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TABLE II. 14 —+ 7+7 decays.

I+ pz0(a)
X,++ p +(3b)
E,+ ~ pn'(2k)
Q 0 n 0(2b)

E~ ~ nlrb (3b)
Y*+~ p&'(2g)
1'~e'~ pE (e)
Yo„'~pE (k)
Y,—~ nZ-(2g)
=- + -+ 'n+(3e)
"„'~ .Ono(2e)

~0(2e)~- m (3e)
-"" &0(f)

nz+(a)
z+E+(3c)
nx+(b)
p=(b)

Z+n'(k)
nE'(g}
nE'(k)
z-~0(h)
Z+E'(3d)
- ~+(e)

(e)
Z E (3d}
='& u')

Z+X0(.)
z I+(c)
Z X0(3c)
z0~+(h)
z+~-(h)
z+~-(l)
z0~-(h)

Z+E-(d)
z K0(d)

Z0X+(2c)
Z0E0(2c)

.0E+(2j)
z-~+(h)
Z0~0(r)
=" Eo(2j)

Z'E'(2d)
z0X-(2d)

="'E'(j)
z-&+(l) ="'E'(m} ~ E+(m)

get six modified Shmushkevich equations:

2(a+f)=3(b+c+d+e)=4(g+h+j )
=4(k+m)+61,

2(a+g+h+j) =6(b+c),
a+6b+3g+k+3j +m+6e+ f=Sc+Sd+4h+2l, (9)
a+6c+3j +m+3g+ k+ 6d+ f=Sb+ Se+4k+ 21

From these equations we can deduce

3(b+e) =2(g+h+ j).
So that we have the inequality

b+e) 23g,

which may be experimentally tested.
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The study of the Bethe-Salpeter equation for lepton-lepton interaction mediated by charged vector
mesons is continued. Starting from the exact integral equation, an improved approximation procedure is
developed. This reproduces the low-energy results for "allowed" processes given in a previous paper. Beyond
that, it is now found that to leading order the BS equation gives the value 3g'/42r' for the zero-energy ratio
between "forbidden" and "allowed" amplitudes, where g is the bare meson-lepton coupling constant. Some
information on the momentum dependence of the forbidden amplitude is also obtained. The mathematical
methods developed in an earlier paper are then applied to the corresponding Bethe-Salpeter equation of the
Fermi field theory. It is shown that the calculated amplitudes for both allowed and forbidden processes are
equal to zero. This illustrates the fact that if higher order eA'ects are taken seriously, there is no reason to
consider the Fermi field theory as the limiting case of a vector meson theory with a boson mass which tends
to infinity.

1. INTRODUCTION

' 'X the first paper in this series, ' we have shown that
~ ~ in the vector meson theory of weak interactions
(W theory), graphs involving more than one virtual

* Work supported in part by the U. S. Atomic Energy
Commission.

f Alfred P. Sloan Foundation Fellow.
' G. Feinberg and A. Pais, Phys. Rev. 132, 2724 (1963), referred

vector meson may give sizable contributions to the
matrix element for processes like p decay. This is true
in spite of the smallness of the meson-lepton coupling
constant g, and occurs because of the divergences which
make the perturbation expansion meaningless. In I we

to in this paper as I, We denote Eq. (4.19) of that paper by
Eq. (I4.19) in this work. For the terminology "leptonic" and
"semileptonic" see I, Ref. 2.
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also gave a preliminary discussion of semileptonic
reactions. In the present paper we confine ourselves to
leptonic phenomena only.

In I, we considered the set of uncrossed ladder graphs'
for lepton-lepton scattering, and derived the Bethe-
Salpeter (BS) equation for the scattering amplitude
described by these graphs. This equation was then
solved by an iteration scheme in which the first approxi-
mation includes the apparently most singular term in
the kernel of the BS equation. We called this first
approximation to the exact BS equation the "approxi-
mate integral equation, "see Eq. (I4.22). The remaining
terms in the equation were then treated by successive
approximations and were found to be small. In this
way, we succeeded in showing that for some physical
processes (the "allowed" ones) the contribution of the
higher order graphs is finite and comparable to the one
meson exchange, whereas for other processes (the
"forbidden" ones), the contribution of higher order
graphs is finite but small compared with g'.

In this second paper, we wish to present a somewhat
different treatment of the integral equation for the
uncrossed ladder graphs in the 8' theory. ' There are
several reasons which impel us to do this.

(1) According to the method developed in I, the
leading correction due to higher order effects is obtained
bv summing the "most divergent" terms in the per-
turbation expansion of the graphs considered. It is not
evident that this prescription is equivalent to solving
the approximate integral equation. One way of judging
this would be to know whether or not the rather
complicated iteration procedure outlined in I actually
converges, but this we were unable to ascertain. In this
paper we show that the answer obtained in I is never-
theless correct to 0(g').

