown that

Bi (M)
(sj),.(M,K) = j,„(M,K).

Bi+ (M)
(4.6)

V. LORENTZ INVARIANCE OF THE VIVE
OPERATORS AND ASYMPTOTIC

CONDITION

We now show that our use of Eq. (4.1), the asymp-
totic condition (4.2), and the wave operators (4.3) is a,

Since B&+(M) is the complex conjugate of Bi (M), we

may write

(Sj) (M K)=s"'I'"'fi (M K) (4 i")

where hi (M) =argLBi (M)j.
Two things should be noted. First we see that, in

general, there will be nontrivial scattering. By choosing
various functions Gi(M) we can produce various phase
shifts 8i(M). This can be done independently for each
l. For example, by choosing 6& to be nonzero only for
certain values of I, we can produce scattering in those
partial-eave channels with no scattering in the others.

We also see that the scattering amplitude is a mani-
festly invariant function. It depends only on the vari-
ables l and M. That these are invariant functions of the
particle momentum variables p' and p' is evident from
an inspection of the formulas (2.10)—(2.14) for Ho, Po,
Jo,¹.The change of variables (2.7) which was used to
put Ho, Pp, Jo, No in the forms (2.10)—(2.14) is a funda-
mental part of our construction of an invariant scatter-
ing amplitude. The manifest invariance of the scatter-
ing amplitude is invariance under the representation of
the inhomogeneous Lorentz group generated by Bp,
Po, Jp Np not under the representation generated by
H, P, J, N. This is in accord with the picture of scatter-
ing which supports the asymptotic condition: scatter-
ing is between initial and 6nal states in which the
particles are free and the scattering amplitude is a func-
tion of the variables describing the initial and final free-
particle motion.
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Lorentz invariant procedure. Specifically, we show
that we get the same wave operators Q~ if we take the
limits (4.3) in any Lorentz transformed reference frame,
and that operators Q~ satisfy the asymptotic condition
(4.2) in any Lorentz transformed reference frame if
they satisfy it in one frame. We also show that Q~
satisfy Eq. (4.2) in any Lorentz transformed reference
frame if they satisfy it in one frame.

Scattering involves a comparison of the dynamics of a
system of interacting particles with that of a system of
free particles. " In the interacting system the repre-
sentation of the inhomogeneous Lorentz group is
generated by H, P, J, N. In the free system the repre-
sentation of the inhomogeneous Lorentz group is
generated by Hp, Pp, Jp, Np.

Consider a transformation to a reference frame mov-
ing in the x direction with respect to a given frame with
a velocity v=tanhu. We may use the "Heisenberg
picture" to represent this transformation'; operators
are transformed but state vectors are unchanged. For
the interacting system

II—+ II cosha —P~ sinhu

Due to the fact established in Appendix 8 that

Q~Pp ——EpQp

the operators (5.5) are equal to

&iHpt coehaQ ~
—iHpt cosh'

)
t~woo

(5.6)

which are the same as the left-hand sides of Eqs. (4.2).
As before, the same result holds for frames moving in
the y or s direction and holds trivially for frames that
are rotated in space or translated in space or time.
Therefore, wave operators Q~ satisfying the asymp-
totic condition (4.2) in one reference frame satisfy it in
any frame that can be reached by a transformation of
the inhomogeneous Lorentz group. This result depends
only on the fact that Eq. (5.6) is satisfied in our model.

Consider once more the Lorentz transformation under
which H and Irp are transformed according to the rela-
tions (5.1) and (5.2). Equation (4.1) goes into

(H coshG —I i sinhg)Qp = Qy(Hp cosh@—.Pili slnhtt)

which is valid because of Eq. (4.1) and the equation

and for the free system PQg=QpPp, (5.7)

Hp ~ Hp coshQ —Ppy slnhc . (5.2)

Under this transforination the wave operators (4.3) go
into

lim et/lt ooshat iPtt sinha&iPott sinhae iottioos—ha (5 3)

which are the same as the operators (4.3). The same
result holds, of course, for frames moving in the y or s
direction. Under transformations to frames that are
rotated in space or translated in space or time with
respect to the given frame there is no change in B or IIp
because H commutes with H, P, J, and Hp commutes
with Hp, Pp, Jp. Hence, there is no change in the wave
operators (4.3). The wave operators (4.3) are thus the
same in all reference frames which are related by trans-
formations of the inhomogeneous Lorentz group. This
result depends only on the fact that Eq. (5.4) is satisfied
in our model.

