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approximately as strong as it is in even-parity states;
and this suggests that a value of D close to 40 MeV
may be expected.

The validity of the representation of the A-nucleon
interaction by effective central potentials is doubtful at
the higher energies we have considered. At these en-
ergies, the effects of possible noncentral components
may be important' ' ""and quite different from their
effects in hypernuclei. Moreover, there may be an ap-
preciable effect from the presence of the Z-production
channel. '9 The cross sections reported here for the
higher energies are, therefore, to be considered only as
the contributions of those components of the A-nucleon
interaction which can reasonably be represented by ef-
fective central potentials at low energies.

That the presence of the Z-production channel can
have a pronounced effect in A.-nucleon scattering has
been emphasized by de Swart et al. ' ' In particular, de
Swart and Dullemond' have calculated A-nucleon scat-
tering cross sections with hyperon-nucleon potentials
deduced from phenomenological nucleon-nucleon poten-
tials under the assumption of a universal pion-baryon

interaction. Their cross sections have a prominent peak
in the neighborhood of the Z-production threshold
(about 76 MeV in the zero-momentum frame), and
have values above that threshold which are appreciably
larger than the average empirical cross sections of
Groves" and of Alexander e] al" Although their cross
sections are consistent with the average empirical cross
section of Arbuzov et al.", the measured and calculated
angular distributions appear to be inconsistent. The
cross sections 0-' & to which our effective central poten-
tials lead for energies above the 2-production threshold
are closer to the empirical cross sections of Groves and
of Alexander ef al. than are those of de Swart and
Dullemond. Considering the preliminary nature of the
scattering data, however, it is probably too early to
draw a conclusion from this comparison.
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Bohr's symmetry method is applied to an unstable spin-j state X, which is produced in a reaction A+8 ~
C+X and then decays according to X ~ 0+K Particles A, 8, C, D are assumed to be spinless, and E is
either a spinless particle or a gamma ray. Parity is conserved in production, but not necessarily in decay.
The angular distribution of E, in the rest system of X, is I(8) =-2ZaJ.PI, (cos8), where L~&2j and the polar
angle 0 is measured from the normal to the production plane. The coeScients aL, depend upon the produc-
tion angle 8 and upon the dynamics of the production. It is proved here that the sign of the maximum-
complexity coefFicient a» depends only upon the parity of X, and that the magnitude of a» is not zero but
lies between bounds which depend upon j and the parity alone. The implied test for j and the parity has
the following advantages: (1) The spin J is equal to half the largest L in I(0). Addition of a small amount
of a higher Pt., which always improves the fit, is forbidden by the lower bound of a2;. (2) The bounds of a2;
are independent of b. Any (perhaps biased) average over 8 may be performed before expanding I(8) in the
Ps, (3) All the data are.condensed into a single test quantity o», whose statistical error is reliably known.

X~D+E, (1.2)

where A, 8, C, and D have spin zero, and E is either a
* Work performed under the auspices of the U. S. Atomic Energy

Commission.
$ This work was reported brieRy at the Chicago Meeting of the

American Physical Society [M. Peshkin, Bull. Am. Phys. Soc. g,
514 (1963)g.

l. INTRODUCTION

UPPOSE an unstable particle or state X is produced
in the reaction

2+8 +C+X—(1.1)

and then decays according to

I(8)= (3/4s. ) cos'8 (1.3)

if the intrinsic parity is unchanged in the production
process, and by

I(8)= (3/Sw) sin'8,

' A. Bohr, Nucl. Phys. 10, 486 (1959).

(1.4)

spinless particle or a gamma ray. It was erst pointed
out by Bohr' that conservation of parity in the produc-
tion reaction implies a symmetry condition for the spin
state of X, and consequently also for its decay products.
Bohr found that if the spin j of state X is equal to unity,
then the angular distribution of its decay is given (for
spinless E) by
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if the intrinsic parity is changed. The polar angle 0 is
measured between the momentum of I."(in the rest
frame of X) and the normal to the production plane.
Distributions (1.3) and (1.4) have the virtue that they
do not dependupon the direction in which X is produced.

In this report, Bohr's method is extended to all values
of the spin j. It is demonstrated that the coeS.cient of
the most complicated Legendre polynomial in I(8) deter-
mines the spin and parity of X unambiguously.

