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Po1arization Effects in the Production of Intermediate Bosons*

H. OBERALL

Harrison M. Randall Laboratory of I'hysics, U'night. 'rsity of Michigan, Ann Arbor, Michigan

(Received 3 September 1963)

For the coherent production of intermediate bosons by neutrinos or muons in the coulomb 6eld of nuclei,
we evaluate total cross sections, angular distributions, and spectra of the leptons appearing in the production
reaction, and in particular polarization effects, e.g., the components of the polarization vector of the boson
as a function of production angle and energy, and the angular distributions of charged leptons from decay in
Right, which are characterized by the strong circular polarization of the boson. The angular distributions of
2' decay are obtained also. In the calculation, we use the WeizsKcker-Williams method in covariant form,
another demonstration that this convenient calculatory shortcut lends itself perfectly to the evaluation of
polarization effects.

I. INTRODUCTION

~ XPERIMENTAL evidence for the existence of the
~ intermediate vector boson 8', as postulated by

I.ee and Yang, ' has not been unfavorable in the results
of the well-known neutrino experiment of Danby et al.'
If actually there is such a particle transmitting the weak
interactions, one should be able to produce it relatively
copiously with leptons, the cross section being propor-
tional to the first power of the weak-interaction coupling
constant. Neutrinos are preferable as a producing agent
by their absence of strong or electromagnetic interac-
tions, but muons may be suitable also since their electro-
magnetic cross sections are small. Total. cross sections
for 8' production by neutrinos have been obtained by
various workers' '; the latter authors also stated the
circular polarization of the boson. ' In the present work,
we obtain angular distributions, spectra and total cross
sections of the production reactions

where the nucleus acts coherently, and also of the
"charge conjugate" reactions of r (1c) and p, (2c) on
Z. Further, we calculate angular distributions of the
subsequent decays in Right,

(3)

where / is an electron or muon, as well as

W+ —+ rr++z-',

which may have a rate' comparable to reaction (3),
* Supported in part by the V. S. MIce of Naval Research.
'T. D. Lee and C. N. Yang, Phys. Rev. 108, 1611 (1957);

Phys. Rev. Letters 4, 307 (1960).' G. Danby, J.-M. Gaillard, K. Goulianos, L. M. Lederman,
N. Mistry, M. Schwartz, and J. Steinberger, Phys. Rev. Letters
9, 36 (1962).' T. D. Lee, P. Markstein, and C. ¹ Yang, Phys. Rev. Letters
7, 429 (1961).

4 V. V. Solov'ev and I. S. Tsukerman, Zh. Eksperim. i Teor.
1'iz. 42, 1252 (1962) I translation: Soviet Phys. —JETP 15, 868
(1962)j.' J. S. Bell and M. Veltman, Phys. Letters 5, 94 (1963).' J. S. Bell and M. Veltman, Phys. Letters 5, 151 (1963).' I. Bernstein and G. Feinberg, Phys. Rev. 125, 1741 (1962).
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and of the charge conjugate decays (3c), (4c). In addi-
tion, the polarization vector of 8' is obtained as a
function of production angle and energy, and it is seen
that the W+ in (1), (2) has a high degree of circul. ar
polarization, left-handed for process (1), but in case
(2) with a sign depending on the anomalous magnetic
moment of the 8'.

The method of calculation used is the Weizsacker-
Williams method in covariant form, ' which provides an
effective economy of calculation without appreciable
loss of accuracy. The applicability of this method for
the calculation of polarization efkcts, already pointed
out earlier, ' "is again demonstrated here.

In Sec. II, the l—v and the 2x decay of the intermedi-
ate boson are discussed, in particular if the latter is
polarized. In Sec. III, we obtain cross sections for lV
production by a neutrino or a muon on a free photon,
which are needed in the Weizsacker-Williams calcula-
tion. The covariant spectrum of equivalent photons is
presented in Sec. IV. In Sec. V, three- and four-dimen-
sional forms of the density matrix of the vector boson
are discussed, and are subsequently utilized to obtain
the results presented in Sec. VI, i.e., the angular distri-
butions of charged particles in 8' decay; there, the total
cross sections and the spectra and angular distributions
of leptons produced together with the boson are also
given.