Consider again the Lorentz transformation under
which H p is transformed according to the relation (5.2).
The left-hand sides of Eqs. (4.2) go into

lim Ptirot oosha& —iPott sinhaQ eiPott sinha& —tarot oos»a (5 l)
t~~oo

(Here we use the fact that H and P commute with each
other, as do Hp and Pp. ) Due to the fact established in
Appendix 8 that

P=PP (5 4)

the operators (5.3) are equal to

ljm &iHt coshe&—iHpt cosha
)

t~wcct

which is also established in Appendix B.Once more, the
same result holds for frames moving in the y or s direc-
tion and holds trivially for frames that are rotated in
space or translated in space or time. Hence wave
operators Q~ satisfying Eq. (4.1) in one reference frame
satisfy it in any frame that can be reached by a trans-
formation of the inhomogeneous Lorentz group. This
result depends only on the fact that Eq. (5.7) is satisfied
in our model.

We emphasize that these results depend only on the
three conditions (5.4), (5.6), and (5.7). These have the
property that any two of them implies the third. In
particular, under the condition (5.7) for invariance of
the equality (4.1), Eqs. (5.4) and (5.6) are equivalent
conditions for the invariance of our use of the asymp-
totic condition (4.2) or the wave operators (4.3). These
conditions ensure that the scattering found by compari-
son of the interacting and free systems is independent
of the frame in which the comparison is made.

VI. ANALYTICITY PROPERTIES

From the definitions (3.2) and (3.3) of Bt+ there
follows the relation

Bt+(M) Bt (M) = o27rGt(M)—'. (6.1)

Using this, we can write the S matrix (4.6) in the
form" "
(sf ),„(M,K) =f,.(M,K)

+2iX'"(M)M 'At(M)ft (M, K—) (6.2)
"For the case of equal mass particles m1= m2, this agrees with

G. F. Chew, 5-Aviatrix Theory of 5trong Interactions (%'. A. Benja-
min, Iric. , New York, 1961), Eq. (9—5).
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and find that the partial-wave scattering amplitude
Ai(M) is

A i(M) — g i/2(M)M2~G (M)2/g (M) ((i 3)

The purpose of this section is to observe that the
scattering amplitude can be made to have various
analyticity properties as a function of complex variables
l and M, depending the choice of Gi(M). In general,
A i(M) is, of course, not analytic in either / or M. But
if we choose Gi(M) to be the boundary value, evaluated
at integral non-negative l and real M&mi+m2, of an
analytic function of two complex variables l and 3f,
then the partial-wave scattering amplitude Ai(M) is
also the boundary value of an analytic function of these
complex variables.

For scattering in the center-of-mass frame, in other
words for a state in which p'= —p', the variable M is

just the total energy of the two free particles. (M' is
commonly denoted by s.) A "causality" condition can
be formulated in terms of the analyticity of the scatter-
ing amplitude in the upper half 3f plane. '4 Such a con-
dition can be satisfied by a suitable choice of G&(M).
This is not surprising since causality conditions are
also satisfied by a variety of static nonrelativistic
potentials.

In the 3P=s plane the partial-wave scattering
amplitude Ai(M) has an invariable branch cut from
(mi+m2)' to infinity. Any additional left-hand cut
can be obtained by including it in the analyticity
properties of Gi(M).

It is also possible for A~(M) to have interesting
properties as a function of the complex variable l.
Specific choices of G~(M) which lead to Regge pole
behavior have been considered by Acharya. "

Interest in the possibility of describing a relativistic
quantum-mechanical system of interacting particles in

terms of just particle variables has been stimulated by
recent developments in the theory of strong inter-
actions. Most of this work is aimed at the construc-
tion of an invariant scattering amplitude satisfying the
principles of unitarity, analyticity, and crossing

symmetry. "Despite numerous calculations, no scatter-
ing amplitude satisfying these conditions exactly is
known.

The model constructed in the preceding sections
shows that the requirement of relativistic syrrnnetry is
not incompatible in a particle theory with an inter-

action which gives nontrivial scattering described by a
manifestly invariant scattering amplitude. We also see
that the scattering amplitude can have a variety of
familiar analyticity properties. Further, our S matrix is
unitary, which provides a simple illustration of the fact
that uiiitarity alone puts no essential constraint on the
analyticity of the scattering amplitude in either the
energy or the angular momentum. Finally, while the
relativistic invariance and unitarity requirements are
satisfied exactly in our model, it exhibits no crossing

symmetry. In fact crossing symmetry seems to present
a nontrivial mathematical problem: to date no non-
trivial exact solution is known for any multichannel
theory which satisfies crossing symmetry and in which
channels mix on crossing.