The method given here retains the severe restric-
tions on particles 3—E. However, many cases of prac-
tical importance are in fact covered. The target 8 must
always be a spinless nucleus, such as an alpha particle.
The projectile 3 may be another spinless nucleus or a
pion or kaon. Examples of X include nuclear and hyper-
nuclear states and new mesons. A new meson would
have to be accompanied by a spinless nuclear state C,
but it appears that such processes are likely to be
important at very high energies. '

TABLE I. Bounds of the maximum-complexity coeKcient.

Parityj change I's= spinless particle A'= gamma ray

0 no
0 yes

1 no
1 yes

2 no
2 yes

ap ——1
forbidden

a2=2
a2= —1

3/7& a4& 18/7
a4 ———12/7

forbidden
forbidden

a2= 1
=1Q2= g

—12/7& a4& —2/7
a4 ——8/7

3 no 30/33 &a6& 100/33
3 yes —75/33 &a6& —5/33

4 no 7/143& a8& 490/143
4 yes —392/143& ag& —56/143

—100/44 &a & —30/44
5/44 &a6& 75/44

—1960/715& a8& —28/715
224/715& ay& 1568/715

is expressed in terms of the Legendre polynomials
through

2. MAXIMUM-COMPLEXITY COEFFICIENT
Is(8)= ,' P ar, (8)P-z(cos8) .

L=O
(2 5)

Consider first the case in which E is a spinless particle.
I-et 8 represent the production angle, i.e., the angle be-
tween the momentum of A and that of X in the center-
of-mass system for reaction (1.1). The spin function
X(8) for particles X moving in a given direction may
be expressed as

X(8)= 2 !3 (8)Xi (2 1)

where the quantization (s) axis is taken as the normal
to the production plane. The coefficients P (8), which
depend upon the dynamics, are normalized so that

ap(8) = 1.

Equations (2.3)—(2.5) are easily combined to give

(2 6)

"(8)=I (2I-+1)4-3-:(l,lll. llI, &

&& ~-' IP-(8) I'c(jIj;mom), (2.7)

where the function C is the vector coupling coefficient, '
and the reduced matrix element is given by'

The factor —, is included to give the normalization
condition

2- IP-(8) I'=1 (2 2) (1'
ll 1'zll V &= L(2L,+1)/4~j: C(jIj;000) . (2.g)

The maximum-complexity method is based on Bohr's
observation that conservation of parity in the produc-
tion process (1.1) implies that only even or only odd m
contribute to the sum (2.1). Even m appear if there is
no change in the intrinsic parity in (1.1), i.e., if PxPii
=PcPx. Odd m appear if there is change ("yes") in the
intrinsic parity. '

After decay, the angular part of the wave function
for E, in the rest system of X, becomes

O (8,~)= 2-'~. (8)1;-(8,~), (2 3)

where the notation P' is used as a reminder that only
even m, or only odd m, contribute. The angular
distribution

I (8)= lk (8A)l'd4 (2.4)

~ S. M. Berman and S. D. Drell, Phys. Rev. Letters 11, 220
(1963).These authors also give useful angular distribution tests
which depend upon the azimuthal as well as the polar angle.

3 Bohr proves this statement by considering the operation R,
which is space inversion followed by 180' rotation about the s
axis. When E acts on the initial state of reaction (1.1), it merely
multiplies the wave function by the intrinsic parity PzP'z. How-
ever, when it acts on a spin function X;, it multiples it by (—1)
Then X(b) can contain only those m for which (—1) =PzPzP cPx.

In the usual case, the value of j cannot be deduced
directly from the experimental Is(8) because any az, (8)
may vanish by numerical accident in the sum (2.7).
Then it can only be ascertained that j is not less than
half the maximum I. for which at, (b) is different from
zero. However, the Bohr restriction to only even or only
odd ns makes it possible to take advantage of a special
feature of the vector coeKcients for 1.=2j, which have
the simple form'

2j+1
C(j,2j,j;mom) = (—1)' "

(4j+1)'—
(2j)!(2j)!

X . (2.P)
(j+m)!(j—m)!

Since all the vector coefficients in the sum (2.7) for

4 In angular-momentum quantities, the notation is that of M. E.
Rose, Elementary Theory of Angular Momentum (John Wiley R
Sons, Inc. , New York, 1957).