II. DECAY OF THE 8"

The decay (3) is described by an interaction
Lagrangian

&r~r =rgb' 'r4'r~(1+'rs)4'. pr*+I c,
where g is related to the vector coupling constant of the
universal Fermi interaction, Gv= 10 sos„s (rrs~= proton
mass), by g=2—

&Gv&M, with the mass M of the inter-
mediate boson. The symbol * on the boson field p&

means Hermitean conjugate for X= 1, 2, 3, and minus

A. M. Badalyan and Ya. A. Smorodinskii, Zh. Eksperim. i
Teor. Fiz. 40, 1231 (1961) Ltranslation: Soviet Phys. —JETP 13,
865 (1961)j.' S. Sarkar, Nuovo Cimento 21, 410 (1961).

"A. M. Badalyan, Zh. Kksperim. i Teor. Fiz. 43, 608 (1962)
Ltranslation: Soviet Phys. —JETP 16, 436 (1963)j.



P RO DUCT I ON OF I N TERM ED lATE BOSON S B445

Hermitean conjugate" for X=4. We shall assume that
the lepton in Eq. (5) is massless, since one may show

that this leads to errors of order (m/M)' only, with m

the lepton mass, even for decay in Right. It follows then
that the 1+ in Eq. (3), (3c) are created with 100/o
right- and lefthandedness, respectively, from the chiral-

ity conserving character of Eq. (5). Calling q the four-
momentum of the W, we find for the energy of the
charged decay lepton

1=-',M'(qo —q t))
—', (6)

where 1 is its momentum, and lan=I//. The free boson
satisfies a Proca equation, equivalent to a Klein-
Gordon equation for its components and a subsidiary
condition

8 q) /gx), =0 (7)

One may therefore choose three independent polariza-
tion four-vectors (two transverse states of linear polari-
zation, one longitudinal state),

e&') = (aXq/I aXqI, 0),
e &') = [qX (aXq)/ I q X (aXq) I, 0],
~")=M-'(vo«/I «I, ~l «I),

normalized to ~),*e&=1, and satisfying

w =GvM'/6~v2. (14)

The matrix element for 2m decay of the boson may be
written down' on the basis of the conserved vector
current hypothesis":

&2gF.(M')
OIt = e),*Q)„

(SqoE,A'p) '" (15)

with F (M') the pion form factor at the value of the W
mass, and Qq= (p,—p,))„where p, 0 are the four vectors
of the charged and neutral pion in reactions (4), (4c).
It leads to an angular distribution of x+:

dw g'F.'(M') pP
&))

*
)) )

dQ, 8~2', APE. —2' 'qo

or again, with neglect of the pion mass m,

g2F 2(M2)p 2

* 2

dQ,. 8x2M2qp

(16)

(17)

predominantly along the circular W+ polarization
direction (or opposite to it in W decay), which agrees
with the simple helicity arguments. The total decay
rate is found from the above as'

Q ) "*~,"=&), +M 'qadi
with

(9) p. =5M'(Co qp. ) —'

Circular basis states may be chosen as

6 + = 2 1/2(~(1)+ j~c'2))

All of these satisfy e"'q=0. Equation (5) leads to a
decay rate

g2$2

(6*' l6' V+ E*'
V 6 '1—E*' El' V

d0) 2m'M2qo
+&u*&dpve&pask) (11)

In the W rest system, and with a linearly polarized W,
the angular distribution of ~+ is, from Eq. (16),

dm g2 ( 4m. 2 '/'
MF.'I 1— (e p.)',

dQ, 32X2 4 M2
(19)

thus, the m's being emitted along and against the
polarization vector. Circularly polarized bosons give
an angular distribution

dw g' ( 4m. 2 '"
MF.'I 1——[1—(r.&" p„.)'], (20)

dQ, 647r' ( M'
with v=q —It the neutrino four-momentum, for both
reaction (3) and its charge conjugate. In the rest system
of the W, we have thus an angular distribution

dR' GyM
L1—('t)']

dQ~ 24a2K2

the m's coming out in a plane normal to the direction of
circular polarization. Equations (19), (20) apply to

(12) both W+ and W decay. The total decay rate follows as

for Eqs. (3) and (3c), if the boson is linearly polarized;
i.e., the leptons come out predominantly normal to the
boson polarization. For a circular polarization of the W
in the ~a~3& direction, we find

G HAPP '(3P)( 4m ')'"
VO= —-I 1—

24)).v2 4 M'

as shown earlier. '

(21)

AN GyM
[1~ &(3) .)]2

dOt 2'z 242

III. W' PRODUCTION ON A FREE PHOTON
(13)

"R. P. Feynrnan and M. GelI-Mann, Phys. Rev. 109, 193"G. Wentzel, L'infuhrung in die Quantenthorie der 8'ellenjelder (1957).
(Franz Deuticke, Vienna, 1943), p. '72. "T.D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962).

