
PROTON SCATTERING B Y ISOBARS AN D SINGLE I SOTOPES B329

recent summary' of the various estimates shows a range
from 16 to 50 MeV. A plot of the best-6t values of V~
versus (X—Z)/A for our 11.7-MeV data is shown in

Fig. 4. The solid line is the straight-line least-squares 6t
to the plotted points.

It is more realistic to apply a correction for the Cou-
lomb potential before extracting the nuclear symmetry
dependence of the potential. After careful consideration,
the author of Ref. 8 took the Coulomb correction to be
0.4 Z/A'1' MeV. This correction was applied to the best-
ht values of V8 for the 11.7-MeV data; the results are
plotted in Fig. 5. These results, which were obtained
from a generalized optical-model analysis, show definite
evidence for a nuclear symmetry dependence of the real
nuclear potential. The magnitude of V&, as indicated by
this work, is in reasonable agreement with the value ob-
tained by the more extensive study reported by Percy. '

' P. E. Hodgson, Phys. Letters 3, 352 (1963).

In Ref. 8 a correlation was found between 8'~ and
(X—Z)/A. For comparison the values of W~ that were
obtained from the optical-model analysis of the 11.7-
MeV data are plotted as a function of (X—Z)/A in Fig.
6. It is likely that the value obtained for Ni" is inAu-
enced by compound-nucleus contributions to the data,
The solid line in Fig. 6 represents a straight line least-
squares fit to the plotted points with the Ni' point ex-
cluded. The slope thus obtained is in fair agreement with
the values obtained by Percy from the analysis of
14.3-, 17-, and 22.2-MeV data. The value of 8'q for a
given value of (E Z)/A—is lower by a few MeV than
the values obtained from the analysis of Ref. 8 with the
spherically symmetric optical model. It is reasonable to
obtain a lower value of lVD in the present strong coupl-
ing analysis because one important absorption channel
is treated exphcitly.

The authors gratefully acknowledge the helpful dis-
cussions and comments of F. G. Percy.
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The inQuence of the known weak interactions on the parity impurity of nuclear states is discussed. Deriva-
tion of a parity nonconserving interaction rests on the assumption of a current-current hypothesis for the
weak interactions. Consequently, observation of parity impurity effects would be an important condrmation
of this hypothesis. A simple approximate method of treating the nuclear parity impurity is developed and
applied in an effort to find experimental situations favorable to observation of effects due to such impurity.
Parity-forbidden alpha decay from excited states of light nuclei and certain electromagnetic transitions in
the heavy nuclei appear to be promising. Special attention has been paid to the internal conversion electrons
from the 123-keV transition in Lu"3 whose polarization is estimated to be about 0.4'%%uq. An eRect on polarized
neutrons analogous to "optical rotation" is also discussed.

I. INTRODUCTION

HE motivation for examining parity nonconser-
vation in nuclei is at least twofold. Firstly, it is

desirable to test the parity conservation of all inter-
actions' since the weak interactions, such as beta decay,
are known not to conserve parity. This program has
been largely fulfilled in that experiments' " have
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already placed exceedingly small upper limits on parity
nonconservation in either the electromagnetic or nuclear
interactions. If experiment ultimately detects the small
deviations to be discussed here, the known parity-
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Fn. 1. Feynman
diagrams for the low-
est order weak inter-
action. The neutron
(n) and proton (p)
may be simultane-
ously interchanged.

violating weak interactions will presumably be re-
sponsible. Secondly, the strength of any parity non-
conservation, henceforth assumed to arise by inter-
vention of the weak interactions, gives some insight
into the structure of these interactions. Several au-
thors'~" have investigated the weak-interaction cor-
rections to the pion-nucleon vertex.

The influence of the weak interactions on nuclear
processes has also been examined theoretically by
Kriiger" and Blin-Stoyle. "" This paper approaches
the calculation of parity nonconserving effects in a
somewhat different way from the above-named authors.

Conventionally, " the weak-interaction Lagrangian
is written

z;.&=+8GJ„J„t.

The theoretical and experimental work of recent years~'
has largely established the vector nature of the current,
as anticipated in Eq. (1) above, and the contribution
of both axial vector and polar vector currents together
in J. The form of the current, suggested by consider-
ations of symmetry and simplicity, is usually taken to
be

~v (s yv~v&)+ (Pyvavs)+ (+Yv~p)+ y (2)

~ G. Barton, Nuovo Cimento 19, 512 (1961),"S. Fubini and D. Walecka, Phys. Rev. 116, 194 (1959).
~ D. Flamm and P. G. O. Freund, Phys. Rev. 125, 385 (1962).
'3 I . Kruger, Z. Physik 157, 369 (1957);
24 R. J. Blin-Stoyle, Phys. Rev. 118, 1605 (1960).
2"" R. J. Blin-Stoyle, Phys. Rev. 120, 181 (1960).
'R. J. Blin-Stoyle and R. M. Spector, Phys. Rev. 124, 1199

(1961)."R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).

~8 M. Gell-Mann, Rev. Mod. Phys. Sl, 834 (1959).
'9 G. Danby, J-M. Gaillard, K. Goulianos, I. M. Iederman,

N. Mistry, M. Schwartz, and J. Steinberger, Phys. Rev. Letters
9, M (1962).

where a= ', (1+i'—s)
Recent experimental evidence" indicates a distinction

between the neutrino associated with the electron in the
weak interactions and the neutrino associated with the
muon: This has been indicated in Eq. (2) by the sub-

scripts 1 and 2 referring respectively to the electron-
and muon-neutrino. Equations (1) and (2) together
predict processes not yet observed, such as neutrino-
electron scattering, and verification of such processes
would constitute an important confirmation of the
theory.

Observation of self-interaction terms in the postu-
lated beta-decay interaction, as for example (np) (np)+,
presents just such a situation; the initial and final
particles are the same. In this paper, the (np)(np)+
interaction is discussed extensively, with only a com-
ment on the lepton "self" terms below.

B. The Intermediate Vector Boson Hyyothesis

It is possible that the weak interactions are mediated
by a vector boson, and if this is correct, then J„J„+in
Eq. (1) should be replaced by J„D„„J„+,where

D„.= (b„,M,'—q„q„)/ (3E,'—q'), (4)

with M =boson mass and q„=four-momentum trans-

"F.Reines, Ann. Rev. Nucl. Sci. 10, 1 (1960)."F. Hoyle and W. A. Fowler, Nature 197, 533 (1963).
M. Levine, Ph.D. thesis, California Institute of Technology,

1962 (unpublished).
s3 H. Y. Chin, Phys. Rev. 123, 1040 (1961).

A. The Leyton "Self" Terms

Although the coupling (evr)(8vt)+ could be tested
directly from the elastic scattering reaction vr+s~
vr+e, the experiment is greatly complicated by the
small cross section'~ expected from the theory. The'
cross section increases with the center-of-momentum
energy, but this feature cannot be utilized, as presently
there are no intense high-energy beams of v& (or vr).
Even if such beams were available, the c.m. energy is
much less for electrons than for nucleons resulting in a
large relative cross section for obscuring processes such
as vr+p ~ '8+8 or v&+ts ~ P+e. Reines" has pro-
posed an experiment utilizing the high-intensity, low-
energy antineutrinos from an atomic pile.

AstrophysicaP' signi6cance has been attributed to
the (8vt)(ev&)+ coupling since stellar energy loss via
neutrino pair production would become important at
high temperatures. ""

Other experiments are generally complicated by
competition from electromagnetic processes: The 'Si
state of positronium is predicted from Eqs. (1) and (2)
to decay into v+ v, but the rate for this decay is only

3G'ePn'/16z'=SX10 "sec ',
giving a branching fraction

r('S& —& 3y)/r(sS& —+ vr+ vr) = 7)&10 " (3)

v hile the 'So state is stable to this decay mode due to
helicity requirements. The branching fraction is quite
sensitive to the mass of the particle, but even for the
muon. -antimuon system, Eq. (3) gives only 1.3&&10 '. In
this latter system the natural muon decay itself com-
petes unfavorably:

,'r('S, ~ e+vr+v—s+p) = 18~n'= 2.2)& 10—'.
&( Sl ~ v2+ v2)
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fer. The eBect on the range of interaction is the only
feature of the boson considered in this paper.

II. THE INTERACTION

A. Lowest Order

The Feynman diagrams for the lowest-order weak
interactions involving just nucleons are given in Fig. 1.

The interaction, ignoring for the moment vector
boson contributions and pionic corrections, is in lowest-
order of perturbation theory

&'.~=V'gG(&n. op~) (psv.«s) (5)

where the notation of Ref. 27 is used throughout,
specifically ct= ,'(1+-its), GM'=1.01&0.01X10-', M is
the proton mass,

y=Pn, y~=P, ps=a.y,y,y~, etc.

The self-energy diagram in Fig. 1(b) might be of
interest since it could introduce pseudoscalar and
pseudovector terms into the nucleon propagator and
thereby be ultimately a source of parity nonconserving
effects. No pseudoscalar term can be generated if the
fundamental weak interaction couplings are y„and
iy„ys, since such a pseudoscalar would give time-
reversal noninvariant effects while the interaction de-
scribed will not. The pseudovector contribution must
result in a nucleon propagator of the form (P+iqys
Xp—M)—', where (p=y„p„), or (p+irtysp Mg~ —0——
for the free nucleon. If all nucleon states are trans-
formed by P&' exp[——its si—nh '(p/2)]f&, the new
states then obey (p—M)lt N' ——0 and the correction to
the propagator may be removed by a gauge trans-
formation. The consequence of this is to change the
electromagnetic coupling (ltd„p) to (p(y„irtyg „—)p)
which would destroy gauge invariance; hence the cor-
rections to electromagnetism given by diagrams such
as Fig. 1(b) with a photon coupled to the vertex must
give y„~y„+ipse,y„and altogether (Py„P) —+ g'y„f').
A pseudovector meson coupling is transformed F5~
qys+irtq and the extra term gives no contribution,
while the pseudoscalar coupling is unchanged, hence it
leads to no effects here.

Equation (5) may also be written

v'gG[( &h.( &)j& L( &)v, ( &)j,
where 1V is the combined isotopic spinor (1X2) and

Dirac spinor (1X4). The proton isotopic spinor is
~l

and the neutron isotopic spinor is . T~~ is the iso-

topic spin operator necessary to reproduce (6) and

is given by (r+'r '+r 'r+'), where r+
~
=0;

(=0; and r+ =~ . The inter-(1 (0& 0& 0

action can be thought of simply as a polar vector

interaction between, the (et%) components (spin anti-
parallel to the momentum vector) of the two nucleons.
Thus, the nucleons are "reminded" of their intrinsic
handedness when involved in the weak interactions,
and have a tendency to correlate their spins with the
momentum vector, as would be occasioned by terms
of the form e p in the Hamiltonian. Parity is no longer
a good quantum number if the Hamiltonian contains
such pseudoscalars. The parity admixing can be seen
another way by considering a classical system of a
nucleon orbiting a force center. If the spin and orbital
angular momentum vectors are initially parallel, then
a o p interaction will produce a torque causing the
spin vector to precess out of alignment with the orbital
angular momentum vector. To conserve total angular
momentum, the orbital angular momentum must
increase. The quantum-mechanical analog would be,
for example, a P3~2 state which must admix D3~2 states
to be stationary. The actual nonrelativistic form of
Eq. (5) is slightly more complicated than e y and may
be written

1
(~s—~) ((p —p~),~(1,2) )+

8M
(6)

z

835

The curly brackets followed by the subscript (+)
indicates the anticommutator, i.e., (A,B)+ AB+BA. ——
The commutator is denoted by square brackets followed
by the subscript (—).