5 Ref. 4, p. 88.
6This expression is easily obtained from Racah's formula

LRef. 4, p. 40], which reduces to one term in the case of maximum
complexity.
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L,= 2j have the same sign, ' u»(8) cannot vanish and its
sign determines the parity of X. The numerical value
of a2, (h) must lie between bounds determined by the
largest and the smallest vector coeKcients for given j
and parity. These bounds are obtained from Eq. (2.7)
by substituting the extreme values of the vector coef-
Qcients for the weighted average over possible values of
m. Numerical results for small values of j are given in

Table I. In cases in which the sum contains only a
single term, or no term, a2, (6) is determined exactly.
In particular, the case j= 1 is identical to that of Bohr
and agrees with his result.

The case in which E represents a gamma ray instead
of a spinless particle presents no difhculty. The intensity
must be summed over polarization directions. This sum

is easy to carry out. The expression for ar, (8) is un-

changed, except for the reduced matrix element. In par-
ticular, the reduced matrix element appearing in the
expression for the maximum complexity coeKcient is

The bounds for a2;(8) in this case are shown in the last
column of Table I.

3. COMMENTS

The coeKcient of the most complex term in the ex-

perimental angular distribution (2.5) determines the

spin and parity of X unambiguously. This maximum-

complexity test has several important practical
advantages.

First, the bounds of am;(b) are independent of 8. It is

therefore permissible to integrate the experimental

I&(8) over all production angles 8 before carrying out
the expansion in the I'L,.The only role of the production

angle is to determine the z direction for the measure-

ment of 0 in each event. This advantage may be decisive

in a situation in which there are perhaps a few hundred

events in all. In that case, it is impossible to obtain an

angular distribution of the decay at any one production

angle, but the total angular distribution is still moder-

ately well determined. It is also possible to integrate
over a restricted range of 8, to avoid directions of high

background. An experimental bias against some direc-

tions is acceptable as long as the bias depends only

upon 8 and not upon 0. It can even happen that the test
for some spin and parity assignment may be statistically
indecisive when all production angles are allowed, but
that the assignment is clearly rejected by taking only a
limited range of 8.

Second, the largest L in I(0) is unambiguously identi-

' The alternation of the sign of the vector coefficient with nz is of
course no accident. The wave functions I; are large on (2j+1)
more or less uniformly spaced cones. The polynomial E» (coso) has
2j null points, also fairly uniformly spaced. Thus, I'g; changes sign
between alternate cones.

Bed by the bounds of a», if the statistical accuracy is
good enough. In practical cases, a good fit with a cer-
tain L, can always be improved by adding a small
amount of I'r, with L=L +2. However, the bounds
of the coeKcient of maximum complexity forbid adding
a very small amount. Thus, the identification of L, is
likely to be unambiguous.

Third, the hypothesis that X has spin j is tested by a
single test quantity a», which summarizes all the data,
and whose statistical uncertainty can be estimated
reliably.

Fourth, although the maximum-complexity method
applies only to special cases, they are just the cases in
which angular correlations with other decays are not
available, since all the other particles present are
spinless.

The maximum-complexity method is evidently most
useful in the type of experiment in which a small num-
ber of events is measured completely, regardless of the
direction of the trackssi, nce I(8) involves an integra-
tion over all azimuthal directions P. However, it has
some possibility of application to counter techniques as
well. It is, unfortunately, necessary to move the E
counter over the entire surface of a sphere. This is
partially compensated by the feature that the C counter
need not be moved at all, and may occupy a whole
circle. Moreover, it is not necessary to have a statisti-
cally meaningful counting rate as a function of 0 and g;
it is enough that the integral over g for each 0 should be
meaningful.

The maximum-complexity method can be extended
to a few cases not considered here, but there the analysis
is not as powerful, and will not be given in detail. Quite
generally, if A is a particle of integral spin different
from zero, the results given here apply provided that 2
is aligned to give only an even or only an odd z com-
ponent of its spin. If the z component is odd, the parity
must be reversed in using Table I. Probably the most
practical example is a gamma ray polarized either in the
z direction or perpendicular to it. Aligned deuterons are
another possibility. In either case, the production direc-
tions for which the analysis is valid are restricted 'to the
plane perpendicular to the z axis, which is now deter-
mined by the characteristics of the initial state. Similar
statements can be made when 8 represents a polarized
proton target, but then 2j is odd and the maximum-
complexity coefficient vanishes unless parity is mixed
in the decay of X.

The maximum-complexity test cannot be generalized
to include arbitrary spins of D and E, because the re-
duced matrix elements are usually unknown. When E
has unit spin, the results for gamma rays apply if the
spin state of E is known to be transverse. This condi-
tion is necessarily met if the parity change in production
equals (—1)' and parity is conserved in decay.