A recent investigation of the field theory of vector
bosons is due to Lee and Yang. "A boson-photon three-

for W+ decay, but with the & sign replaced by W for vertex (boson p, a ~ p', p with emission or absorption
W decay. Thus in Eq. (13), the charged lepton appears
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wgi
/

q, t ~Mf

(b) With the notation P=(p, p+), P'=(p', p), X=(si, s')

appropriate for reactions (24) and (28), respectively,
neglecting terms of order (r)s/M)' and using the dirac
equations and the relations e k=0, e q=0, Eqs. (26)
and (30) may be simplified and written in unified form
as

I'i.o. 1. Feynman diagrams for reaction (1).

of a photon k, ti, polarization four-vector ep) is described

by

Zi r,
= se tp*ep[b p(p +p )„5p(p+K(p p ))p

tis (p+"(p p)) j (22)

z being the anomalous magnetic moment of the l'V, and
the boson propagator may be taken as

Sp, = i(b —+pM 'PpP„)/(P'+M') . (23)

—2q„yp+ (1+~)(b„pk y —kpyp)
2 JltP

P+M'

+- y, ; (31)
X'+m'

the upper (lower) sign will always refer to the v(ti)
initiated reaction. The cross sections for reactions (24),
(28), after summation (or averaging) over photo i and
lepton polarizations, are obtained in invariant form as

nGyM' dt' dy
do r = ———

ep e.*Q.p 1

4%2 s4 2w

In lowest order, the two diagrams of Fig. 1 contribute
to the process [needed in the Weizsacker-Williams
treatment of reaction (1)]

(32)

nGy JJt/I' dt' d(p
doz =- 6p6(y 0p )

*
SV2 s'4 2x

(33)(24)v+y —p ti +1'l'+

aM. give rise to a matrix element"

5K = ege„e,*stit —(p)y4T»(1+pi)u„(p'),

8,+M 't t 1
2'» = (1'p),.— v.+v p v„

P+M' lyly —ZtS

Q p Tr(1+ye)—t—t „(P')Tpgi(P) Tp„ (34)
(1'„)p.———(q+t) pbp. +[1+~(t q) jpbp. —

+�LV+i(q t)j.b»—
t = q

—k =p' —p, st =p —k =p' —q.

where T» differs from T» by the replacement

pppzpp ~ ypypyi„and with lepton projection operators

X,(P) = iP.'~. , -
tt i(P) = i(P y—.aim) iP —y.—,The assignment of the momenta may be read off from

the diagrams in Fig. 1; in particular, p is the initial
neutrino. This matrix element may be shown to be gauge
invariant.

Cross sections for reaction (2) have also been obtained
before. ' "To calculate it using the Weizsacker-Williams
method, we need to consider the reaction

(35)

the latter approximation leading again only to the
neglect of terms (p)t/M)'.

If one evaluates the matrix elements for the reactions
(24c) and (28c) with charge conjugate leptons and
bosons, one obtains exactly the same results as above,
the only difference being in the sign of terms propor-
tional with m, which were neglected by us. This result
agrees with Theorem 1 of Lee, Markstein, and Yang. '

The expression (34) consists of an even and odd part,

(28))++V ~ v+~+,

whose matrix element is given by the two diagrams of
Fig. 2 as

with e'=4~n=4rr/137, and where the W polarization is
(») still unspecified. The role of the azimuth lt will be dis-

cussed later. The additional factor -,'in Eq. (33) comes
from the initial spin average for unpolarized muons. We
have

'3''= ege„e,*vi (P+)y4—Tpp'(1+ye)n„(p), (29)

with v the negative-energy spinors,

s'= p++k='P+~l

(o)

0'p dp 0'p

+
q, e w

(b)

(36)

a„.+M-'~.~„
I'pp'= (1'p)", —, V.+Vp—, .mp.

te+Ms sy 'yi, +itN
(30) q,

W

"Ke use Pauli's notation for four-products and Dirac matrices;
e.g. , c b a b+u4b4, a4 iao.

~' M. E. Kbel and W. D. Walker, Phys. Rev, 122, 1639 (1961). FIG. 2. Feynman diagrams for reaction (2).



The terms AI,„&'), etc., are listed in the Appendix.