This conclusion has meanwhile been reached inde-

pendently by Pwu and Wu. ' The present work goes
beyond the results of these authors in that we also
obtain, at zero energy, the magnitude of the correction
term. This term is of some importance, as it determines
to leading order the magnitude of the "forbidden"
processes. In the Pwu-YVu approximation the only
result obtained for the forbidden amplitude is: zero
to 0(g')

(2) In I we found, ' up to the accuracy of the first
iteration, that the forbidden amplitude is at most of
order g'Ing. To get the coeQicient of the leading term
in the forbidden process, it would at least be necessary
to calculate the erst iteration precisely. This is rather
cumbersome and was not carried out in detail there. In
this paper, we present a considerably simpler method

~ These are defined as the graphs in which the arrows on the
fermion lines are parallel and the meson lines are uncrossed,
see I, Sec. (Vn.b).

3 We use again the Lagrangian Kq. (I2.I).
4 Y. Pwu and T. T. Wu, University of Pennsylvania (unpub-

lished}.' See the Summary in I, Sec. VI(e). Computational details are
found in I, Appendix F.

for obtaining the zero-energy forbidden aniplitude. We
shall see that the g' lng terms which previously appeared
in various stages of the calculation are spurious. The
actual order of the forbidden amplitude will here be
found to be g'.

In order to get around the difhculties mentioned
above it is evidently indicated to return to the exact BS
equation which we gave in Eq. (IA.S) and which we
restate in the next section. As in I, we set the lepton
masses equal to zero in the kernel of this equation. By
the general power counting argument, ' we know that
any g' corrections to the lowest order amplitude can be
obtained by setting all external momenta equal to zero.
To make use of this, we set the initial momenta pi, p2
equal to zero. The exact integral equation then simplifies
considerably since it now depends on a single four-
vector momentum p. This "zero-momentum" equation,
suitably regularized, is studied in some detail in Sec. 3.
We find that the solution can be split into two parts,
a "high-energy part" and a "low-energy" part. The
high-energy part contains the divergences of the
perturbation solution, and is actually a constant,
independent of momentum for any value of the reg-
ulator mass. In the limit of infinite regulator mass, the
constant goes to zero, and the high-energy part
vanishes. In the discussion of the high energies we meet
again (as is to be expected) with the "peratization
procedures" which we outlined in I, though now slightly
different techniques are used. However, the point
remains the same, to wit, that the higher order effects
are not negligible, on the one hand, but not explosive
either, on the other, due to the self-damping at high
energies.

The remaining low-energy part satisfies an integral
equation which can be iterated, giving finite results.
That is, the solution can be expanded in powers of g',
each term having a finite coeKcient. The leading (g')
term agrees at p=0 with the solution found in I, i.e.,
the lowest order amplitude for allowed processes is
reduced by a factor 3/4. Since the corrections at zero
momenta can be expanded in powers of g', we get no
g' lng in the expression for the "forbidden" amplitudes.
Instead we find the ratio of forbidden to allowed
amplitude at zero momentum to be (3g'/4z. )+0(g').
Some further remarks on the amplitudes at finite
momenta are made at the end of Sec. 2(c) and in

Appendix B.
In Sec. 3 we apply our techniques to a field theory

with local four-fermion interactions. In lowest order,
this theory can of course be considered as the limit of
the 8' theory for in6nite boson mass, in the following
sense. Let

fg~oo g pM)

but keep the ratio of these two quantities constant in
such a way that

g'/m'= G/v2,
' See I, Secs, III and VII (a).
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where G is the Fermi constant. However, this simple
relation between the W and the Fermi theory is by no
means maintained if higher order effects are included.
This is illustrated in Sec. 4, where we apply the identical
methods of Sec. 3 to the equivalent problem in the
Fermi theory. That is to say, we deal with the set of
graphs (bubble graphs) which is obtained from the
uncrossed ladder graphs of the 5" theory by pinching
the 8' rungs to a point. Upon summing these bubble
graphs in this way, we find that the amplitudes for both
allowed and forbidden processes go to zero as the
regulator mass goes to inGnity. ' This lack of corre-
spondence with the 8' theory is evidently due to the
fact that in computing higher order graphs, one
integrates over momenta which can be large compared
to the mass m.

We are in no position to say that the vanishing of all
amplitudes proves that a Fermi Geld theory is meaning-
less, as we do not know whether the inclusion of larger
sets of graphs may change this result. However, we
believe that the present comparison between the 5'
theory and the Fermi theory is instructive. It is well
known that both of these theories are unrenormalizable.
In the light of our present results it seems to us that
this statement is as enlightening as saying that a purple
horse is as probable as a green cow.

As in I, we use regulator procedures in order to have
Gnite integrals over momentum space throughout. Only
after all such integrations have been performed do we
let the regulator mass tend to infinity. However, unlike
the method used in I, we do not regulate the 8' propa-
gator at all, but rather the lepton propagators. We
were led to this by the study of the Fermi 6eld theory.
It then turned out to be technically expedient to use
the same method for the F theory. In particular this
makes the comparison of the two theories quite trans-
parent at every stage. Presumably the particular choice
of regularization method does not aRect the Gnal
answer, however.