3. The General Form

The most general polar vector current is

Js (q ) Clv(q )ys+Csv(q')so„, q„+Csv(q')iq„, (7)

where o» si (y„y, y„y„——) and q„ is—the four-momentum
transfer with q'=q„q„. If the CVC theory" '4 obtains,
the additional condition q„J„=O must be satisfied
which requires C3&=0. Furthermore, we may identify
C,v(q') =F~v(q') and Csv(q') =Fsv(q'), where F~v and
Ii~~ are the nuclear isovector charge and magnetic
moment form factors as dered by Hofstadter. "The
subscript V appearing on G and Ii refers to vector
properties in diferent spaces, Lorentz for G and iso-
topic spin for F. C,v(q') is expected to be zero even if
the CVC theory is not valid: If y„ is regarded as the
fundamental coupling, then strong interaction correc-
tions cannot induce Gsy without violating known strong
interaction symmetries. "Under charge conjugation y„,
and ia.„„q„ transform alike while iq„ transforms dif-
ferently, and consequently, iq„cannot be produced by
radiative corrections of interactions invariant under

~ M. Gell-Mann, Phys. Rev. 111,362 (1958).
'5C. deVries and R. Hofstadter, Phys. Rev. Letters 8, 381

(1962).
3 S. Weinberg, Phys. Rev. 112, 1375 (1958).
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charge conjugation, as are the strong" and electro-
magnetic interactions. This result is familiar for the
electromagnetic interaction. Several simplifications fol-
low from the CVC theory. For one, the additional
momentum-transfer terms in the boson propagator,
Eq. (4), do not contribute in lowest order, and we may
treat the boson here as a scalar meson.

The most general axial vector current is

J~ (g ) = LC1A. (g )r~+C2A(g )o~~gy+CzA(g )gp]z'r5 ~ (g)

The assumption that iy„y5 is the fundamental coupling
generating the axial vector current eliminates the terms
that transform differently from ip„ps under charge"
conjugation. This requires that Czz(q')=0. Further-
more, the iq„y5 term fails to contribute for a vanishing
divergence of J„~. This "induced pseudoscalar" term
will contribute to the tiny parity corlsereieg part of the
weak interaction, negligible compared to strong parity
conserving interactions. All that is known experimentally
about Cz~(q'), equal to —G~/Gr in the usual notation, "
is the magnitude near zero-momentum transfer

The nonrelativistic Hamiltonian for a charged spin-~
particle interacting with the electromagnetic field is

I—
Lp —e&(r)]'+ev (r) —(z+1) - (~ &)+, (13)

2M 2M

where p is the anomalous magnetic moment. For two
particles, each act;ing as an axial-vector current source
of interaction for the other, Eq. (13) together with the
substitutions (10) through (12) give

-8»~C
(~z—e&) . ((p&—pz), b(2, 2) }+

8M

8'i'G
+(Zz"+1) (icriXzrz) L(pz —pz), b(1,2)] Tzz, (14)

SM

which is just Eq. (6) with an additional correction for
the anomalous moment. The contribution of Eq. (14)
to the electromagnetic interaction is given by applying
substitution (9) which yields for nucleons

Cz~(0) =l= 1.20&0.04.

C. The Interaction (CVC)

.8»2G—(o'~ —ez) A(rz)5(1, 2)z(v'X gz), .
MI

(14')

The CVC theory offers an alternative method of
introducing the parity nonconserving interaction. Here,
the axial vector current is treated on the same footing
as the electromagnetic field, and is introduced into the
Hamiltonian in. the same way, namely,

becomes

p,„~p,„——,'QSGLzz(r&) 4 „v,zz(r&) ]z
X(;"'+. ",). (10)

Here, the subscript 2 refers to the particle generating
the field seen at the position of particle 1, and e is the
proton charge. For the moment, the vector boson and
form factor considerations have been set aside to sim-

plify the expressions. The nonrelativistic reductions for
the axial vector current are

Lzz(rz) iyyzzz(rz) ]z———o'zb'(rz —rz),

Lzz(rz)iyopzzz(rz)]z= —(1/2M) {oz p,b'(r, —r,))~, (12)

where the equivalent operator has been written on the
right-hand side, and the delta function derives from the
implicit assumption that particle 2 acts only at the
position of particle 1.

"Charge conjugation is usually combined with a rotation of
180' about the "y" axis in isotopic spin space and called G con-
jugation. The strong interactions are invariant under the latter
transformation; however, the essential difference between the
interaction currents iq„and p„comes from their charge conjugation
properties.

380. M. Kofoed-Hansen and C. J. Christensen, IIundbuch der
Physik, edited by S. Fliigge {Springer-Verlag, Berlin, 1962), Vol.
41, Part 2, p, 88.

In principle, the contribution by any nuclear potential
to the parity nonconserving forces via substitution (10)
can be computed. For electromagnetism, it has not been
possible to compute such corrections from the nuclear
interactions mainly due to ignorance of the structure of
the strong interactions. The corrections are no easier to
compute for the parity nonconserving interaction than
for electromagnetism, and the interaction (14) is there-
fore necessarily incomplete. There does not appear to
be any advantage then to including such parity non-
conserving forces as are generated by the spin-orbit
forces in Eq. (13), since even more important terms of
this form are known to be generated by the nuclear
forces. Although the nuclear forces can be treated
phenomenologically, it does not follow that corrections
computed from such a treatment actually constitute
any improvement. For example, when the exchange of
charged pions, etc., among nucleons is replaced by an
effective static potential, the substitution (9) is in-
complete as the current carried by these charges is
concealed. These problems are familiar for electro-
magnetism, but they dier in scope for the parity non-
conserving interactions due to the vast difference in
the range of interaction. Many electromagnetic features,
such as the Coulomb energy of a nucleus, are relatively
insensitive to the detailed distribution of charge and
currents near the individual nucleons. The parity non-
conserving forces act, however, only when two nucleons
are close together, and analogy to electromagnetism
cannot be applied to argue away eGects of the detailed
nuclear interactions. It might be argued to the contrary
that, since the nuclear interaction seems to exhibit a
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strong repulsive core, it is rare for two nucleons to be
sufficiently close together to feel the weak interactions.
This point will be examined in the next section and the
dificult but important question of additional contri-
butions to Eq. (14) set aside.

D. Effect of a Repulsive Core

In the center-of-mass system of two nucleons,
q'= —Q', where Q is the three-momentum transfer, our
collection of form factors and the boson propagator
given in Eq. (4) produces in Eq. (5) such factors as

Cir (—Q') Cig (—Q') (M.'/M. '+Q'),

whose Fourier transform is the "potential. " The form
of C,y is deduced from experimental measurements on
the electromagnetic form factors, Ii;&, of the nucleon by
using the CVC theory as discussed in Sec. IIB. The
experimental data of I',y are summarized" as

F;v(—Q') = (1—v;)+ (v,M„'jM„'+Q'),

where i equals 1 or 2, M„=600 MeV, v&
——0.92~0.10,

and ~2
——1.10. If the momentum dependence of C1~ is

ignored along with the small difference between i =1
and 2 (v;=1), the potential becomes

3f„2M '
(15)f(r) —) (v Mr v

—s—r r)
(M.'—M,') 4vr

Practical calculations are generally made with nuclear
wave functions having no interparticle correlations due
to a repulsive hard core. For such calculations, there is
little point in using Eq. (15) in preference to 'Ab(r). On
the other hand, f(r) for r less than r„ the radius of the
core, will not contribute if wave functions containing
the hard-core correlation are used. Thus, an estimate
of the effect of the core is simply to use the uncorrelated
wave functions along with X'8(r) where

Writing M„r,=n, M,/M„= (, we find

which is plotted in Fig. 2. The shaded portion corre-
sponds to r,= 0.40+0.05F, M„'= (18+2)M ', and an
arbitrary estimate )=2&1. Figure 2 suggests X' 0.8X

1.0 and therefore )' has been set equal to unity for
numerical computations throughout this paper. Re-
placement of ) by ) ' is presumed to correct for repulsive
core effects.

III. ANALYSIS

A. General Considerations

Aegllar Momeetlm

Interaction (14) transforms as a pseudoscalar under
combined rotation of the space and spin coordinates;
thus, the total angular momentum is conserved, but
not necessarily the spin or orbital angular momenta
separately. Conservation of total angular momentum
is built into the interaction by the choice of possible
couplings. At least one group' has interpreted a parity
impurity experiment alternatively in terms of an upper
limit on the angular momentum impurity of a nuclear
level. There is, however, at present, no experimental
or theoretical association between the weak interactions
and any possible angular momentum violating inter-
action. Since all scalar and pseudoscalar interactions
automatically conserve J and mJ, an interaction vio-
lating these quantum numbers would necessarily con-
sist of an incomplete tensor such as the s component of
a vector or the ss component of a vector product. Such
terms appear when the Hamiltonian is incompletely
formulated as, for example, by including the magnetic
interaction between the nuclear spin and the atomic
electrons, but not otherwise including the electrons in
the Hamiltonian.

Isotopv'c Spkt

re

f(r)4rrr'dr.
The isotopic spin dependence of Eq. (14) can be

written

I.O— where
(0) ~1.~2 )

T O) —~1X~ )

(2) 1~1.~2 T1T 2

(16)

0 I.o

My Mp

2.0 3.0

No T12( ) can appear since the Pauli principle requires
the interaction to be symmetric under combined ex-
change of spin, space, and isotopic spin. The corrections
from the strong interactions, as illustrated in Fig. 3,
may alter Eq. (16) to

Tip ——-', (2+ ci—e2) Ti2&'&+ (1—vi+ v2) Ti2&"+vi+ v2, (17)

FxG. 2. Plot of ) '/P as a function of a and (.
where Fig. 3(d), for example, illustrates the effective
coupling (pp)(pp)+ via the isotopic spin dependence
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pro

(a) (b) (c)
FrG. 3. Strong interaction corrections to the

(np) (np)+ interaction.

—,'(1+r,'r, '), while Fig. 3(b) gives (nP) (Pri)+ with de-
pendence —,'(1—r.'r, '). The two additional couplings
have been arbitrarily assigned the relative amplitudes
2ei and 2e2 in Eq. (17). Strictly ei(e2) should appear as
the coeS.cient on a force with slightly shorter range;
however, the diAiculty in actually performing the re-
quired calculations is well known, and ei(e2) in Eq. (17)
should be regarded merely as a crude imitation of cor-
rections such as illustrated in Fig. 3.