IV. EQUIVALENT PHOTON SPECTRUM

The conventional Weizsacker-Williams method is
inapplicable to our case since there exists no rest system
for the incident neutrino. The exact covariant formula-
tion of photon exchange reactions given by Gribov et ul."
can also not be used, since its derivation assumes a
summing over the polarization of the Anal particles and
does not seem immediately generalizable to the polar-
ized case. The covariant Weizsacker-Williams method of
Badalyan and Smorodinskii, however, is appropriate
for polarization calculations" and shall be used here.
We shall also show that its results agree for high energies
(p'))M, calling p'= ~y'~) with Gribov's results. Since
it was derived for initial particles with mass, we shall
trivially reformulate it here for incident massless
particles.

The idea is to obtain a cross section of type of Eq. (1)
by multiplying the cross section of Eq. (24) on a free
photon by an equivalent photon spectrum representing
the nucleus Z and integrating over it; the exchanged
photon is thus treated as being on the energy shell. The
Fourier components of the field contributing the ex-
changed photon,

A(k) =2rrZek sPb(k P)F(k'), (38)

with P=Ps+Ps, Pt, s being the momenta of the nucleus
before and after the photon exchange (and k =Pt Ps), —
and Ii being the nuclear form factor, may be gauge-
transformed into

which are given by

At, &'&+ (1+s)As„&'&+(1+a)sAs
t'sQ—""'=

(ts+M')'

B,.s '+Br., ' + (1+it) (Bs., ' +Bs.s ' )

(ts+ M') (X'+rrt')

(i)

(37)
(X'+srs') s

p being the incident particle in the photon-exchange
reaction. We And the properties e' e'= 1 and

e' s=0, (43)

i.e., the photon has no scalar component in the center-of-
momentum (CM) system of p' and k, where s=0. The
I.orentz condition is however no longer satished in our
new gauge, i.e., e' k/0. The energy of the pseudo-
photons ko in the CM system may be written invariantly

co= —s k(—s') '",
and the number of equivalent photons in the invariant
interval d4k is therefore

diV(s' k') =J(ro k')d4k r„„s„s+V, (45)

integrated over a space-like 3-surface orthogonal to s,
with v-„„ the energy-momentum tensor of theelectro-
magnetic field, since Eq. (45) reduces to frssdV/ks
in the CM system. If the expression for 7-„„is inserted,
we find

kt ——k —e'(e' k),

and the last two factors may be rewritten as

d'kb(k P) = b(Pss+Mrrs)d4Ps

(47)

—ds'dk'dp
(48)

8L(p' Pr)' p"Pr' j'"—
with g the azimuth of Ps, integration over it will result
in an averaging over the equivalent photon polarization
)as was already done in obtaining Eqs. (32), (33)j, as
shown in the following. If we write

d.V =dh'(@/2~), (49)

then the Weizsacker-Williams cross section is given by

art'(k') s k 1 s'k, ')d&V(s', k') = 5s 1——
2rrs k4 s P 2 (s k)'

X.8(k P)d4k, (46)
where

with
A (k) = 2rrZek 'h (k P) F—e'F (k'),

P=P'+k'(s P)'(s k)
—'

(39)

(40)
d~~s =2dÃ' —(d~,)„.(,

2'
(50)

e'= S '(P ks. P(s k) ');——-
the four-vector s is given by

s= p'+k,

(41)

(42)
' V. N. Gribov, V. A. Kolkunow, L. B. Okun', and V. M.

Shekhter, Zh. Kksperim. i Teor. Fis. 41, 1839 (1961) (translation:
Soviet Phys. —JETP 14, 1308 (1962)j.

and the space-like polarization four-vector of the
pseudophoton (which is thus linearly polarized) is

where (do.~),„~ is the cross section of y+p' —+final
state, with a linearly polarized p on the energy shell
(k'=0); the factor 2 follows from considerations of
incident Aux.