2. MOMENTUM DEPENDENCE OF
THE AMPLITUDES

We consider here the dependence on external
momenta of the various amplitudes. We use the same
notations as in I, see especially I, Sec. IV and Appendix
A. The allowed and forbidden amplitudes will generally
be of the form

M„„gy„(1+ps)N Ny„(1+ps)N, (2.1)

where each one of the various spinors I has in each
specific case its appropriate particle label. We noted
earlier that the lepton mass is neglected in the kernel

7 This result is true for a fixed value of the bare Fermi constant
G. We shall not enter here in discussions of limiting process which
are of the type: G —+ 00, a cutoB —+ ~, in some prescribed ratio.
For such arguments we refer to A. Abrikosov, A. Galanin, L.
Gorkov, L. Landau, I. Smorodinsky, and K. Ter-Martirosyan,
Phys. Rev. 111,321 (1958).

of the BS equation. It then follows from y5 invariance
that there can be no scalar, tensor terms induced by
the higher order weak sects.

The tensor M„„can be written as a sum of terms

M „„=nb„„+pq„q„+m„„, (2.2)

where we have isolated the first two terms because they
are the only ones which get contributions from the
exchange of one vector meson. The form factors n, P are
scalar functions of q' and I's (q=momentum transfer,
8= total energy four vector). The remaining terms m„„
can be constructed from the available independent
4-vectors, which we can take as q„, pi„, and ps„. For later
purposes we note that m„„has the following property:
If we set pi=ps ——0, and pi'+ps' ——0, but not p, ', p, '

separately zero, then m„„vanishes, whereas the terms
in n and P do not vanish. These conditions can only be
satisfied o8 the mass shell, as is easily seen in the c.m.
system of the incident particles.

In second-order perturbation theory, we have for the
allowed process

n, = n (q') = —ig'/ (q'+ m'),

p p (qs) zgs/ms(qs+ ms)

m„„,2=0.

(2 3)

(2.4)

(2 5)

According to the general power counting argument, '
the only quantity which gets a g' correction from multi-
meson exchange is 0., and furthermore this correction is
independent of momentum. That is (always for the
allowed process) to order g',

n =ns+ igg'/ms,

p=ps,

ns„„=0,

(2 6)

(2 7)

(2.8)

where g is a constant.
If we are prepared to accept this conclusion based on

power counting, rather than to demonstrate it explicitly
as we did through our iteration procedure in I, it is
evidently sufficient to calculate P, and n with all
momenta set equal to zero, since

(ig'/m')g=n(p. x~ ——0)+ (ig'/m') . (2.9)

It should again be emphasized' that the Eqs. (2.6)—(2.9)
have a much more general validity than for ladder
graphs only. It was only for the latter subset of graphs
that a value for g could be given in I, namely,

(2.10)

The general quantity p remains unknown so far, '
however, and it may be noted that p is not additively
composed of contributions from ladder graphs and from
"other" graphs. As was already noted in I, it is highly
desirable to extend to larger classes than only the

8 However, in I Sec. VI(d) we gave reasons for a conjecture that
Eq. (1.10) may well have a much wider validity.
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uncrossed ladder graphs the general method of resum-

ming graphs by ordering the contributions with respect
to their degree of singularity. In this paper we have
nothing further to say about this subject.

To return to the ladder graphs, we set Pl =P2
——0 from

the start. Because of this restriction, we cannot here
use the BS equation to say anything definite about
m„„, which vanishes at zero momentum, or about
momentum dependent corrections to n, P except that
they are of higher order in g'. It is, however, possible to
compute the leading corrections to n, P, and. m„„at low

momenta by another method, providing that we

believe that the theory really is well defined. We return
to this in Appendix B.

The information about allowed processes is contained
in Eqs. (2.6)—(2.10). For the forbidden processes we

shall find the following zero energy values for n and P.

9ig4 ig4
n= , P=

16m'm2 8m'm4
(2.11)

The results for the Fermi case, to be discussed in

Sec. 4, are expressed by

for all energies.
n=P=m„.=0 (2.12)

and put
~odd ~even (3 1)

+P (i)(1+P2(i))~ (2)(1+P (2)) (3 2)

3. BS EQUATION IN THE 8' THEORY

(a) Reduction of the Integral Equation

As in I we denote the amplitudes for the allowed and
forbidden processes by 3f,dd and M, ,„, respectively.
We introduce again the linear combinations

the two incoming four-momenta, pl', p2' the outgoing
ones, while

P2 Pl+P2 Pl ~ (3.4)

The $ symbols are defined by

kappa
= f)apf)pp —t)apf)pp+f)apf)pp+ pap pp .

The following identities are easily derived. '

&.ppA-pp=4&. p-

&.ppA"p. =4~p.&"

f pppf, p„X X,FpF, =X 2Vp2(')p„

(3.5)

(3 6)

(3.7)

(3 8)

(3.9)

In one respect, Eq. (3.3) differs from the integral
equation given in Eq. (IA.8). In the latter we had
regulated the boson propagators [(pl' —pl)'+2)2'] ' in

the inhomogeneous term and [(Pl"—Pl')'+m'] ' in the
kernel. We have not done so here but have regulated
the fermion propagators instead, as is indicated by the
notation 1/(Pl")a2 in Eq. (3.3). Here we define

j. 1 1

(p2) p2 p2+ M2
(3.10)

More precisely this means that the fermion propagator
has been treated as follows. We neglect a possible
lepton mass and put

t1 1 1

P P = 27'p), . (3 —11)
P g p2 p2+M2

This procedure maintains the y5 invariance throughout.
In this paper we determine the zero-energy behavior

of Mpg, and therefore put Pl ——P2 ——0 from the start.
Then

The superscripts (1), (2) distinguish the Dirac matrices
on the two fermion lines. We next restate the integral
equation which M„„+ was found to satisfy in I, see

Eq. (IA.8).