The appearance of Tt2&" in Eq. (16) is significant in
that the usual isotopic spin selection rules may be
circumvented. First-order electromagnetic and beta-
decay transitions are forbidden between states with
AT=2. The operator T»~'& admixes parity impure
states di6ering from the unperturbed state by two units
of isotopic spin. Thus, for AT=2, the regular (parity
allowed) electromagnetic and beta-decay transitions
are forbidden, while the irregular (parity forbidden)
transitions are allowed. For example, a hypothetical
beta-decay transition between a (J,T) = (0,2) initial
state snd a (0+,0) final state must proceed by a T
forbidden first-forbidden decay, but is completely
allowed from an admixed amplitude of (0+,0) in the
initial state or (0,2) in the anal state.

Experimental detection of a AT=2 beta- or gamma-

ray transition would not alone support interaction (14),
since the Coulomb forces also lead to isotopic spin im-

purity of the levels. A state identified with a certain
value of T will, in general, have, due to Eq. (14), parity
impure admixtures of T, T+1, and T+2. Only for
T&2 does the full range become possible; otherwise,
T=O —+ T=O, 2 and T=1—& T=1, 2, 3.

Time-Ee~ersa/ Irlzari arIce

The interaction (1) assumed is invariant under time
reversal. The validity of this assumption has not been
tested to great accuracy, although the apparent com-

plete violation of both parity and charge conjugation
invariance, together with the TCI' theorem, indicate
the weak interactions are invariant under time reversal.
It follows from time-reversal invariance" that: (a) A

» E. P. signer, Group Theory (Academic Press Inc. , New York,
1959), p. 344.

quantity odd under the parity transformation has zero
expectatiort, value despite the presence of the parity
nonconserving interaction, in contrast to: (b) A
quantity even under the parity transformation has its
expectation value unaltered (to order G') by effects from
the parity nonconserving interaction. Assertion (b)
follows directly from the parity selection rule. The
parity of a nuclear state is therefore unchanged (to
order G') as a trivial consequence of (b), and it is un-

necessary to develop a special notation, such as complex
or fraction parity, to describe parity impure states.

The odd-parity static moments (electric dipole, mag-
netic quadripole, electric octopole, etc.) are required
by (a) to vanish despite the presence of interaction (14),
and experiments to detect these moments do not test
(14).

Assertion (a) can be phrased equivalently as requiring
the phase of the regular and irregular wave functions to
be relative imaginary. A useful application is the e6ect
of any time-reversal invariant parity nonconserving
force on a single-particle wave function, in which case
the radial dependence of the number of nodes n and
orbital angular momentum l may be separated from the
spin and angular coordinates coupling the spin s=—,'and
/ into j=/&-,' to give Q=R„&(r) (sljm) The on.ly wave
functions that can be admixed are R„& (r)

~

sl' jm), where
l'=2j —/. However, the operator o r(r"=r/r) has the
property

—(o r) ~sejm)= ~st'jm) (i'=2 j—l), (18)

and the irregular wave function can then be written
iGe r0(r)f, with 0(r) a scalar operator acting only on
the radial wave function. To order G', the new wave
functions are given by

P= expfiGe r0(r)]P

It is useful to note that the couplings dropped from
Eqs. (7) and (8) generate parity nonconserving inter-
ference terms that violate time-reversal invariance.
Similarly, a scalar interaction J~= C~8 and a pseudo-
scalar interaction J =Ctpya+C2pqy~ can only give
parity nonconservation together with violation of time-
reversal invariance. The scalar coupling J8'=C28iq
essentially vanishes for nucleons but otherwise would

give parity nonconservation plus time-reversal in-
variance and, in fact, the interference term with J~
has the same structure as would be given by the
—q„q„/M,2(M,'—g') part of the propagator (4). The
tensor parity nonconserving interaction (o„„)i(o.„„ys)&
violates time-reversal invariance, and therefore ex-
pression (14), after modifications of the form (15) and

(17), represents the most general parity nonconserving,
time-reversal invariant, Hermitian, two-nucleon,
pseudoscalar potential.

3. Single-Particle Approximation

With an expression as complicated as (14), it, is

di%cult to make any estimates without having rather
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eisH e is. p
— eisp (o)

) k k ) (21)

where S=MG"e r and Ps&'& are the eigenstates of Ho.
Such a transformation is especially useful since the
matrix elements of an operator 3 between the impure
parity states of Eq. (20) are equal to the matrix
elements of

e isAe s A —iLS,A]+0(G') =A+A (22)

between the unperturbed states. It is often simpler in
actual calculation to use i(SA AS) and the —proper-—
ties of the operator e r LEq. (18)] rather than using
the operator given by explicitly computing —iLS,A].
The operator —iLS,A] is denoted by 2 in this paper:
the operator M1, for example, would be —iLS,M1]
and has selection rules similar to an E1 transition. If 3
itself has an irregular part generated by the interaction
(14), then A is understood to be —iLS,A]+A;„,g.

Historically, ' the degree of admixing is described by
5 (P=itr+iFQ') which may now be conveniently defined
as ri=MG"R, where R=RoA'", (Re=1.2X10 " cm),
giving typical numerical results (MG"Ro=1.2X10 '
for 1V= Z).

2=16' %=3.1X10 7

A =160; 5=8.0X10 ' for an extra proton
=5.5X10 ~ for an extra neutron. (23)

"T.D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956l.

detailed wave functions for each specific problem. A
natural approximation in a many-body system is to
select a specific particle and average the interaction
over the remaining particles. This has been done in
Appendix A with the result that Eq. (14) reduces to
the single-particle operator

H„,=2G e.p-Cis1+(E Z)„/A]=G-e p, (A6)

where
G'= 8"'G) '(p'+1) po/8M.

pa= nucleon density in the nucleus,

and y now refers to a fixed coordinate system at the
center of mass of the nucleons (other than 1). The
averaged isotopic spin part requires a proton ((r,)=+1)
to interact only with —,'11+ (iV —Z)/A] or iV/A of the
density, i.e., just with the neutrons and vice versa.
Note that the factor (p, '+1)=4.70 arises from the CVC
theory, and would necessarily be estimated =1 in the
absence of this theory.

A simple model Hamiltonian with the above (A6)
interaction such as

H= p'/2M+ V(r)+G"e p=Ho+G"e p (20)

can be solved to order G' by the substitution Lcompare
with (10) and (11)]

y —+ y —MC"e

or equivalently Lcompare Eq. (19)]

A quantity R is usually defined such that

(Ilirregul» t»nsitionll)iRS=-
()[regular transition]])

(24)

with S. containing the explicit details after factoring
out the strength, F, of the parity nonconserving inter-
action. In practice, R has been estimated by comparing
"typical" rates for both types of transition; however,
we may use Eqs. (24) and (21) together with P= MG"R
to estimate

( ~ ~
Le ' r/R &A irreg]

~ ))

(//A reguiar //)

(25)

However, this argument fails to the extent that the
perturbation can be removed by a gauge transformation.
Furthermore, no requirement of spherical symmetry
has been imposed, and the arguments apply unchanged
to particles bound in a deformed potential such as used
in the Nilsson" model.

(4) No AT=2 effects appear within the single-
particle approximation as can be seen from the form of
Eq. (A6).

It would be an interesting extension of our results if
the spin-orbit force could be included in Eq. (20);

"S.G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys,
Medd. 29, No.r 16 (1955).

In Eq. (24) the matrix elements are taken between the
perturbed states, while in Eq. (25) the unperturbed
wave functions are to be used.

Several interesting deductions can be made in this
simple model which should remain as approximate
features of aity results using Eq. (14) and a more
sophisticated nuclear Hamiltonian.

(1) Electric multipole transitions will not be admixed
into the corresponding magnetic multipole. To simplify
the description, we denote EL(ML) as representing an
EI. transition in which the parity impurities relax the
selection rules to allow an admixture of MI. : we are
considering here the ML(EL) transitions. The EL
transition operator, ignoring the tiny magnetic con-
tributions, is proportional to the corresponding static
moment operator and therefore commutes with S in
Eq. (22), hence EL= —ifS,EL]=0.See Sec. IVD.

(2) EL(ML) transitions will be admixing, since
—iLS,ML]WO as is discussed in more detail in Sec.
IVD.

(3) The admixing is independent of V(r), conse-
quently admixing should be independent of the level
structure. One might suppose that two levels of opposite
parity, but the same spin, would admix more strongly
if close together as suggested by the energy denominator
in the perturbation theory expression for admixing.

(Expression (14)) s
ps=rps+ 2 ip.+
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however, S and e 1 do not commute. It is generally
assumed that the spin-orbit contribution is from regions
near the nuclear surface, although the origin of the
force is poorly understood, and we have already thrown

away surface terms when approximating the nuclear
density as being everywhere constant. Furthermore,
any spin-orbit force should induce its own parity non-

conserving interaction via Eq. (10) and it is not correct
to simply add si(r)o 1 to Eq. (20). Thus, the approxi-
mation P= e'sf is probably as good with the spin-orbit
force as without. However, in Sec. IVD, it will be
assumed, for the purpose of obtaining order-of-mag-
nitude estimates of ML(EL) transitions, that a force
(a/2)o" l is simply added to the nuclear Hamiltonian
in Eq. (20).

IV, EXPERIMENTAL PREDICTIONS

A. Genexal Effects

Most of the comments in this subsection have been
made elsewhere' and are repeated only for the sake of
coherence. An easily understood phenomenon that is

due to admixing of irregular parity states is the polari-
zation of decay products. If an E1 gamma-ray tran-
sition, e.g. , 1 —+0+ contains traces of 1+—+0+ and

—+0, then 3f1 is admixed. Classically, this would

correspond to an oscillating electric dipole with a
superimposed oscillating magnetic dipole 90' out of
phase. At a certain instant the electric field seen by a
distant observer will be entirely due to the electric
dipole and parallel to the dipole direction. A quarter
of a period later, the electric field is now due to the
magnetic dipole and the Geld is perpendicular to the
dipole direction. Thus, an elliptically polarized out-

going wave rather than a plane polarized wave should
be observed. In other words, the tendency of a nucleon
to align its spin with its direction of motion can be
transferred to the outgoing radiation. An example of
such an effect is the circular polarization of inner
bremsstrahlung from polarized electrons in beta decay.
Similarly, the scattering of initially unpolarized par-
ticles can result in a polarization along the momentum
vector of the outgoing particles.

If a decaying nucleus is polarized in a definite direc-
tion and emits polarized radiation, that radiation will

tend to be emitted parallel (or antiparallel, depending
on the specific details) to the direction of polarization
of the decaying nucleus. Thus an alternative to meas-
uring the helicity of weakly polarized particles is to
measure their angular distribution, which contains odd
powers of cos0, from polarized nuclei. If parity non-
conserving interactions are used to both polarize the
decaying nucleus and outgoing radiation, the odd
powers of cose correlation are of order P. Thus, in-
vestigators"" have preferred to excite and polarize
the nuclei via beta decay (beta-gamma correlation) or
polarized neutron capture (n-gamma correlation). In
principle, an inverse method such as gamma-beta

correlation could be used, but the long beta-decay
lifetimes (shortest known 1P' is 0.01 sec) permit de-
polarization effects to wash out all angular correlation.