VII. MODEL FIELD THEORIES

In the preceding sections we constructed a model of a
system of two interacting particles by making a unitary
transformation of a description of two free particles.
By a simple extension of this technique we can con-
struct a model field theory which gives nontrivial two-
particle scattering with a manifestly invariant scatter-
ing amplitude and which satisfies all of the axioms of
relativistic quantum field theory except that it does not
transform locally. One of the authors has outlined this
construction in some detail. '~ We will just summarize
the recipe:

Take a free neutral scalar relativistic quantum field
theory in the Fock representation. Construct the pro-
jection operator to the subspace of two-particle states.
Make a unitary transformation which is equal to the
unitary transformation 0+ of the preceding sections on
the two-particle subspace and which is equal to the
identity transformation on the orthogonal complement
of the two-particle subspace.

The field theory so obtained has a standard particle
interpretation and gives scattering only in two-particle
channels. It contains a unitary representation of the
inhomogeneous Lorentz group, a unique invariant
vacuum state, and local commutation relations. It
fails to satisfy the usual axioms of relativistic quantum
field theory only in that the transformation of the fields
is not a local or point transformation. It is interesting to
note that such a violation of the point transformation
property occurs in the radiation gauge formulation of
quantum electrodynamics. "

APPENDIX A

In this Appendix we prove that the operators 0+ are unitary. Our first task. is to establish a formula for the adjoint
operators Q~+. By definition we have that

'~ J. S. Toll, Phys. Rev. 104, 1760 (1956).
"R.Acharya (to be published); thesis, University of Rochester, 1962 (unpublished).
'~ See Ref. 13.' E. C. G. Sudarshan, J. Math. Phys. 4, 1029 (1963).
'~ K. C. G. Sudarshan, Phys. Rev. 123, 2183 (1961),Appendix.
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jiIta z

PIG. 1.The contour C for the integrals (A7) and (83) is closed hy
adding to it a circle of large radius.

Using Eq. (A4), we develop the double integral term of Eq. (AS) as

where

- M2+K2 —4/4

dM" Gi(M)Cri(M")fi„(M", K)I,
M'"+K'

Cxi(M')'
dM' ——

84+(M')84 (M') (M' M&i—e) (M" M'&—ie)

( i6i

1
dM'

27ri (M' Mair—) (M" M'+i—e) 82 (M') Bi+(M')

We can write I as the contour integral

I= ds
22ri e 84(z) (z —M+i2) (M"—z+i~)

where C is the contour shown in Fig. 1 which circumscribes the part of the real axis between 222, +m2 and infinity.

The part of the contour below the real axis gives the term with B~ and the part above the real axis gives the term

with Bi+. Since Bi(z) approaches 1 as z becomes infinite, the integrand of I is of the order z for large z. Hence we

can close the contour C by adding to it a circle of large radius (Fig. 1) which contributes nothing to I. NowBi (z)

has no zeros within the region enclosed by C, so the only contributions to I are from the poles at M&i~ and

3f"%i&.These give

I=t84~(M")(M"—M+ie)] ' —LB p(Mi)(M" M+2m)] '. —

Substituting this into the term (A6), we see that the double integral term of Eq. (A5) cancels the single integral

terms leaving us with

(0+Qg+f)4 (M,K) = fi (M,K),
which is just Eq. (3.5).
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APPENDIX 8

-M2+K2 —1/4 (M&2+ K2)l/2G (M)G (M&)
(Q~H pQy+f ) tm(M, K)= (Hpf ) tm (M,K)+ &M',

firn(M',

K)M"+K' 8)p(M') (M' —M+24)
—M2+ K2 - 1/4(M2+ K2)1/2G (M)G (M&) —M2+K2 —1/4

fi„(M',K) — dM'
M'2+K2 8,~(M) (M' M~22)

(M"+K')'/'Gi(M)G/(M') M"+K' '/' -Gi(M')Gi(M")
x dM" Ji (M",K).