It may be shown now that, as far as calculation of
do„ is concerned (where k'—0), the equivalent quanta
travel along P~, have their linear polarization vector
e' normal to Pt, and that e' lies in the Pt, k plane (lt
being here considered the nuclear recoil), "which in the
laboratory system is also the plane of p' and the nuclear
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k —2P$' k
p (51)

recoil, or the plane of y' and P~, since the aximuth P is
invariant under the Lorentz transformation from the
CM to the laboratory system. For the proof, write
P2 ——Pg —k and obtain

and considering also the magnitude of the limits in the
Weizsacker-Williams integration over dk, which, as
discussed later, are determined by the nuclear form
factor and are of order (M'/P')' (lower) and m„' (upper
limit), we finally find

from which follows"

ko ——v k —(k'/2Zi), (52)

@2~ F2(k2) P 2(P[. k)2 d~2

[fos [v— (d[T,) 1+ dk', (61)
2or k' k'(Pi p')' P' k

where v= Pi/Ei. Since in do~, k'—0, we get

ko=v k. (53)

Decomposing k into components parallel and normal
to v,

we may write
k=k[ [+kg, [ k[[=vko[[

k'=0=k, '+ko'(i[ '—1) .

(54)

in a system with ~—1, ko need not be —0, but we must
have

kg—0, (56)

or kffPi. Naively, k could be thought of being the
propagation direction of the pseudophotons, and the
first statement were proved. However, since now in the
CM system e' k/0, the photon polarization were not
transverse. We must thus, following Smorodinskii, '
consider ki (with ki e =0) as the propagation direction.
But since we may rewrite

ki ——5—'I kP'+k'(s P) (s k)
—'(2Pi —k) j, (57)

and using (56) for d[T~, ki is
I IPi, proving the first state-

ment. Further, e' lies in the Pi, k plane from its defini-
tion (41), and since ki e'=0 and [Eo.~

"sees" kiffpi, e'
is J Pi. Taking, then, [[[[ as the azimuth between the
p', e' plane and the p', P2 plane, and carrying out the
integration over dP, we obtain from (50):

[E[rs'w =2d+ ([f[ry) unpol ~ (58)

The expression for dE' may be shown to agree with
the term containing u of Gribov et at." in the high-
energy limit, P'&)M I the b term of Gribov has to be
disregarded anyway since b is unknown; in our case,
it may be considered negligible if the leptons in reac-
tions (1), (2) are muons rather than electrons, ' and for
this reason, we shall always think of muons produced
with the IF only]: From the energy denominators in
do.~, it follows that in reactions (1), (2), the orders of
magnitude of k are in the laboratory system (with M[v
the mass of the nucleus):

k -M'/P' k -M, ko-M'/M[v[ (59)

(thus, if we take a heavy nucleus, A '«1, we have
ko«

I
k I, and moreover P'—

I p I +[7o); we then obtain

(M+ re)'& s'& 2PX, —
(s'/2P')'( k' &E'

(62)

(63)

We shs, ll now insert do ~ from Eq. (32) (for the case
of the p-initiated reaction, do» the treatment is almost
identical and shall not be described here; the main dif-
ference is the additional factor —,.) The calculation will

be done for the specific target material copper, Z=29,
2 =63.5; the corresponding form factor (of Fermi type)
is given graphically in Ref. 5 and may be approximated
by the polynomial

F(k') = 1—3 (k/X)'+2 (k/X) ', (64)

with E=0.2132m„. We find, carrying out the
integration:

with

Z20.2GyM~ dS~ d y
dfTw w= Bdt'o, o.*Q—.p,

2m.y2 s' 2x
(65)

8- (1+67') in'+-,'(1—Y')+4K'(1 —Y)
+-o(2+3K') (1—Y') —-', (1+3V') (1—Y')
——'(9—4V') (1—Y4)+ (12/5) (1—V')

——,
' (1—V'), (66)

F= —s'/M'$,

and with the initial energy parameter

j= 2p'K/M'.

(67)

(68)

Since Eq. (65) is in invariant form, we may evaluate
it in the laboratory system (Pi ——0). The laboratory
quantities

I p I, I
k I, and 8 needed in d[T~ are found from

k'=0 and the statements after Eq. (50) by solving

in. agreement with Ref. 16 if p'))M
I

so that the addi-
tional term (P' k)/(p' Pi) in the square bracket of
Ref. 16 may also be dropped], which we shall always
assume in the following. The way we derived. the pseudo-
photon spectrum, however, does not place any restric-
tions on the polarizations of the outgoing particles, in
contrast to Ref. 16.

Limits on the s' and k' integrations are given kine-
matically (s=p'+k) and from the properties of the
nuclear form factor F(k'). U we assume F= 0 for k' &~E',
we find, using the approximations after Eq. (59):

sp[» s.k, (s pi)'))s'p—io, —(60)

' I. Ya. Pomeranchuk and I. M. Shmushkevich, Nucl. Phys.
23, 452 (1961).