Formulas for the magnitude of these polarization
effects have been derived by Kruger23 and are repeated
below for convenience. The degree of circular polari-
zation is given simply by

P=2$F,
where F=+1 would mean pure right-hand (i.e.,
angular momentum in the direction of propagation)
circularly polarized radiation with the phase convention
of Eq. (24). The beta-gamma angular correlation

W(8)=1+A cos8+ . in a transition J~J' —+ J"
gives

& 1—2sLJ'(J'+1)]'"
A=-

c 1+s'

J'(J'+1)—J(J+1)+2

t 3J'(J'+1)j'" F,(L,L,J",J')%5

and s=Cvt'1/Cq J' e for allowed transitions. The co-
eKcients Pj are tabulated4'4' by several authors. A
pure allowed Fermi transition does not change the
magnetic substates and therefore cannot lead to a
polarization of the nucleus after beta decay. This can
be seen from the above expression by noting that A —+ 0
as s —+ ~. The regular transition has multipolarity I
and the irregular transition has multipolarity L,.

B. A1pha Decay

Alpha decay of the type J ~0 ' withe. '= (—1)s+'s.
(e.g. , 0 —+ 0+, 1+—+ 0+, etc.) cannot occur if parity is
conserved. In principle, decay could go via emission of
an alpha plus a photon; however, it should be possible
to distinguish a line spectrum of alpha particles, whose
energy can often be predicted with great accuracy, from
the broad spectrum resulting from this mixed decay.
It is necessary that either the initial or final state have
zero spin since a transition such as 2+ —+ 1+, although
forbidden to p-wave alpha particles, can occur via d

wave, and alpha-decay rates are relatively insensitive
to the angular momentum change. Thus we will only be
interested here in even-A nuclei.

The width for alpha decay is usually44 4' written

~l 2PL YL

where P~ is the penetration factor and equals
kR/)Fis(R)+GP(R) j in the notation of Block e1 at 4s.

42 A. H. Wapstra, G. J.Nijgh, and R. Van Lieshout, Nuclear Spec-
troscopy Tables (North-Holland Publishing Company, Amsterdam,
1959).

4'K. Alder, S. Stech, and A. Winther, Phys. Rev. 107, 728
(1957).

44 R. G. Thomas, Progr. Theoret. Phys. (Kyoto) 12, 253 (1954).
"A. M. Lane, Rev. Mod. Phys. 52, 519 (1960).
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The nuclear structure effects are contained in y~ which
is given by

pi ——(2M,E)'" yi*XdS,
8

where q ~ is the wave function of an outgoing /-wave

alpha particle plus the daughter nuclear state, while I
is the parent nuclear state. The integration is over all
the internal coordinates of the alpha particle plus
daughter final state and integration of their relative
coordinates over the "interaction surface" which is
simply a sphere of radius E. The quantity R is usually
taken to be the Coulomb radius if the initial state is
spherically symmetric.

Rather than solving for p&, we will try to extract
from y~ the features dependent on the parities. Thus we
write

xi= xi"(~»l~*)Q»I4*),

where (n»~ is the wave function of the actual outgoing
alpha particle, while

~
n;) is the zero angular momentum

state of the four nucleons having center of mass a
distance E. from the center of mass of the A —4 nucleons
that will comprise the daughter nucleus, denoted by
~P;). The physical daughter nucleus is Q»~. The
quantity p&' then describes the amplitude for the
product nucleus to be in this state of near separation.
It will be most convenient here to assume the normali-
zation (a»~n, )=Q»~p, )=1 which gives yi ——gaia for
allowed alpha decay. To "turn on" the parity non-
conserving interaction, we then have simply

~i =~i"(~»
I ~')(0» l 0'),

with y~" essentially unchanged. Wave functions with a
tilde refer to the parity impure states, and a prime is
employed to indicate just the irregular parity ampli-
tude. Thus ga=Pi+Pa', where Pa is the unperturbed
state with quantum numbers k.

To be definite, consider the hypothetical case of a
0 state in the parent nucleus, unstable energetically
to decay to the ground state (0+) of the daughter, then

ya(parent) =yp'L(0+
~

0'—).iph. (0+
~
0+)d.„,h„„

+(0
~

0 )alpha(0 ~

0 )daughter]

=Vo"L(0+
~

o' ).iph. +(0+
~

o' )d..ghr-l. (26)

Insofar as the parity nonconserving forces among the
nucleons of the daughter (alpha) nucleus are concerned,
the second (first) term on the right-hand side of (26) is
identically zero. The state with nominal parity (+) and
the state with nominal parity (—) are distinct solutions
of the Hamiltonian including the parity nonconserving
forces, and therefore are exactly orthogonal. This need
not mean that (26) vanishes, it merely indicates that
part of the parity nonconserving interaction cannot
contribute to the decay. The contribution from the
parity nonconserving forces between the "alpha" and
the "daughter" nucleus has not been included, and the

"alpha" induces a certain amount of irregular parity
amplitude in the "daughter" wave function and vice
versa. The single-particle approximation then gives

(0+~ 0'-)d...h„,=—mG'(0+~ p o;r, ~0-),
i

taking the average density of the "alpha" particle seen
by each nucleon of the "daughter" to be 4/A of the
average nuclear density. Only one nucleon of the
"daughter" is assumed to be in the irregular parity
state, an approximation equivalent to assuming the
normalization (P»~P,)= 1 for ordinary alpha decay. The
equivalent approximations for the inhuence of the
"daughter" on the "alpha" then give altogether

v =&v '. (2&)

where yw is the Wigner limit (3/2M, R')'»' and 8 is the
average dimensionless reduced width, equal to about
0.1 for light nuclei and 0.2 for heavy nuclei. This gives

kg=0.8X10 eV; 2=16 (%=1.0X10 )
=0.9X10—' eV; A =160 (5'=4.5X10 "

average of extra proton
and extra neutron) .

Another consideration here is the effect of the parity
conserei mg "alpha-daughter" force. Including such
an interaction vitiates the orthogonality argument,
since the initial and final particles are no longer states
of the same internal Hamiltonian. It is, however, con-
sistent with our model to ignore this interaction, as-
suming the latter to be well approximated by a simple
scalar force between the mass centers of the "alpha"
and the "daughter, " and therefore not influencing the
internal motions.

The parity-forbidden alpha decay will always be in
competition with other decay modes. The even-even
nuclei, having 0+ ground states, and therefore not
parity forbidden to alpha decay, are not of interest,
leaving the odd-odd nuclei which are almost all unstable
to beta-decay processes (exceptions are O', Li', 3'",
and N"). The nuclei, unstable energetically to alpha
decay, in which either the daughter or parent spin is
zero (always 0 ) are listed in Table I. Ideally, the spin-
zero nucleus should be the parent, otherwise branching
to excited states usually results in the parity forbidden
alpha decay competing with the allowed alpha decay
and Eq. (27) gives branching fractions of the order
5'= $0 ".Having the spin-zero nucleus as parent wi&l

The quantity p&' will not be computed accurately
here, since this is a problem central to all theories of
alpha decay and not special to parity nonconservation
considerations. Instead, the quantity p&' may be esti-
mated, within an order of magnitude, to be

pi'= ~Vw,
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TmLz l. Alpha decays involving 0 odd-odd nuclei.

Nucleus

67HO'66

7 Qu170

7gAuXO

TP06

Tl210

g3Np"6

g6Am~4

svpr
g1Pa

Np234

g5Am"'

65Tb'6

6gTm'"

7gAu20at

( Au206)

g1Pa232

Npg40

6gAc~~
Pa%0
Np234

6gTm

Tal74

s @204

s3g j210

8j214

g6Am~0

78k
6gAcg2'

Daughter/Parent —g (Me~
0.046
0.769
2.6
3.3
1.0
1.0
0.342
4.946
3.2
5.599
5.14
5.77
5.34
5.51
4.61
4.20
5.43
6.01

7-1~2(sec}

9 7(4)
11(7)
1.7(5)
4.7(3}
2.9(3)
1.2(8)
2.6(2)
4.3(5}
2.5(2)
1 2(3)
7.9(4)
1.8(5)
1.6(3)
7.0(4)
2.2(4}
7 1(1)
3.8(5}
7.2(3)

Expected
branching

1.7(—69)

5 3(—13)

3.6(—21)

7.5(—21)

& The listed half-lives refer to the parent nucleus in the proposed alpha decay, the instability usually being due to beta-decay processes except for Bigl and
Bi»4 which alpha-decay to excited states of Tl'«and Tl»o. The arrows indicate transitions that satisfy all the requirements for parity-forbidden alpha
instability. The last four nuclei in the "nucleus" column do not have measured spins. These are listed because no alpha activity has been observed, and
it is therefore possible that parity forbids the transition. Some of the nuclei here assigned to 0 are themselves uncertain. The half-life and Q values may not
be the latest or most accurate values, in some cases being estimated from a semiempirical mass formula, PP. A. Seeger, Nucl. Phys. 25, 1 (i961)j, and this
table should not be regarded as a reference for these quantities. An entry such as 9.7(4) indicates 9.7 &(104. The branching fractions were estimated from the
reduced widths of neighboring even-even transitions.

not necessarily prevent the possibility of branching,
but often the decay to the low-lying levels is also parity
forbidden.

Decay from excited states would seem to have all the
above difhculties and have additionally to compete with
gamma decay. However, a high-spin isomeric state can
be virtually stable to both beta and gamma decay while
unstable to alpha decay, since the spin change does not
play a very important role in the alpha decay. On the
other hand, the appearance of low-lying states invites
regular alpha decay to these states in competition to
the forbidden ground-state decay. An example is the
isomeric 9 state of Bi"' which almost entirely decays
to excited states of Tl2~. From an experimental stand-
point, it is undesirable to have 10" alpha particles to
scatter about when trying to detect a single rare one
having a not very different energy.

In the light nuclei, where one often finds large gaps
between the first excited and ground states the branch-
ing discussed. above should be less serious. Table II
illustrates the excited nuclear states of self-conjugate
nuclei known to be unstable to parity-forbidden alpha
decay. Many of these states have been investigated' '
and the upper limits on F are included in Table II.
Undoubtedly, other examples exist (S" has several
uncertain assignments); however, beyond F" the odd-
odd self-conjugate nuclei become proton unstable
before they become alpha unstable, and the even-even
self-conjugate nuclei become beta-decay unstable above
3=40 and exceedingly difIicult to produce above
2=60. It is not necessary that the nuclei be self-
conjugate, but the Ej and F1 transitions tend to be
weak for self-conjugate nuclei and thereby would give
less competition to a parity-forbidden alpha decay.