Pl P2 =P~

Pl P2 =P &

MpP -+ Mp„(P,M)

(3.12)

(3.13)

11' 11v= —ig2 8+
fg' (Pl' —Pl)'+m'

4ig'
taPpphpplp

(22r)4

PlP P2p

(Pl")S'(P2")a'

X
1 1 a 2 2 a

X Mp)P(pl pp2 gplyp2) pl
(pl"—p, ')'+m'

(3 3)

The meaning of the symbols are as follows. pl, p2 are

depends on a single four-momentum. As we have stated,
on the mass shell p=0, so that to get the physical
amplitude we must set p=0. In particular M„„(p,M)
does not represent a physical quantity in the scattering
problem. It would nonetheless be of interest to compute
it as a function of p, as it may occur in iteration methods

for calculating other matrix elements of interest such

as the propagator, vertex etc. We return to this question
elsewhere.

It is helpful for what follows to write the quantities
on the right-hand side of Eq. (3.13) explicitly as a
function of a four-momentum as well as of the regulator
mass M. On covariance grounds

Mpp(P, M) =n+(P, M)8 +pp~(P, M)p„p„(3.14).
9 Equation (3,9) was independently derived by Dr. T. T. Wu.
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p'+ m'

d4

(24r)4

X
P"(P"+M')'L(P P)'—+ ']

X(()1„[4n+(p M)+p"p+(p M)]

+ (1&m') [(P'—P)'~" (P' M)4.
+(P'-p).(p'- p).p"I '(P', M)]) (3»)

Take the trace of Eq. (3.15) and define

T+(p,M) =4n" (p,M)+p'P" (p,M) .

T+(P,M) is found to satisfy

(3.16)

T+(p,M) =
—4'g'(41m 'p')

p'+m'

4ig'M4 d4p/

(2~)4 P~2(P~2+M2)2[(p~ p)2+m2]

Insert Eqs. (3.10) and (3.12)—(3.14) into Eq. (3.3) and
use the identities Eqs. (3.6)—(3.9). One finds

n+(P, M) S„„yp+(P, M)p,p„

i—g'(i'„)„+ m'p„p„) 4ig'M4

reduces to the uncoupled integral equations (3.17),
(3.20) in the zero energy limit.

Before we proceed to discuss the solutions to these
equations, let us first define precisely the quantities we
are ultimately interested in. This has yet to be done,
because we have to state in which order the limiting
processes p ~ 0, M ~ ~ have to be performed. We do
this in the order just indicated, that is, we dehne

T+ lim limT+(p, M) (3.21)

lim limp'p+(p M') =0.
M-+co y-+0

(3.22)

as the physical value of the trace at zero energy.
This can be made plausible as follows: The physical

matrix element M+ of Eq. (3.1) represents the sum of
contributions of graphs of various orders. As was
explained in I, Sec. III, these contributions are, always
for zero energy, functions of g, m, and M. We have to
find this sum for 6nite Jf. In the present paper this is
done by first introducing quantities like Tt(P,M) which
do not only depend on M but also on the unphysical
(off the mass shell) parameter p, and then letting p —+ 0.
After that is done we must finally let M —+ ~. This is
the content of Eq. (3.21).

We show in Sec. 3(c) that

4+ T+(, M) (3 17)
From Eqs. (3.16, 3.21, 3.22)(p' —p)'

5$ n+=—lim limn+(P, M) =-,'T+, (3.23)
Use Eqs. (3.16), (3.17) to substitute for n+ back in
Eq. (3.15). This yields

—Zg2 1 4ig'M4
A,.(P)P'(P, M) = A,.(p)

m' p'+m' (24r)4m2

d4 /

so that at zero energy, and neglecting the lepton masses

M+ —4(+y (i)(1+y4o))y (2)(1+/ (2)) (3 24)

(b) Iteration Procedure for the Trace Equation

X
(p"+M')2[(p' —P)'+m']

X A „„(p—p') p+(p', M), (3.18)

Put
T+(p,M) = Ti+(p,M)+ Tg+(P,M),

where

Multiply Eq. (3.18) by

t' 4 P.p.)
A,.-'=-(4/p')I g,.—

3 2)'
and take the trace. The result is

ig' 16i—g'M' A„„(p)
P+(p, M) =

m'(p'+m') 3(2~)'m' p'

(P-P'). (P—P').~'(P')d'P'
X . (3.20)

(p"+M')'[(p —p')'+m']

Thus we have now found that the exact BS equation

—ig' 4ig'M4
TP(P,M)=

m' (2n.)4m'

d'P'LTi'(O', M)+ T2'(P', M)]
X (3.26)

p~2(p~2+M2)2

—3ig' 12ig'M'
T4+(P,M) =

p'+m2 (24)-)4

d4p'T i+ (p', M)

p~2(p~2+M2)2[(p p&)2+m2] (2~)4

12ig'M4

d4P'T4+ (p', M)
X . (3.27)

P~2(p&2+M2)2[(p& p)2+m2]
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Equations (3.25)—(3.27) are equivalent to Eq. (3.17).
Let us consider some general features of Eqs. (3.26)—
(3.27).