I
p'I+ Ikf =po+[Io,

fp'f —fkf = fpfcose+ fqfcos8,

I p I
sin8 =

I q I
sin0, (69)
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M [pl )'" M
0&

l~l I

p'I & (Ip[[p'I)'"
(73)

If one considers polarization eRects, introduction of the
density matrix is in order.

V. DENSITY MATRIX OF W

The intermediate boson has spin 1, it is however
represented in covariant formulation by a four-vector

p)„ thus, although a 3)&3 density matrix p' should be
sufhcient to describe the 8', we have in our calculation
formally to deal with a 4&&4 Hermitean density matrix
of the W produced in reaction (1):

with e=g(p', q), 8=/(p', p), and considering lp'I,
I (1[, and 8 as given. Note that the azimuth (() remained
invariant under the Lorentz transformation along p'
that brought the nucleus Pi to rest. We now have to go
over from variable ds'dP to dxdy, where

x= I(1[/I p'I, v=cose (70)

The Jacobian of the transformation is found to be

ds'd P = [4s'p "x'/xo(2 xo—xy—)]dxdy

with xo ——qo/P', and one obtains the limits

~-'& x&1,
1—(M'/P)L(1 —x) (x&—1)/»'3&~&1 (72)

The differential cross section of reaction (1) [and simi-

larly (2)] is found immediately from Eq. (65) using
Eq. (9). We may still remark that for p'))M, the angu-
lar distributions are mostly forward, since from the
resonance denominators in Q.„ follows the order-of-
magnitude estimate

To find the probability for decay in Right of the 8"
produced in reaction (1), one gets from Eqs. (11) or
(17)

dw/dO), . Trp——R i

where for l—v decay

(79)

R p=(g't2/2m'M'qo)(l pt)+p tp
—8 sl p+lpp, c, ,p), (80)

for 2m. decay,

R,()= (g'F '(M')P. '/ S~' M' q)Q.Q, . (81)

From these equations, the decay angular distributions
have been calculated. It is gratifying to note that
q R s=0, since then the terms in p of Eq. (77) that
contain a q give no contribution; a general E p is a
superposition of expressions e ep and thus has to satisfy

q R p
——0, since ~ q=0. Strictly speaking, terms in p

that do not vanish when contracted with q would have
to be removed from Eq. (77) by a projection operator.

For the question of the polarization state of the pro-
duced W, one preferably deals with the 3X3 density
matrix p'. In entirely diRerential form, p' reads

~' '= -"'*s"'Q-s(TrQ+M 'q q.Q") '

of unit trace, from which the probability of a pure
state m of density matrix

(p~ ), ~(i)*.~(m)~(iii)*. ~(j) (83)

may again be found by

probability to find a W in a specific pure state is given by

I,=Trpip.

p= 7pin& ) (74)
~r)s= Trpb, p ~ (84)

~(i)~(i)*
I '4 (75)

of trace 1; a general density matrix is a superposition
of such,

where r is the transition matrix, and the density matrix
of the initial state p;„=1 in our case. For a pure state i,
the density matrix is

In the calculation, we take as basis vectors the right-
handed set

"'= (p'X q/ I
p'X(1 I, 0),

"'=[aX (p'Xa)/I eX (p'X q) I, 03,
~"'=(qoq/Mlel, ~l~l/M)

p=Pc p (76) The expression (82) must be compared with the general
8-parameter form of the 3&&3 density matrix"

with P c„=1.The density matrix of the W produced
in reaction (1) is, from Eq. (65),

) '=-', [1+~ t+P,, (~;~;+~,~,)] (s6)

x' dxdp dp
p.s —— B(TrQ+M 'q, q,Q„)—

2—xp —x'3t' s xp 2g

x dxdp dy
XBQ.p —, (77)

xp —sp s sp 27&

with all those factors retained in numerator and denomi-
nator that contain variables to be integrated over. The

P))=P22= —g, P33= 2; P', =0(~/j ) (87)

"R.H. Dalitz, Proc. Phys. Soc, (London) A65, 172 (1952).

with t the operators of angular momentum of unity, 0;)

the polarization pseudovector, and P,, the 5-parameter
symmetric traceless quadrupolarization tensor. One
finds, e.g. , for a pure state of circular polarization in the
~3 direction:

O.'j —O,'2 —V ) n3 3 ~
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agreement with those of Ref. 5 (for ran=0), rs which
demonstrates the accuracy of the Weizsacker-Williams
method. One notices that there is a strong dependence
on the anomalous magnetic moment z of the lV.
Figure 4 presents the total cross section of reaction (2),
which turns out to be much smaller than that of reaction
(1). This is however only a threshold effect Lcaused by
the difference of the diagrams of Figs. (1b) and (2b):
diagram (1b) gives a much larger contribution than
diagram (2b) near threshold', whereas the asymptotic
expressions for oq s of reactions (1) and (2) for $

—e ~
(in the second case, $=2p+E/M', calling p+ ——lp+I)
agree with each other except for the additional factor —,

'
for reaction (2): We have'

o tvrr ~ (Zen'Gv/&s v2) (rr —1)s inc&.

50

20

(lO cme/Sr), Copper
d x' dQ~

M=0.6mp, p'=4.5mp

K=I
K=O

IO

I.O—

( I
0-55 2)

Copper; M = 0.6mp
p+ =4.5mp

(+: p+=6.0rnp, K=O

I.OO ,99 ,98 .97

Fro. 8. Angular distributions of muon in reaction (1).
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(1) are 0.6 for M=m„, p'=10m„and 0.40 and
0.25, for M=0.6mp and p'=4.5m„and 6mp, respectively.
The emitted proton may possibly be observed.

Figures 5 and 6 show laboratory spectra of the muon
produced in reaction (1) plotted versus x'=

I p I/P'; one
sees that the muon is generally of low energy, and the
8' thus of high energy; the 8"spectra are approximately
the same if x'is replaced by 1—x, x= lql/p'. The polari-
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Polarizotion Vector a of W; M=0.6mp, p=4.5m'
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Fro. 7. Spectra of W produced in reaction (2).
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One should note, however, that this asymptotic form
is of rather academic interest only, being valid at those
extremely large energies where in'$))lns].

In this work, no incoherent processes have been con-
sidered, i.e., the reactions (1), (2) occurring in the field
of a single proton which is knocked out of the nucleus
in the course of the process. Only near threshold would
this reaction be of importance: from'Ref. 5, ratios of
incoherent/coherent total cross sections for reactions

-I.O

I I

.995,990
1.5—

Process p++ Z

I.O—

0.5—

0 I I

I I.995,990
~Z+Q+W

I

.995 .990

I I I I

'9 Pote added As proof. Our results are below those of Ref. 5 by
less than 10'Po, between p'/m~=3 and 10. Disagreements reported
between exact calculations of 8' pair production by photons
LW. Williamson and G. Salzman, Phys. Rev. Letters 11, 224
(1963)j and earlier Weizsacker-Williams results are due to the fact
that the latter represent asymptotic expressions, valid at &10'
BeV only.

-0.5

-I.O
COS 8IAI

x=0.90———-x =0.72

Fro. 9, Polarization vector of boson in reactions (1) and (2).
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ll
dw
4~, c

M= 0.6mp, p = 4,5mp &= 0

x= 0.90———- x=0 75

The polarization vector e of the boson has been eva-al-
uated from Eq. (88) in the differential case; we find the
first component ar =—0 I with respect to the basis o q.
(85)], which is to be expected from symmetry. The
remaining two components are shown in Fig. 9; we see
that in reaction (1), the boson W+ has a large degree of
left-handed circular polarization I right-handed for the
W in reaction (1c) where rr has the opposite sign],
which is especially large in the forward direction. In
reaction (2), W+ is still strongly circularly polarized,
but the sign of the polarization depends on the anomal-
ous boson moment. Again, the 8' circular polarization
is opposite to that of the W+. Here and in other figures,
we present the results at p' or P~——4.5m~ and for
M=0.6m„only, but they do not change qualitative y
at other values of these parameters.

I i I

I.OO 0.99 . 0.98:097 0.96

FIG, 10. Angular distribution of charged decay lepton and
pion from boson produced in reaction ( ).

zation of the produced p is almost 100% left-handed
[or 100/~ right-handed for p+ in reaction (1c)], from
the structure of the matrix element in Eq. ~

In Fi . 7, we plotted the W spectra of reaction (2);
th re much broader than for reaction ~

~~,

n ig. , we

ey are
see that the near equality of total cross sectionsns for
g=+ IxI is probably accidental, since the spectra are
rather diferent.