1m 1, em o+2G"I,
n m n —23EG"(ex r). (28)

C. Beta Decay

No new eBects appear to be introduced by the parity
nonconserving force. Essentially, the nuclear parity
nonconserving effects generate axial vector couplings
from the polar vector interaction and vice versa, but
both are present anyway. To display the form of the
additional couplings, the single-particle approximation
will be used first, and then the general result may be
written down by inspection. The transition operators
for beta decay are simply I, p&, e, and e which are
further coupled to the retardation expansion of the
outgoing lepton wave functions to give the transition
operators for "forbidden" transitions. In this abbrevi-
ated notation, o represents the operator P; o;r~', the
sum extends over all nucleons.

The new operators generated by Eq. (22) are

i/1, o r]=0,
if'„o.r]=0,
ice e r]=2(e xr),
i$n)o r]=if igloo, e r—]= 2iyg(o x—r),

which give the replacements

1 ~ 1 o ~ e —2M'G" (e x r),
n ~ n+2G"I.

Our instructions are now to use the parity pure wave
functions, and for example an allowed axial vector
transition goes by the regular part of e and the irregular
part of e. Thus it is more useful to write the replace-
ments as
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TABLE II. Alpha-decay unstable (parity forbidden) excited states of light nuclei. The entry P, ~t refers to the upper limit imposed
by experiment, In order to deduce f, ~t, it is always necessary to estimate the irregular alpha-decay width r ' and often necessary to
estimate the width for competing decay modes, here designated r„.The values assumed in the references indicated have therefore been
included for comparison. Only states stable to particle decay (e, p, and d) have been included due to the generally large competing widths
for such processes. Consequently, the work of Refs. 2 and 3 does not appear in this table. Equation (23) gives f&h„.

Li6
Q16
Q16

0+,1
2,0
2,0

Q16
016
Ipwe"

14Sj"

0,0
3+,0
2,0
(4 ),0
(1+,1)

Nucleus (J~,T) ~ (J~,T)

1+,0
0+,0
0+,0

0+,0
0+,0
0+,0
0+,0
0+,0

10.95
11.08
4.97
7.03

10.71

3.79
3.92
0.24
2.30
0.72

E(MeV) —Q (MeV) Ref.

3.560 2.089
8.88 1.72 5
8.88 1.72 5

r, (eV)

~ ~ ~

3(—3)
3(—3)
2(—3)
3(—3)
3(—3)
1(—3)

1.8(—1)
~ ~ ~

1' '(eV)

6(2)
6(3)

6.7(3)
3(3)
3 (3)

2.8(2)
2(2)

+expt

~ ~ ~

1.3(—11)
1.3(—12)
7(—12)

1.3(—10)
2(—12)

2.4(—10)
2(-9)

theo

4.9 (—14)
1.0(—13)
1.0(—13)
1.0(—13)
1.0(—13)
1.0(—13)
1.0(—13)
1.0(—13)
1.0(—13)
1.1(—13)
1.1(—13)
1.4(—13)

Since S commutes with the spatial coordinates, the
replacements (28) are then made in every term of the
retardation expansion. This means that no new angular
correlations, spectrum shape corrections, etc. , will

appear, and the factors already present will merely be
changed slightly (order G) in magnitude.

There is very little hope of distinguishing 6 from
e+2G"I: only if one knew that (e)=0 could one then
decide whether 2G"(1) was being detected.

In the more general situation, an operator S must
exist such that P=e' f; hence Eq. (28) becomes, to
order 5,

1 m 1 +i(ps, Sj,
vs ~ vs+it:1,Sj,
em e +ice,S],
em e +i)e,Sj,

and the possible noncommutivity of S with the co-
ordinate terms of the retardation expansion will not
introduce any new dependence on the lepton momenta.
The new operators will additionally have new isotopic
spin dependences, as mentioned briefly in Sec. IIIA,
but this in no way changes the above argument.

D. Gamma Decay

If the spin-parity change in a nuclear deexcitation
allows emission of a photon of given multipolarity, say
EL, then parity admixing in general allows the multi-
polarity ML to also be emitted. Experimentally, the
irregular radiation must be detected indirectly, as, for
example, from the interference of the two amplitudes
to give a slight ellipticity to the polarization of the
radiation. As suggested in Sec. IIIB, this e6ect may be
greatest for transitions of the form EL(ML) and
weakest for ML(EL). Intuitively, we might argue that
the tendency for the nucleons to correlate their spin
and momentum will not be manifested externally
unless the correlation charges in the transition from
initial to final states. In the weak electric transition,

the correlation changes only in that the initial and final
wave functions do not, in general, have quite the same
admixing. In the single-particle approximation, they
have equal admixing and the weak EL vanishes identi-
cally. On the other hand, the magnetic transitions, e.g. ,
spin-Rip, reverse the spin direction and give a maximal
change in correlation.

The magnitude of the circular polarization is so small,
of order 7, that direct experimental verification is at
present unlikely. One must search for situations in which
the parity-allowed transition is greatly inhibited, so
that the weak parity-forbidden transition will show up
more, provided it is not also inhibited. The great diS-
culty of this program is that one cannot be at all sure,
given a strongly inhibited, EL transition, that the weak
ML is not inhibited for the same reason. For example,
the 56-keV transition from the isomeric state of Hf'"
(8 —+ 8+) is enormously inhibited (10 "of the Wigner
width) and u priori looks like a perfect example. How-
ever, the 8+ state belongs to a E=0 band while the 8
is thought to be the lowest member of a E=8 band.
The selection rule4'4' 6K=0, 1 for dipole transitions
is then strongly violated, explaining the inhibition, and
this selection rule applies equally to the M1 transitions.

What is usually done in practice is to choose a nucleus
or group of nuclei in which the E1 transitions, say, are
inhibited but the neighboring M1 transitions are not.
In the absence of any information on the structure of
the nuclear states, this is probably about as good as one
can do. It is therefore advantageous to study nuclei
about which one possesses some knowledge of the
structure, in this case Eq. (22) may be employed to
generate the appropriate operators for the irregular
transitions and the transition amplitudes may then be
computed. It is not usually necessary to compute the
inhibited regular transitions since this can be measured

46 I. Block, M. H. Hull, Jr., A. A. Broyles, W. G. Bouricius,
B.E. Freeman, and G. Breit, Rev. Mod. Phys. 23, 147 (1951).

47 G. Alaga, Nucl. Phys. 4, 625 (1957).
6 B.R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab.

Selskab, Mat. Fys. Skrifter 1, No. 8 (1959).
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2g~ —gl )
»i(~i) = I&lli«rli)/&llrll).

2MR I
(29)

Similar expressions obtain in the single-particle approxi-
mation for higher EL(ML) multipolarities from the
replacements

e —+ 2i(r x r, 1~ —io x r (30)

in the appropriate 3fL transition operator. It might be
noted here that vanishing of (Ilerll) will not guarantee
an arbitrarily large value of %+1~~1), since the small
magnetic effects also give an additional contribution
—uog. e(llexrll)/4M to the E1 transition operator
which gives a value for (R)),i(~i)= —2(2g, —gi)/g~R.
This does not constitute a limit since the usual dipole
contribution (llerll) can interfere with the magnetic
contribution.

As discussed in Sec. IIIB, the ML(EL) transitions
give (R~1~g1)=0 in the single-particle approximation.
This does not appear to be a fundamental result, how-

ever, and simply suggests that this type of transition is
less promising for demonstration of parity noncon-
serving effects. Nevertheless, it is important to know
the form of the operator for these EL transitions if
favorable experiments are to be selected to test this
conjecture. Assuming that LS,r]WO when more realistic
Hamiltonians are used, e.g. , including the spin-orbit
force, we then have from Eq. (19) an operator of the
form i2{y(r),(e r)r)+, where y(r) is a scalar operator.
Approximating 7 to be a constant then gives y(e r)r,

"R. G. Sachs and N. Austern, Phys. Rev. 81, 705 (1951).

experimentally, while the amplitude of the irregular
transition (which should be uninhibited if the case is
to be promising experimentally) can be computed with
some con6dence. In Appendix A it is pointed out that
Eq. (14') does not contribute to the electromagnetic
coupling in the single-particle approximation, thus the
electromagnetic transition operators are unchanged by
addition of the parity nonconserving interaction (14).
Gauge invariance" guarantees in any event that the
EL, operator is directly proportioned to the time
derivative of the corresponding static multipole moment
operator. Thus the dipole transition operator is der/dt
=iPI,er]= user, where cu is the transition energy. This
result is easily verified for the Hamiltonian (20) by
using the replacement y~y —eA to introduce the
electromagnetic interaction and comparing the result
(in the dipole approximation) with il H, er]. In trans-
forming via (21) to the unperturbed system, it makes
no difference which form of the transition operation is

employed since e 'eiPl, er]e'e=iPHo, er] iMer=in the
unperturbed system also. The numerical quantity co

is unchanged to order O'. The M1 operator (e/2M)
X(3/4~)"'(g (r+gil), gives from Eq. (22) the M1
operator (e/2M) (3/4m)')'(2g, gi) (i—e x r),.The E1(M1)
transitions then give

and we adopt the form EL=y (e r)EL, thus

2M'(ll(~ r)rll)

R(llg. ~+g)1ll)
(31)

The tendency for p to vanish will be compensated some-
what by the relatively greater strength of the EL
transitions to Mt. which otherwise favors ML (EL) over
EL&ML) transitions as seen by the factor MR 6A'~'

in Eqs. (29) and (31).
A promising theoretical situation obtains in nuclei

where the closing of shells and/or strong pairing forces
seem to allow, as a sensible approximation, the separa-
tion of the nucleus into a single nucleon coupled to an
inert core.

Spherical nuclei

If the core is spherically symmetric, the extra-core
nucleon will have a definite t and j, and the quantity
(R may then be computed with some confidence for
transitions among the possible (l,j) states. Situations
of interest for detection of parity nonconservation are
where the regular transition is forbidden and the ir-
regular transition is allowed. For the EL(ML) single-
particle transitions this never occurs, since the tran-
sition is allowed if

I j~—g;ICE(l jy+g, l
and the

parity changes, conditions that AIL must also satisfy.
The value of R~1~~1) is given for the possible single-

particle E1 transitions in Eq. (32) below. The radial
parts of the transition amplitudes cancel in RE1~~1) in
the single-particle approximation.

~'= »M&")/R(g. +g«lllll)/&ll~ll))- &7 2A'"~/g. )

It is relatively straightforward to compute & for the
special case of a harmonic oscillator potential with a
spin-orbit force (a/2)(r 1. The contribution comes in
this case from the spin-orbit contributions to the energy
denominators which destroys the otherwise perfect
cancellation of the irregular terms. The results are, to
erst order in a/a&o -,'A '~' where coo is the oscillator level

»i())i() ——2 (l+1) (2g.—gi)/2MR

(l, l+-,') (l+1, l+-,')
=~-,' (Zg.—g,)/2MR

(l, 1&-,') + (l+1, 1+1&—,') . (32)

The E1 transition (l, l+-,') ~ (l+1, l+-', ) is relatively
weak since the spin direction changes (in the classical
limit), accounting for the la,rger (R value.