Equation (3.26) is evidently solved by

Ti+(p, M) = Ti+(M), independent of p. (3.28)

T2+(O,M) =—3igi 3g2T,+(M) M
ln—. (3.29)

nz2 m2%2

Note that some useful Feynman integrals used here and
in the following are collected in Appendix A.

In order to know the limit value for T2+(O, M) as
M-+ ~ we must of course find out how Ti+(M)
behaves with 3f. This we have done to the accuracy
where one substitutes the g' terms of T2+(p, M) into
Eq. (3.26). This yields

ig2 3ig4 M
Ti+(M) = ——+ ln-

m' 2+m'- m

where

g' M ' 48g4M"
y(M), (3.30)

4~2 nZ @ZAN

e(M) =
( )' p'(p'+ ')'

d4q

X (3.31)
q'(q'+ M')'L (q

—p)'+ m']

This means that T~+ will persist at high virtual fre-
quencies, unless it is equal to sero at all frequertcies Th. e

quantity Ti+(M) is what we called the "high-energy
part" in the Introduction. We show that Ti+(M)
indeed —+0 as we let M ~ ~ after having performed
all integrations.

Generally, it follows from Eq. (3.28) that we may
look upon the first two terms on the right-hand side
of Eq. (3.27) as "the inhomogeneity" of the integral
equation for Ts+(p, M). Because T2+(p, M) —+ 0 as

p —+ ~ we referred to it as the "low-energy part" in
the Introduction.

We now proceed as follows. First we solve Eq. (3.27)
by iteration, considering its inhomogeneity as the
leading solution, then taking this inhomogeneity
substituted in the last term of Eq. (3.27) as the next
correction, etc. In other words we do Born approxima-
tionfor finite .M. The solution thus found still depends
on the unknown quantity Ti+(M) of Eq. (3.28) which
then is of course determined by Eq. (3.26). Thus after
we have solved for T2+(p, M) to any desired order in g,
we can solve rigorously Eq. (3.26) for T,+(M). We
pursue this method for a few steps.

First of all Eq. (3.27) gives the following result to
leading order for T2"(O,M):

We estimate p(M) 1/M'. Hence

Ti+(M) —+ 0 as 1/3P, (3.32)

so that to leading order, see Eqs. (3.14) and (3.29),

M„„+=—(3ig'/4m')l'i„„. (3.33)

This result is equivalent to Eq. (2.10), as we have
from Eq. (3.1)

M„„,,dd = —(3ig'/4m') ti„„,

M„„,, =0 to this order.

(3.34)

(3.35)

kr'wi' (M' m)
(3.36)

where we have used again Eq. (3.20) for Ti+(M). From
Eqs. (3.1), (3.14), and (3.26) we find the leacling term
for the forbidden processes to be

M„...,= (9ig'/16 '~rm)b„„(3.37)

which gives the quantity n referred to in Eq. (2.11).
We have not shown the convergence of the iteration

procedure used here. If the convergence is all right, then
we conjecture from Eq. (3.27) that T+ LEq. (3.21)] is
equal to lim„oT+(p), where T~(p) = —3ig'(p'+m') '
+12ig'(2 )

—J4'd4AT+(t)k '$(p —k)'+m'] '.
We conclude this subsection with a comment on the

relation between the present method and the one used
previously. Ti+(M) is closely related to a quantity
which we encoun. tered in I, Sec. VI(d). It was shown
there, by the same trace techniques as used here, that
the essence of the peratization method lies in the
isolation of the nugatory term

( ig'/m') {—1a[ (4ig'/m—')6r (0)]}-' (3.38)

in the trace, see I, Eqs. (6.23, 6.24). d r(0) is the value
for zero argument of the Feynman propagator in co-
ordinate space, which is a quadratic divergence. Clearly,
the expression just written down corresponds to
Eq. (3.30) if in the latter we ignore the g' terms. This
then establishes a connection between the two methods.
In Eq. (3.30) we have, furthermore, an explicit expres-
sion for the 0(g') modifications due to the feedback from
low virtual frequencies.