M"2+K2 I/„(M')(M" M'~—24)84/. (M') (M' M+—2p)

In this Appendix we derive the explicit forms of H, P, J and establish Eqs. (3.7)-(3.10).
First we find H and prove Eqs. (3.9) and (3.10).Using formulas (2.10), (3.1), and (A1), we find that

M'+K' "4
Gt(M)G/(M") ft„(M",K)I, (82)M'"+K'

where

Using Eq. (A4) and proceeding just as we did with the double integral term of Eq. (AS), we develop the double
integral term of Eq. (81) as

(z2+ K2) 1/2

dz
2mi c Bt(z)(z—M+ip)(M" —zaip)

(83)

with C the part of the contour shown in Fig. 1 which circumscribes the part of the real axis between 2)ti+m2 and
infinity. As in Appendix A, we close the contour C by adding to it a circle of large radius (Fig. 1). But nowthe
integrand of I approaches —z ' as z becomes infinite. Hence the integral around the large circle does not vanish
but contributes a term —1 to I. When substituted into the term (82), the contributions to I from the poles at
MWip and M Rip give terms in the double integral of Eq. (81) which cancel the single integral terms, as in
Appendix A. The only other contribution to I comes from the branch cut for the function (z'+K')'". Since we can
not evaluate this for arbitrary Gi, we simply name it —Pt (K2,M,M ).Adding this contribution to the contribution
—1 from the large circle, substituting in the double integral term (82) of Eq. (81), and remembering that the
pole contributions have cancelled the single integral terms, we see that Eq. (81) becomes identical to Eqs. (3.9)
and (3.10) with the definition (3.6) of H.

We could prove Eq. (3.7) by a, calculation of the above kind. But it is easier just to see, by inspecting the
formulas (2.11) and (3.1), that

(Q/Ppf) 1 (M,K) = K(Qyf) 1 (M,K) = (I"pQyf) 1 (M~K) .
By a similar inspection of the formulas (2.12), (2.14), and (3.1), we can see that

(QyJpf)i (M,K) = (JpQgf)i (M,K) .

For it is clear that the second term I of Jp commutes with Q+ and the fact that

—ixxvK2=0

makes it evident that the first term does also.

(84)

APPENDIX C

ln this Appendix we prove Eq. (4.2) and (4.6). From the formulas (2.10) and (3.1) we have that

-u+K —«
(&iHatQ & iFIatf) (M K) —f —(M K)+ dMt ~tt [(Ma+Ka)t/2 —(cv' +K )t/22)a

M"+K'
Gi(M) Gi(M')

X fi„(M',K) .
Bp/. (M') (M' M&ip)—

Ke use the identity

(G1)

M' —M+i~

(Mt2+K2)1/2 (M2+ K2)1/2

X (~2)
M' —M

00 0

eely
[(M'~K&) &/'~ (/M2+K&)1/'2 ]
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to write the last term of Eq. (C1) as

—M2+ K2 —1/4 ~,0

dM' dy pi(1/ k) f (M '+K2) 1/2 (Pf+Km) 1/0 ]

M "+K' 0, .
L (M"+K')'/' —(M'+ K')"']Gi (M)Gi(M')

X f1~(M', K) = +i dM'
Big (M') (M' —M)

-M2+K2- 1/4

M"+K'

—t,—oo

L(M&2+K2)1/2 (M2+K2)1/2]G (M)G (Ml)
d'~ &ix [(M' +K2)1/2 (Mm+Km) l y fi (M', K). (C2)

Bis, (M') (M' —M)

In the limit as t approaches W 00 this term vanishes, leaving us with Eq. (4.2).
If, for the case of 0+, we take the limit as t approaches + 00 of the term (C2), we get

-M'+K' "4 [(M12+K2)1/2 (M2+K2)1/2]G (M)G (M~)
22r—i dM' b[(M"+K')'/' (M'+—K') "2]X f4~(M' K)

M"+K' 84+ (M') (M' —M)

Gi(M)'
= —22ri fi (M,K),

Bi+(M)
which is equal, by the identity (A4), to

B/ (M) —Bi+(M) Bi (M)
fi (M,K)= fi (M,K)—fi„(M,K).

Bi+(M) Bi+(M)

Substituting this for the last term of Eq. (C1), we have that

// ) Bi (M)
lim e'~"0+e '~"f (4~(M,K)= f/~(M, K),

J Bi„(M)

which is just Eq. (4.6) with 5 evaluated according to Eq. (4.5).One can obtain Eq. (4.6) also by using the formulas

(3.1) and (A1) with the definition (4.4) of S.