In the M1(E1) transitions we obtain similarly, using
expression (31),

+M1(E1) (l l+2) ~ (l l ~)
= Wy'/(2t+1&2) (l, t&-,') ~ (l, l&~), (33)

where
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spacing,

v=3 (/+2)
Q)p R

(t, /&g) —+ (t, t&-,')

to be reduced by factors of about 100. It happens,
however, that the M1 transitions are also weak""
(by a factor of about 10 in amplitude) and Rzz&~&~ is
amplified by a factor of about 10 over the estimates of
Eq. (32).

(t—1, / —-', ) —+ (/+1, t+-', ),
where ~ is the number of nodes in the radial wave
function. The empirical estimates u 132 '~' MeV and
coo 41A '~' MeV give a/a&o'R 1.3A '~' and y' 9.1/g, .
It must be stressed that these estimates are mainly to
indicate the order of magnitude of the corrections in-
volved; the 6nite size of the nuclear core also gives
corrections of magnitude similar to Eq. (34). In the
magnetic transitions, a special selection rule does
operate. The "M1"transition (t 1, t ——2) —+ (/+1, /+ o)
is, in fact, forbidden since the magnetic moment oper-
ator cannot change the orbital angular momentum by
2 units. Such "l-forbidden" magnetic transitions'~"
occur for every magnetic multipole order. The E2
transition (E/+1, in gen. eral) is not forbidden, and, if
the M1 were rigorously forbidden, we would have
E2 (Ei) interference giving

In general, the tensor force admixes / with /+2 and
these I-forbidden transitions are observed to be about
two orders of magnitude slower than the Weisskopf
estimates. "Hence,

i
(R (,) i

-10(1'„(E1)/I' (M1))'i'-18A' '
(/ —1, / ——,') (/+1, /+ ,') . -

When more than one particle contributes to the
electromagnetic decay, as would be expected in nuclei
whose states cannot be reasonably separated into core
+extra nucleon, the amplitudes for the regular tran-
sition may interfere destructively, while the irregular
amplitude interferes constructively. Such interference
occurs for example in T= 0 —+ '1=0 transitions of self-
conjugate (N=Z) nuclei. Here, the E1 transitions
(only) are forbidden, except via isotopic spin im-
purities, '4 and the transition amplitudes are observed

"A. Arima, H. Horie, and M. Sano, Progr. Theoret. Phys.
(Kyoto) 17, 567 (1957).

"G. M. Bukat, Zh. Kksperim. i Teor. Fiz. 39, 1716 (1960)
/translation: Soviet Phys. —JETP 12, 1198 (1961)j."E.Ye. BerlovichYu. K. Gusev, V. V. Ilyin, V. V. Nikitin,
and M. K. Nikitin, Nucl. Phys. 37, 469 (1962).

"D. H. Wilkinson, Nuclear Spectroscopy, edited by F. Ajzen-
berg-Selove, (Academic Press Inc. , New York and London, 1960),
Part B, p. 859.

'4 M. Gell-Mann and V. L. Telegdi, Phys. Rev. 91, 169 (1953).

TAsx, K III. Asymptotic selection rules for the regular
Ei and irregular lit 1 transitions.

AE Multipole

0 Ei
Ml

1 E1
Mi
iV1

Operator

(0- +io.„)(~wiy)
(x+iy)

o.(x+iy)
(~ +i~y)S

DA 6, dN

0 ai ai
&1 0 ~1 ~1
ai 0 ai ~1
&1 0 &1, wi
0 ai ~1

~' G. Morpurgo, Phys. Rev. 110, 721 (1958)."G. K. Warburton, Phys. Rev. Letters 1, 68 (1958)."Jis the total momentum of the state, E is the projection of
the single-particle total angular momentum on the symmetry (s)
axis of the deformed core, x = (—1) is the parity of the state, N
is the number of nodes in the single-particle wave function, n, is
the number of nodes on the s axis, and h. is the projection of the
orbital angular momentum on the s axis.

Deformed Nne/ei

If the core is strongly deformed, the orbital and spin
angular momenta of an extra-core particle tend to
become decoupled and a greater variety of selection
rules can act. In this model, ""the single-particle wave
functions are described by JE~$1Vn&] in the usual
notation. " The states admixed by any pseudoscalar
interaction in the nuclear Hamiltonian will have
AJ = hIC =0 and Am (yes). Since the parity is given by
(—1)~, we must have AN=odd, and for the single-
particle approximation, hiV=1. The change in orbital
angular momentum of the extra particle must be +1
for a single-particle parity-nonconserving scalar po-
tential since the spin operator can at most be a tensor
of rank 1 and must couple with the spatial dependence
to give a rank-zero tensor; hence, the spatial operator
must also be rank 1 and therefore can couple only states
differing by one unit of angular momentum. The pro-
jection of the orbital angular momentum is then
restricted to

(
hA.

~

= 1, 0 requiring ( An, (
=0, 1, re-

spectively. These rules may easily be deduced for o r
from Table I of Ref. 48, and are summarized below in
Eq. (35). The above discussion is to emphasize the
independence of the selection rules from any specific
operator such as e r.

(o+r +o r+) AX=+1, hn, =0, AN=&1, +1,
(o.,s) Ah=0, An, =&1, AN=&1.

(35)

It has already been mentioned in Sec. IIIB that
spherical symmetry is not required in the single-
particle approximation.

Suppose a transition involves DE=2 while the
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TAsI.E IV. Asymptotic selection rules for irregular
iVL transitions. ' Tmz.z V, Irregular EL transitions. '

AE Multipole Operator DA hn,
Selection

rule DI» Multipole Operator ~ Dn,

Selec-
tion
rule

0+V
0 f~
a+S
0"+f S
o. SV+
0.+r r+
0 f+
0'+S2

0+SV+

0+f S

0 Sr+

o-+r 2r+
0 f f+
0+f Sf+
0. Sr+2

0+V V+
o. V+

0+S f+

0+Sf+

—1 0
1 0
0 ~1

—1 +1
&1

0 0

' (.',)
&1'(')

(+2)—1 0
1 0
0
2 +1

(.;)

+1
&1

0, +2
0, +2
+2

0, ~2

( '2)
0, &2

(+',3)

( t',3)
&13
&1,3

~1, ~1, &3
+1, %1, +3

(+3)
+1 +3
&1 &3

(-",.)
&1 %1 +3

0+f S
0 Sf+
0-+r r+
0 r+2

o+V S

0 S~f+
0'+r v+
0 f r+
0+f SV+
0 Sf+2
0+f f+
0 'V+3

0'+r s
0 zr+
0+r sv+
0 f Sf+
0+f S 7+
0+f r+2 2

o S2r+2

0 r f+
0-+ref+2
0" sr+
0'+r r+
o. r+4

—1
1 a1
0 0
2 0—1 a2

a2—1 0
1 0
0 ~1
2 &1

0
3 0

&3
1 a3—1
1 ~1
0 &2
0 0
2 &2
2 0
1 &1
3 +1
2 0
4 0

0, +2
0, ~2

&2
0, ~2
&13
&13
&2
&3

+1 +3
+1 Wi +3

&3
&13
%2,4
&2,4
&4
+4

0, +4
%4

0, +2p &4
&4

W2, %4
0, +2, +2, a4

+4
0, ~2, +4

& These selection rules for the ZL transitions hinder both the ML and
the EL+1 transitions.

a The selection rules have been chosen such that the irregular transition
is allowed while the regular transition is hindered. Thus, an EL transition
will be hindered if the selection rule for a ML transition is satisfied. To
simplify the tables, hK has been taken positive: the operator giving Kh
= —

) hK( is simply generated by interchange of (1) and ( —) subscripts.
Here tr~ =2 '~2(o&&io&) and r~ =2 '~2(x+iy). Those rules known to apply to
observed transitions are denoted under "Selection Rule" and correspond
to those listed in Table VII.

selection rules allow at most hS= 1.Then we will have
a "hindered" transition, forbidden if the asymptotic
quantum numbers were good. For convenience, let us
refer to such a situation as having a single "order" of
hinderance and not distinguish among hinderance in A,
e„orE but merely sum together and quote a net order
of hinderance. Then an allowed transition would match
its selection rule completely and have zero order of
hinderance. For each order of hinderance, a transition
is found4' to be reduced in amplitude by about a factor
of 10', depending on the deformation of the core. From
the selection rules in Eq. (35), we see that the parity
irregular transitions can be less forbidden than the
regular transitions by two orders of hinderance. To
make this clear, Table III gives the selection rules for
the Ej and M1 transitions, i.e., the operators r and
e x r. We see that among possible transitions, one with
B,K[ENhn, dA] = 1/101] is allowed both for the regular
and irregular transition, and would therefore give no
particular enhancement to (R~~(~~) while the transition
01011]should give (Rz«~&~ much less than unity, and
the transition 0/101] should give REq&~~& much larger
than unity. The latter are of interest in this paper and
are listed up to electromagnetic multipole order 3 in
Tables IV, V, and VI. For the BI.transitions in Table

TAsr.E VI. Irregular EL transitions in magnetic
orbit Rip transitions.

Multi-
sE pole

1 Bi
2 E2
3 E3
4 E4

Operator d A. b,n,

iTgsf+ 1
0'gsr+ 2
0-~r+s 3
o,Sr+4 4

~1 0, +2ai ai, Wi, +3
~1 0, ~2, ~2, ~4
ai &1, Wi, w3, W3, &5

V, we have used the form (31) and required both the
ML aed EL+1 to be relatively hindered.

A note of caution: The selection rules are, in general,
incomplete since those rules which also permit an un-
hindered regular transition have been deleted. For
example, the Bi operator 0+r r+ has the same selection
rules as the M1 operator 0-+ except for hZ=+2, and
this alone has been listed in Table V. Note also that the
quantum numbers of a state are in the order (Ne&),
while it is customary to tabulate the changes in the
opposite order as is done in Tables IV, V, and VI.