(c) Discussion of the Equation for g+(P, M)

We have now to show that Eq. (3.22) holds true, and
therefore return to Eq. (3.20). Unlike the equation for
T+(p,M), we meet here an. inhomogeneous term which

goes to zero as p ~ ~. One may therefore ask if Eq.
(3.20) can be iterated as it stands. This is impossible,
however, to order g4 one obtains a term lnM/m in
this way. We now show that the P equation can be

We have also computed the next correction to
T,+(p,M) which is obtained by doing second Born on
Eq. (3.27). The result is, again taking the limit p —+ 0
fll st,
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treated similarly to the T equation by 6rst isolating
that term in the kernel which gives rise to the loga-
rithmic singularity just mentioned. This is done as
follows. Put

P '~"(P) (P P')"(P P').(P-P')A (P-')d'P'

C $)
3=- d'p'y(p')x —-',p",

+2 pI2(p2+ 2 p&2)

This yields

~..(p) (p p'), (p p—'). —

P'L(P P')'+~']—

@=0

I=1 (3.40)

3 p~4 2242 p2 p4+ 3P2P~2

+ +
3 (p&2+ 2r42) 2 (p&2+ 2222) 2 (p&2+ rr42) 2

4~..(p) (p p'). (p p')—. —
X y2 . (3.41)

3P'[(P—P')'+~'j

The meaning of the arrow in Eq. (3.41) is: the right-
hand side of Eq. (3.41) is equivalent to the left-hand
side as long as either side is substituted in Eq. (3.20).
It is easily checked that it is only the first term on the
right-hand side of Eq. (3.41) which gives the lnM-
singularity when we iterate Eq. (3.20) once.

This leads us to divide P into two parts, as follows:

p+(P, M) =pi+(P, M)+p2+(P, M)

p/44ig'M4
P,+(P,M) =~

32222(22r)4 (p"+2242)2

(3.42)

[Pi+(p' M)+P2+(p' M)j
X — (3.43)

(p"+M')'

16ig'M4
P,+(P,M) = E(p,p')'

2242 (p2+ rr42) 32242 (22r)4

—
Zg

p&+(p', M)+p2+(p', M)$
X (3.44)

(pI2+ M2) 2

p"
&(P,P')= —— — . (3.45)

P'L(P-P')'+ '3 4 (P+ ')'

y'
[1+X+x'j+-

(p —p')2+2242 p"+2422 (p —p')'+2242

2p p' —p'

p"+2242

Perform the angular integrations for the terms which
involve y", n& 2 with the help of

Evidently, E(p,p') is an expression equivalent [with
respect to the integral in Eq. (3.20)] to the right-hand
side of Eq. (3.41) minus its 6rst term

The pi equation is solved by pi+(P, M) =pp(M),
independent of p. Solving for Pi in the saine manner as
described earlier for T~ we find

cig4 ln (M/222)+ c2g4&i (M)
1 (3.46)

1+c2g2M2 ln (M/422)+ c4g'y2 (M)

where the c's are constants (independent of M). The
c~, c3 terms are obtained by substituting the g' part of

p2 into Kq. (3.43). To this approximation one has

pi —& 0 as 1/M'. The c2, c4 terms come from taking into
account the next iteration for p2. We have

P4$4P

4„(M)=M'
(p2+ 2222) 2 (p2+ M2) 2

E(p,q)d'q
X —. (3 47)

(q2+ M2) 2 (q2+ 4222) n

The e2 term is more singular than the ci term [cf. a
similar situation in Eq. (3.30)j, but the c4 term is also
more singular than the c3 term and the net result is
again P —+0 as 1/M'.

The kernel E(p,p') is so chosen that we can iterate
for P2. To isolate the terms which survive as P —+ 0 it is
useful to employ Eq. (3.41).After some straightforward
integration one finds

p+= lim limp+(p M) = ——+ + . (3.48)
m4 8X'm4

Remark In the der. ivation of Eq. (3.48) we have had to
consider the contribution to lim„2P2+(P, M) of the Pi
term in Eq. (3.44). This contribution is

E (O,p)d'p
g2M4P4+(M)

(p'+M')'

With the help of Eq. (3.41) and the M ' behavior of Pi,
one finds that this expression is 0(M ') as M +~. —

To find Eq. (3.22) it would not have been necessary
to 6nd P+ itself. However, this quantity is of interest for
other reasons. Let us start from Eq. (2.2) and put in
it pi= p2 ——0 as well as Eq. (3.12). Bearing in mind the
property of 424„„quoted after Eq. (2.2), we see that
Eq. (2.2) reduces to Kq. (3.14). Therefore we can 6nd
from Kqs. (3.1) and (3.48) the value of P in Eq. (2.2)
for the special case of zero energy. For the allowed
process we learn nothing new in this way, see Eq. (2.4).
But for the forbidden process we now find the result
for P quoted in Eq. (2.11).Our present method does not
suKce to obtain the energy dependent terms of this
form factor.
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FIG. 1. (a) The general
ladder graph in the IV
theory; (b) the correspond-
ing graphs of the Fermi
theory, obtained by pinch-
ing the W rungs. The graphs
are divided by the dashed
horizontal line for the pur-
pose of deriving the BS
equations.

4. BS EQUATION FOR FERMI FIELD THEORY

We start from the interaction Lagrangian

—(G/v2) J)J),*, (4.1)

A= i{JV), (1+F2)~,+eel(1+F4)~.&.