Finally, Fig. 8 presents angular distributions of the
produced ii in reaction (1), which are strongly forward,

ve estimated above.

dw

dac
M = 0.6m', P, = 4.5m&

K=O

dw

dQ~
M = 0.6 mp, P+= 4,5 mp

————K= I

K=O

I.OO

I

,98 .97

FIG. 12. Angular distribution of charged decay pion from
boson produced in reaction (2).
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FIG. 11.Angular distribution of charged decay lepton
from boson produced in reaction (2).

The angular distributions of the decay reactions (3)
and (4) have been calculated for decay in flight of the
produced in reactions (1) and (2), which are of course
characterized by the strong circular boson polarization
and are clearly different from those where the boson
had been unpolarized. Equation (79) has been use or
the calculation, and we have plotted against the cosine
of the lepton (or pion) angle measured from the direc-
tion p or y+, wi'th the intermediate angles 8, q of the

of EvV
' t t d out in numerator and denominator o q.

e t(77) separately. The W energy x has also been pep
differential and fixed; in the actual experiment, t e
produced y, in reaction (1) is observed, and its energy
determines the W energy from P'—P+q&.

For process (1), the decay angular distributions of
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the charged lepton and pion are plotted in Fig. 10, on
an arbitrary scale. They reQect the circular 5' polariza-
tion: the p+, which in the 8'+ rest system tends to come
out along the circular polarization which is left-handed,
has in the laboratory its peak kinematically shifted away
from the forward direction. The x+, which in the 8'+
rest system tends to come out normally to the 8'+ circu-
lar polarization, has its peak nearer to the forward
direction than the p+. The same angular distribution
applies to the "charge conjugate" cases, since although
the sign of the 8' polarization reverses, the decay-p
angular distribution with respect to this circular polari-
zation reverses also. Only the case ~=0 is presented,
since we found a weak dependence on if:.

Finally, in Figs. 11 and 12, we present the angular
distributions of the decay lepton and pion, respectively,
from the boson produced in reaction (2). We see that
Fig. 11 refiects the reversal of circular 8' polarization
as ~ goes from 1 to —1 (as seen in Fig. 9) from right- to
left-handed, by a shift from an angular distribution
that was strongly forward peaked, to a much broader
one, i.e., backward in the boson rest system.

The numerical calculations have been performed on
the University of Michigan IBM 7090 electronic com-
puter, with a computing time of approximately one
hour.

ACKNOWLEDGMENTS

I wish to acknowledge a discussion with Professor R.
R. Lewis. I am also grateful to Dr. R. R. Silbar and
Mrs. Dolores Moebs for help with the programming, and
to Professor R. C. F. Bartels for making the facilities
of the University of Michigan Computing Center avail-
able for this work.

APPENDIX

The tensors needed in Eq. (37) are given by

A...~ &M'(P, 'P.+P.'P, P'—Pb,.)
A~.p" = ,'[P—-q(Pp'k. +P.'kp)+P' q(Ppk +P.kp)

—P' k(Ppq, +P,qp) Pk—(Pp'q +P,'qp)$

A ,3&p' &= 4'[2—8p,P' kP k P' —k(P,kp+Ppk, )
Pk(—P, 'kp+Pp'k, )j

B&.p'&= [Pp'—(P qk.+q kP Pkq—.)
+P,'(P qkp+q kPp Pkq—p)

+8„(P' qP k P' kP—q
P' Pq—k)j

B„p&r&=2P q(Pp'P, +P.'Pp P' Pb—p,)

B~.p&r&=P k(P, 'k +P.'kp P' k"pp—.)
B...& &= ;[P,(P—' —kP.+P kP.' PPk.—)

+P, (P"' kP, +P kP, ' P' Pk, )j-
g.,&r&=P.k(Pp'k. +P,'kp P' kbp —)

Atop =~ ~a I p&epprr

Agar = 2Pa Pp[(—qvka kvqr) &app—v+(kvqp kpqv) parpv j
A 3ap 4Pa Pp(kpkvparpv krkv&appv)

B& p
——2[Pa Ppqpk„happ„P'Pqp —

pp

+Ppp qpk„p p„+q'kP Ppp pp

q.P'P—pk. p.pp.+k.P 'Ppqp& pp. (p ~ &—)j
&].ap

=2I ' gI a Ip 6appo'

B2rp g (P 'kPpkvpppva+P'kPa kv&apva)

+,'[P 'Ppkpk„p -p„. (p~0)j-
B2ap = 2[Pa PpPpk& &a&pa Pa PpkpPp&aupr (p 0)l
C„«)=P kr. 'k&...&..