Table VII lists the intrinsic states, identi6ed in
deformed nuclei, whose irregular decay only is allowed
by the selection rules of Table IV and V. We will
here examine in detail mainly the dipole transitions,
since it is often difFicult to observe the higher multipole
radiation. For example, the 424-keV state of Tm'"
decays almost entirely to the spin- —,

' and -—,
' members

of the ground-state rotational band (—,
' —P23]~

~+$411]) via the K-forbidden but nevertheless more
intense Ei and M2 radiation in preference to the
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TABLE VII. Allowed irregular-hindered regular electromagnetic transitions. '

Multipole
Selection

rule Orbit assignments

—',+[4137—~2 —[523]
—:—L523]—r'+[6337
g+[4047 —$-[514]
—,
' —[514]—g+ [624]
g+ [633]—x—[243]
—,'+[624]—g- [7347
4+[411]—a+[413]
—,
' —[521]—',—[523]
5+[402]—m+[4047
l-[5107~-[5127
1+[631 —5+[6337
sj[622]—s'+ [624]
—,-[so3]—&-[5147
—',+[4007~+[411]
-', +[622]—,'+ [633]
—',+[402]—', +[411]
k —[5037—2

—[512]
—',+[622]—', +[631]
-', +[642]—',—[523]
—,
' —[5237—,'+ [404]
i+ [6337—l —L514]
—,
' —[5237—g+ [4117
-', +[633]—,'- [521]
5+[6247—m- [5127
2
—D437—2+ [6317

—,
' —[514]—,'—[510]

Nuclei

Tb'61
Er'67 Ny35 Am
Lu178flv5 17? Ta179 181

HflVV, 1V9

U238 Pu239

Cm"'
Eu153 Tb161

Dy161 Er165 Np237 A
Tm171 Lul75 Tal81
gjl81,188

U238

Pu241 h245
Hf"'
R el85

Pu239

Tm171 ] ul75 Talsl 188 Rel86

Q7181

U237 Pu239 Cm245

Dy161 Np235 )237 239 Am239 f241 f245

Tm169, 171

Yb171 Hf"'
Ho'6' Tm'6'
DylBQ FrlBV Qb171

@7181

U238 Pu237, 239

HflVQ ~179

a Those transitions are listed which satisfy the selection rules in Tables IV, V, and VI, and are known (Ref. 48) to be present in the low-lying states of
deformed nuclei. The list of such nuclei is probably less complete than the possible orbit transitions. Only seven of the rules of Tables IV, V, and VI seem
to apply to low-lying states of actual nuclei and these are denoted in the column "Selection Rule" in this and the above tables. The orbit assignments
are in the notation (Ref. 57) K2r(NBA j.

hindered E3. Furthermore, the higher multipole tran-
sitions do not seem to be as strongly hindered as are
the E1, with a few exceptions discussed below.

Experimentally, the E1 decay rates are often found
to be surprisingly slow compared to single-particle
estimates. Of those listed in Table VII, the 2

—P14]~
~7+[404] and ~~+[624]-+ ~

~—[514] transitions are
found" to be considerably hindered while the irregular
M1 transition is allowed from Table IV.This hinderance,
necessary to accentuate the interference with the irregu-
lar 3f1 amplitude must not in turn hinder the irregular
M1 amplitude. We now brieQy consider this point.

The states most accessible for study in the heavy
nuclei are the low-lying levels populated by beta decay
and the subsequent gamma-ray cascade, if any. For
these states, the possible E1 transitions all violate the
asymptotic (i.e. , hA, Am„and dE) selection rules,
despite frequent appearance of states having parity
opposite that of the ground state. Let us examine the
&
—[514]~ ~+[404] transition. In the limit of very

small deformation, the transition becomes 1h~~~2, 9~2
—+

1g7/2, 7/g (shell-model, notation: I.; where m is the pro-
jection of j on a fixed axis), and the I'1 matrix element

must thus vanish for zero deformation as well as large
deformation. It need not be surprising then to find
that this matrix element never becomes very large for
any deformation. Numerical calculations have been
made" and indeed give very small transition rates.
For some transitions the observed rate is still smaller
by two orders of magnitude; however, these calcula-
tions involve almost complete cancellation of large
terms (the cancellation is exact at zero deformation,
and the terms themselves approach zero at large de-
formations), and the model is almost certainly inade-
quate for quantitative estimates under such circum-
stances. Admixing among the low-lying states will not
particularly enhance a given E1 transition if none have
appreciable E1 transition elements. The higher multi-
pole transitions, having a greater variety of selection
rules, are often allowed between low-lying states and
admixing of these states conspires to weaken hinderance
given by the asymptotic selection rules, as is found em-
pirically. The point of this discussion is to note that the
slowness of E1 transitions is not in conflict with the
Nilsson model, and therefore allowed transitions, being

",U. Hauser, K. Runge, and G. Knissel, Nucl. Phys. 27, 632"F.. Hashandy and M. S. Kl-Nesr, Arkiv Fysik 22, 357 (1962). (1961).
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TAaLz VIII. Strongly hindered regular Ei transitions. These transitions are known to be strongly hindered and in fact obey selection
rule "u" of Tables IV-VII. The quantity t1/2 refers to the photoe half-life of the transition. The experimental electric dipole transition
rate per second is given by T(E1) while T(M1) is the expected irregular magnetic dipole transition rate calculated as illustrated from
Eq. (36) ef seq. The quantity !6ts&~~&~! = [T(M1)/T(E1)5'g'~' as follows from the definition (25). Estimates from Eq. (23) are listed
under S:, and the product (RP is that quantity to be used in the formulas at the end of Sec. lVA. The quantity (pq/u&)'I' refers to the
polarization properties of the electron as discussed in Sec. IVE, where p1 and n1 are the internal conversion coeKcients for the magnetic
and electric dipole transitions, respectively.

Nucleus (JE) ~ (J'E'} L:7(keV) t&/2(sec) T(f-"1) T(M1)/P ! 61Ei(ui)! (Pl/O'1) ' '

I u173

I u175

Lu177

7 Talsl

7 Hf

7 Hf'"

7 7 9 9a
2 2 2 2
9 9 7 7
2 2 2 2

9
2ll

9 9 7 7
2 2 2 2

9
2

9 9 7 7
2 2 2 2

9 9 7 7
2 2 2 2

9
2
11,

7 7 9 9
2 2 2 2

123
396
282
148
146
28
6

321
208

71
217

8.4(—5)
6.3 (—9)
1.1 {—8)
9.8(—8)
2.8(—7)

6.8(—6)

4.9(—8)
7.2 (—10)
7.3 (—8)

&3.5(—7}

Odd proton
8.3 (3) 2.0{10)
1.1 (8) 5.4(11)
6.3 (7) 4.4{10)
7.1 (6) 6.3 {8)
2.5 (6) 1.8 (11)

2 3(3) 2.1(6)

Odd neutron
1.4 (7) 3.7 (11)
9.6(8) 2.3 (10)
9.6(6) 9.0(7)

&2.0(6) 1.4(11)

1550.
70
26
9

270

30

160
5
3

&85

8.0(—7)
8.0(—7)
8.0(—7)
8.0(—7)
8.0(—7)

1 3{—3)
5.7 (—5)
2.2 {—5)
7.5(—6)
2.2 (—4)

5.5 (—7)
5.5(—7)
5.5 (—7)
5.5 (—7)

8.8(—5)
2.8{—6)
1.7(—6)

&4.8(—5)

8.0(—7) 2.5 (—5}

3.3
1.1b
2.9
3.2
3.2
54'

~34tI

0.8'
3.1
3.4
3.1

a J. W. Mihelich et al. , Bull. Am. Phys. Soc. 3, 358 (1958), gives this assignment; however, J. Valentin, Nucl. Phys. 31,353 (1961),assigns this state to
the 5/2 1/2 —P41) orbit, in which case b,Z =3 and not selection rule "a" explains the hinderance. In the latter case, there are no grounds for assigning
a large value of (R to this transition.

b CÃ1(expt) =6n1(theo) giving the reduced value listed.
Calculated for LI capture.

d Calculated for Mi capture.
'at(expt) =12n1(theo) giving the reduced value listed.

insensitive to detailed knowledge of the single-particle
wave functions, can be estimated with some conhdence.
Of course, should additional factors be shown to con-
tribute, such as a change in the core deformation be-
tween initial and 6nal states, the effect on the irregular
transition amplitude must also be included. In the single-
particle approximation, a change in core deformation
would equally hinder regular and irregular transitions.

Table VIII lists the E1 transitions among the 2
—+ 2

states discussed above, together with the rate of the
irregular M1 transition and R~1(,~1) computed for the
asymptotic wave functions. These transitions are so
strongly hindered that the M2 admixing may be ap-
preciable and the M2(M1) interference should be con-
sidered in these cases (the 396-kev transition in. Lu"'
is about 20% M2 and, as a consequence, the coefficient
to cos0p~ in the beta-gamma angular correlation is
either —0.5RS or —0.4RF, depending on the relative
phase of the E1 and M2 transition amplitudes).

The physical situation here is seen more readily by
expanding the JK7r(Nn, h]state's in term. s of the basis
states

l
NlAZ) where f is the orbital angular momentum,

the projection of / on the symmetry axis is 4, and 2 is
the same projection of the nucleon intrinsic spin. Note
that K=A+X, N&t, and (—1)~= (—1)'.The-,'+$404]
state is almost pure4'

l
444 —) in this notation while the

s —L514] state is almost pure"
l
554+), thus the E1

operator (x+sy) vanishes while the M1 operator
z( +io) dooes not.

The transition rate for a multipole of order I is

given by
g~(L+1)

T(L) = ~2L+lg3 (L)
LL(2L+1)!!j' (36)

I1(L, Z 1') = (JKLK' K
l

J'K')—

q x '"alt(L, K' K) prcdt, (—37)

The regular transition operators are, neglecting col-
lective terms, 4'

EL= SR,(L,M) = e(Q+ ( 1)zZ/An)rnY—r, sr,

e 2
ML=SR (L,M) = g,a+g) l ~(rzYzsr),

2M I+1
where e'= 1/137, Q= nucleon charge, and the coordi-
nates refer to the coordinate system of the basis states
where lNL/tZ)= lM)Ytsxiz, lNl) is the normalized
three-dimensional harmonic-oscillator radial wave func-
tion, and X;q is the Pauli spinor. Thus, to calculate

where pz is the instrinsic state, most conveniently
expanded in terms of the lNlAZ) basis states. The
notation for the vector coupling coefficient is such that

I jsf1ss)= 2 (jt~rjsr1ssl js~s)l jt~t) I js~s)
7R1+sl2=m3
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T(M1) for the 396-keV Lu"' transition in Table VIII,
we obtain 6rst

eG"
%1= (2g. g—i)(s~Xr) &(r&isr)

2M

(2.29) (ieXr) sr—
M 4m.

(554+
~
(eXr)~~444 —)

= (554+
~

(0' s—r 0,) ~

444—)

=%2(S54~s~444)

=@2(55
i
r

i
44)(4s)'" I's4*VgoI'44d&.

The integral can be evaluated using4'

(21+1)(2L+1)
~*& ~ ~l,m~)~do=

4s.(2l'+1)

X(ELM
~

PA')(tOLO! t'O)

and (ss~r~44)= (11/2Mc s)'~ with c s 412'~' MeV
gives finally

(16) (2.29)' ar3e'5'
T(M1) =

(15) M'cosR'
=5.4X10"P' sec '.

The outstanding example of M1 hinderance (3X 10')
is the ground-state decay of the 480-keV level in Ta'".
This transition gives R~&(z&) =1.4&10 y where esti-
mating y at around 0.14 gives E 2X10'. In this
example, the E2 transition, although itself hindered
(see explanation of Table V), constitutes 97% of the
decay rate of this state and (R»(z&~ 4X10' is the more
meaningful quantity. Other favorable M1(E1) transi-
tions, identified in Eu'", Dy'", and Np'", are hindered
by at most 104 although better examples may ultimately
be discovered.