The lowest order matrix eleme nt for the "allowed"
amplitude is given by (as in I Sec. IV,IV we omit spinor
factors)

M "=-(G/~2)v "'v."'(I+& "))(1+&.-")) (42

ust as for the lV theory, one can distinguish between

correspondence between the grap s is as drawn in

As before, one defines amplitudes M,dg an M.~.~d M „for
the allowed an or i end f b'dden processes and again intro-
d s the linear combinations M~ as in q.uces e

ments of I Sec. IV,Transcribing step by step the argumen
one obtains the BS equation

G 1
~(1)~k(p»P2 ypbp2) ~ ( )

XV ' (1+F4 '))V.(2)(1+V2(2))

d p]

4G 1
~—4l~ 42",

v2 (2~)4
d p pli p22 Yr 'Yrr

X M, (p,",p,",p„p,). (4.3)
(Pi")J2' (P2")~'

The regulated fermion propagators haveve been defined
in Eq. (3.11), M(') is given by Kq. (4.2).

(l) (1+72(l))P (2) (I+P2(2)) (4 4.

Then'0

With the help of Eq. (3.8), it follows that

G 16G
d4P //

v2 K2 (2 )4

// //

P+(Pl" P2" Pl P2) (4 6)
1 8 2 8

f E . (3.4) we see that the only dependence ofBecause o q. . we
ia the totalk nel on the external momenta is viathe erne on

2
=—I'. Thus X~ may beenergy momentum vector pl+ p2=

u P 1 . But this makes it a constantaken to depen on on y.
with respect to t e 1 inth p

" 'ntegration. Thus the solution is

16GM4GI(')=-~2ii'
~2(2 )

d'k{k(P —k))

k'(k —P)'(k'+M') {(k—P)'+M')

Evidently the k integral diverges like MM2 for M~ ~,
so that

1V+(P) =0 for all P, (4.8)

2.12 . Note thath' h 1 ds to the result quoted in Eq.
equations like (4.7) are closely related to earlilier results

AU 'k et al. ' on Fermi Geld theories.
consider se aratelyWhile there is therefore no need to consi er sep

e
' = =0 it is nevertheless instructivethe s ecific case Pl ——P2 ——

, i is
'th the 8' theory to make thisfor a comparison wit e

~ ~

specialization in q.E (4.6). Using again the notations
given in Eq. (3.12), Eq. (4.6) reduces to

—G 16GM' d'p' S"(p')

p (p+M)
(49)

Th' tion is very much akin to g'the one iven inis equa i
art of the trace.E . (3.26) for the high-frequency par oq.

etween S+ and T~+.Th is there is a correspondence etw
ich~0 for 3I—+ ~And the solution: T1+——constant w ic

'
el to the solution (4.8) of the Fermicorresponds precise y o e s

I d d if we make the curious limiting process.theory. In ee, i we
m —& 0(l before performing virtual momentum

'
g

tions, then q.K . (3.17) becomes iderJI2ca/ with Eq. (4.9)
ifuseism gade of 2m-2~ 2-»2G.

Whatever the results of this section may m
t the have helped to make it abundantly

quite distinct outlook inasfar as the peratization
program is concerned.

// /JI'X +y(Pl )P2 )Pl&P2) ~

(Pl )JJ (P2 )B
"We have used Eq. (IA.4) at this point.

(4.5)
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C;(M,m) =
p2 (p2+.M2) 2 (p2+ m2) j

We have used

42(M, m)=i2r /2M ,
2

2jir2 — 1 M 1
4 t(M, m) = ln—

M' —m' 3P—m' m 2'
2i~' 2 3f 1

C2(M, m) = — ln—+
(M' —m')' M' —m' m 2M'm

in the discussion of T+.

APPENDIX B: MOMENTUM DEPENDENT
CORRECTIONS TO THE MATRIX

ELEMENT

In the previous sections, we have shown that the sum
of the uncrossed ladders for lepton scattering at zero
external momenta can be obtained from the integral
equation (3.15), and agrees with the result obtained in I.
The question naturally arises as to whether the matrix
element at finite momentum transfer can also be
obtained. In particular, we would like to know whether
the momentum dependent corrections are finite, and
if so what is their order in g'. We shall restrict our
selves to external momenta which are still "small" in
the sense of Eq. (I6.11), i.e., '(p'"')'m 2(1. In this
region, it is reasonable to expand the matrix element in
powers of (p'"')'m ', and to consider the behavior of
the separate coefficients.

To do this, we shall need a slight generalization of
the power counting argument of I, Sec. 3. In order to
give this generalization, it is necessary to be able to
determine the degree of divergence of a Feynman graph,
such as an uncrossed ladder graph. It would of course be
easy to estimate this if the answer were found by sub-
tracting the total number of momenta in the denomi-
nator of the integral from the number in the numerator.
We shall call this "over-all power counting. " However,
it is clear that this procedure is not valid in general for
multiple integrals of the type of an eth order graph. In
particular, there arises the problem of divergent sub-
integrations, which can change the degree of divergence
of the graph as a whole. This problem also arises in the

APPENDIX A

We list here a few elementary Feynman integrals
which play a role in the foregoing sections. Put

renormalization theory of quantum electrodynamics, "
where it is treated through the concept of primitively
divergent graphs. "However, that idea does not appear
to go through here, and in particular the uncrossed
ladder graphs, which are irreducible in the sense of re-
normalization theory, are not primitively divergent, and
hence we cannot conclude that all subintegrations are
6nite. Nevertheless, the method of over-all power count-
ing gives the right answer when we confine ourselves to
the leading singular terms of the matrix elements for the
case of zero external momentum. This was the case con-
sidered in I, Sec. III, where we found that for an (22+1)-
rung graph, (22~& 1), the leading term is g'"+'(M/m)'".
That this result is indeed correct can be seen by a
formal expansion of the denominator in Eq. (3.30).

However, already for the next-to-leading singularity
for zero external momentuin, over-all power counting
breaks down. Indeed, this method would lead one to an-
ticipate next to leading contributions g'"+'(M/m)'" '
(for zero-lepton mass), the argument being that the
next to leading term has two more powers of m, hence
two powers less in 3f. This would correspond to a in%
singularity to O(g4) and power singularities for n) 1.
However, the formal expansion of Eq. (3.30) shows
that actually the next-to-leading singularities are

g2n+2(M/m)2n 21n(M—/m) fpy' t2tt 22

I et us now turn to the momentum-dependent terms
(p'""/m)'. If over-all power counting were applicable

to these terms, their leading singular contributions
~g2 2n(+M/ )m2

2n(Pent/m) 2 22) ] In
follows we explore the consequences of the assumption
that this estimate is correct. (To check whether this is
true or not, one needs a more detailed study of higher
order graphs than we have made here. ) These conse-
quences are twofold.

(1) For the allowed processes, at small momenta, the
momentum-dependent terms are small in comparison
with the terms we have computed.

(2) This is not the case for the forbidden processes,
however, where the coefficient of the constant term is
actually of higher order in g than the (p' ')' term.
The above estimate leads in fact to contributions

g'(lng)(p'"'/m)' where the term in question can be
calculated from the one graph which involves two
uncrossed meson exchange. "

The Feynman matrix element for this graph is given
by the following expression, obtained by regularizing
the 8' propagator as in I. We follow our previous
notations for the external momenta.

1
M4= &t »(1+») &n(1+72)gt2t27 (1+»)» (1+»)242d'&

(22r)4 pt —k P2+0

(q —k) „(q—k), kgb (M' —m')'
X tt„,+ 8,&,+ (~1)

m2 m2 ($2+m2) (P2+M2)[($ q)2+m2][($ q)2+M2$
"F.J. Dyson, Phys. Rev. 75, 1736 (1949).
"An argument of this kind was used by T. D. Lee, Phys. Rev. 128, 899 (1962), to compute the a 1no. corrections in 8' electro-

dynamics.
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We are interested in the terms proportional to two powers of external momenta, and in particular to the loga-
rithmically divergent part of this. It is easy to see that such terms come only from the term proportional
to (q—k)„(q—k),k,kl. We therefore select this term, and rewrite it as

g
241 (pl pl fr) k(1+ Y5)241242 (p2 p2 fr)

(22r) 42254 pl k
(M' —2252)'

X &(1+y5)N2-—
p2+k (k2+2422) (k2+M2)[(q k) +2225]2[(q k)2+M2j

(82)

For simplicity, we calculate this on the mass shell in the approximation where the masses of the external fermions
are also neglected. [We have already neglected the masses of the virtual fermions in writing (81)j. In this case
(82) simplifies tremendously, and becomes

k„k.(M' 2252)'d'—k
[4g4/(22r) 4' jul'y„(1+y5) 24,242'y„(1+y5) 242

(k'+2252) (k'+M') [(q—k)'+m2j[(q —k)'+ M'j
(83)

%e notice that in this approximation, the integral
only depends on the momentum transfer q. Further-
more, the term Pq„q„ in Eq. (2.2) gives zero in this
approximation. Therefore, the expression (83) contri-
butes only to n(q2) of Eq. (2.2).

The integral can be evaluated by the standard
technique of introducing Feynman parameters. Upon
doing this, and expanding the resultant integral in
powers of q', we obtain the following results. There is a
constant term proportional to M', which has been in-

cluded in our zero energy solution (3.37). There is also
a term proportiorial to q' with a coeKcient proportional
to 1n(M/m). Specifically, this term is

—ig'q' 'M
lil —241 'y&(1+r5)241242 'r&(1+r5)242.

24m'm4 m

proportional t:o q2/225'-, and of order g'ln(1/g). The
contribution of this term to the quantity M„„,, „„is

M„„,,dd ( 3ig2/4———m2) b„„+ 0 (g'), (86)

M„„,.„,„=(9ig4/162r2m2)il„„

+ (g'i Ing/242l2m4)q28„„+O(g4)P„„, (87)

—gZ g
n—bf, v ~

24~25'l2 ~2 g

This expression agrees with the corresponding term
in I, Eq. (6.16), calculated by solving the approximate
integral equation.

The results of the text and this Appendix may be
combined to give expressions for the allowed and
forbidden amplitudes, neglecting the fermion masses.

The remaining terms are 6nite. Ke see that there
results a term, in the forbidden amplitude, which is where the tensor E„vanishes at zero momentum.