To determine the sign of R, we need more infor-
mation than the approximate wave functions and the
decay rate of the regular transition when that tran-
sition is strongly hindered. For an E1(M1) transition
it is often possible to determine experimentally the
relative phase of the E1 and 3I2 transition matrix
elements. Since the M2 transitions are allowed for the
M1 examples on Table V, the relative M1 to M2 phase
may be computed from the approximate wave functions
and thereby the sign of (R»~~&~ may be determined.

Then we have from Eqs. (36) and (37)

(8~) (2)(a'e'G'"(2. 29) (3)
T(M1) =

(1)(3!!)' (4~)

.&SS4+ [ (~Xr), [444—) ['

It has been pointed out that when the extra-core
particle is a neutron and the transition changes the
orbital state but not the spin projection ("orbit fhp"),
the magnetic transition rates are extensively hindered.
Table I of Ref. 60 lists several transitions of this type,
and these transitions are all allowed, for their irregular
components. The selection rules will not be found in
Table V since the regular transition is also allowed (but
retarded due to the zero charge of the neutron) and are
given in Table VI. The most favorable example is the
5 M3 transition in W' ' (~~—,' —L521]—+ s' s7 —[514])
which is about 7&&10 times slower than single-particle
estimates. Again using Eq. (31), the asymptotic wave
functions give

OI

T(E'3) = (3.1 sec—')y'F',

I &~s(») I
=3».

For experimental details such as alignment of ap-
paratus, it may be useful to have available transitions
which should show no parity nonconserving effects.
Ejectromagnetic transitions among members of the
same rotational band are expected to be virtually
parity pure, since a given transition matrix element is
proportional to its expectation value for the intrinsic
state, and the latter must vanish for the irregular
transition operators as discussed in Sec. IIIA.

E. Internal Conversion

80 H. Morinaga and K. Takahashi, Nuc!. Phys. SS, 186 (1962).
"M. E. Rose, Internal Conversion Coegcients (North-Holland

Publishing Company, Amsterdam, 1958).
M. E. Rose, 3fultipole Fields (John Wiley R Sons, Inc. , New

York, 1955), p. 65.

In the usual approximation" ' the transition ampli-
tude for internal conversion, the ejection of a bound
atomic electron, is equal to the amplitude for emission
of a gamma ray multiplied by a tabulated factor. If the
photons are circularly polarized, then the electrons will
also be circularly polarized. A significant advantage
may be gained by examining the electrons rather than
the photons, since the electric and magnetic multipoles
do not couple in the same way with bound electrons.
This is easily seen for the E shell where a -', + electron
may be ejected as an s wave by an M1 transition, but
must come out as a p wave for the E1 transition. The
difference in coupling becomes pronounced at high Z
for low-energy transitions where the overlap between
tightly bound initial-state electrons and the slow final-
state continuum electron is very sensitive to the angular
momentum of the latter. For special values of Z, E,
and. I., the ratio of the magnetic-multipole to electric-
multipole It-conversion coeKcients, pz/nz in the no-
tation of Rose, may be as large as 10' or greater. The
degree of electron polarization will then be of the order
(Pz/uz)'I' times the EL photon polarization. The actual
expression is somewhat more complicated due to the
contribution of two partial waves in general to the
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internal conversion process. For example, in the E
shell, and JIi multipole couples to both s&~2 and d3/2

continuum states while the E1 couples to pg/2 and pa/2.
The Anal polarization is a weighted average of the inter-
ference between the angular momentum -,'and —,

' waves

which precludes simply writing the result in terms of
(P/n)' ' although this should be of the correct order of
magnitude. The properly weighted result for electron
polarization in EL(ML) conversion from the bushel'l

can be written fz(Pz/nz)'/'(RF where

2[(L+1)(Rs+R4) —(2L+1)Rg+Rsj (Rg+R2)

[L ) R8+R4+2R6['y (L+1)[ R8+R4—[2+(1/L)]R5—(1/L)R6]'j'" [(2L+1)[ Rl+R2 )'j"'-

and [ fz[ varies between (4/5)'/' and (8/5)'/' if Ra to
R6 have the same sign. The E; are defined in Ref. 62.
Tables of the individual R; do not seem to be available;
however, taking

~
fz,

~

=1 is probably not too bad for a
rough approximation. If the transition is ML(EL) the
ratio t/n is approximately inverted provided the L»
line is examined instead of the E or 1~ lines, although
resolving Li& from the L lines may be experimentally
more difFicult than resolving the E from the I lines.

y= (m —1)kk. (38)

The index of refraction for neutrons is given to an
excellent approximation~ by 5=1 2mEf/k', wher—e E
is the number of nuclei per unit volume and f is. the
scattering length due to. the nuclear forces. The parity
nonconserving interaction gives a contribution to the
index of refraction dependent on the sense of spin
polarization along the momentum direction. The total
scattering length is then f+f' for neutrons polarized
parallel to k, f f' for antipar—allel, where f', derived
in Appendix 3, is

F. Scattering Exyeriments

In most scattering processes the electromagnetic
and/or nuclear forces will dominate and virtually
obliterate any sign of the parity nonconserving inter-
actions. The transmission of thermal neutrons through
a crysta1 constitutes an exceptional situation, since the
Coulomb force is absent and the nuclear scat terings
add coherently to appear simply as an "index of re-
fraction" for neutron waves in the crystal. Magnetic
and spin-dependent nuclear interactions can be circum-
vented in crystals composed of atoms without static
magnetic moments and nuclei having zero spin or
negligible spin-dependent interaction. Thus, a thermal
neutron may propagate through a crystal essentially
as a free particle, and under these conditions the parity
nonconserving forces may produce observable effects.

A plane wave of momentum k, in traversing a length
h of matter with refractive index e, will acquire a phase
factor exp(i p) where

The quantity C is a correction for the distortion of the
neutron amplitude inside the nucleus, given approxi-
mately (see Appendix 8) by

C= 3f/2R'(f —R) (~4)

if f and the nuclear radius R are measured in fermis

(10 "cm).
Consider an incident neutron polarized in the positive

x direction with momentum k in the positive s direction:
the polarization is then (1,1) if described in terms of
spin amplitudes for spin parallel to k, (1,0), and anti-
parallel, (0,1).The spin amplitude after a distance k in
the matter will be (e '+,s+'&) multiplied by an unim-

portant mutual phase factor due to the nuclear forces,
i.e., the scattering length f The ex.pression. (g '&,g+'+)

corresponds to a polarization with components cos2 q

along the positive x direction and sin2 y along the
positive y direction, thus the neutron polarization has
been rotated by an angle 2 y in the sense of a right-hand
screw (if y is positive) as illustrated in Fig. 4. The angle
2 y is given by Eqs. (38) and (85) to be

2p= —(2G /pp) pkCZ/A,

where (2G'/po)=9. 0X10 ' rad cm' g ', and p is the
density of the crystal. For example, bismuth, adopting
the values f= 8.63F, R= 7.13F, p= 9.80 g/cm', k=10'
cm, Z= 83, and A =209, gives the rotation 2@=—5.8
)(10 'rad, where C comes out to be+0.17.

Although a rotation of only 5.8)& 10 ' rad after
passing through 10 m of bismuth is an exceeding slight
effect, it may not be completely out of the question to
detect such a small rotation. Consider an experiment
in which a beam of neutrons polarized in the positive
x direction are incident on the "rotator, " as in Fig. 4,
and a polarization analyzer is aligned to detect neutrons
polarized along the y direction. The ratio, r, of the
counting rate for +y polarization to —y polarization
will be r=(—,'+2p)/( —,'—2q)~1+8'. Very intense

f'= 2G'MR'kCZ/3A . (&5)

~ D. J. Hughes, Neutron Optics (Interscience Publishers, Inc.,
Neer York, 1954), p. 24. I'IG. 4. Rotation of the neutron polarization for q»0.
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beams of polarized neutrons can be produced and it is
not necessary that the polarization be 100% for this
experiment. Furthermore, the alignment need not be
exact since all one really wishes to measure is r(rotator
in) —r(rotator out) = Sy. The polarization will precess
in any stray magnetic fields by an amount 0.079J;"Z,dz

rad cm ' G ', and to keep the net precession small, one
must limit the average value of B,to less than 2.5)& 10 '
G. The precession would cancel in the difference
r(rotator in) —r(rotator out) were it not for the dia-
magnetism of the rotator. Consequently, the net pre-
cession must be small compared to &p/4sx, where x is
the magnetic susceptibility of the rotator, and for the
above example the average value of II, must then be
less than SX10 ' G.

It is curious that the angular change resulting from
such an "optical rotation" Lsimilar to the rotation of
plane polarized optical radiation in a solution of right
(or left) handed molecules such as sugar] of neutrons
is of the same order of magnitude as the other effects
discussed in this paper. Here, the interaction energy is
reduced by a factor of p/Mpa 10 "while the inter-
action length is increased by a factor of about h/R 10",
and the two factors roughly cancel.

V. SUMMARY

In this paper we have adopted the current-current
hypothesis for the weak interactions and from this
deduced the form of the parity nonconserving inter-
nucleon potential. This potential is reduced to an
approximate single-particle interaction and it is ob-
served that such an approximate interaction can be
removed from simple phenomenological Hamiltonians

by a gauge transformation. On the basis of this simpli-

fying approximation, a search is made for experiments
that might reveal characteristic effects from a parity
nonconserving interaction.

The experiments so far performed do not seem to
have been sensitive enough to test the presence of the
self-self weak interaction; however, these experiments
have served the important function of showing the
amount of parity nonconserving interaction in the
nuclear forces to be extremely small compared to the
strength of the nuclear parity conserving forces. Of the
experiments discussed, beta decay appears to be the
least sensitive. Observation of the "optical rotation"
of neutrons passing through matter seems remote,
although it is amusing to find a quantum mechanical
effect as subtle as parity nonconservation displayed in
an (almost) classical experiment. The parity-forbidden
alpha decay and the various experiments involving
gamma decay both fall tantalizingly close to existing
experimental capabilities. The alpha-decay experiments
cannot give, however, the sign of G. A test that may
well be feasible is to look for a circular polarization of
the internal conversion electrons from Lu'~3 which
should be polarized by about (Pt/ai)'"(it%=0. 004.

Better examples may come to light or the techniques
may be refined to detect such small polarizations.

We may have overlooked the really sensitive tests,
and this paper is offered with the hope of stimulating
new ideas in this direction.
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APPENDIX A: DERIVATION OF THE SINGLE-PARTICLE
APPROXIMATION INTERACTION

The internucleon parity nonconserving interaction
(14) is reduced to a single-particle interaction by aver-
aging one of the nucleons over the possible states of a
symmetric core. Consider a nucleus with one particle
in addition to 61led shells. The initial state of the
particle is denoted by v, the final state by I, and the
filled-shell states by m, with such subscripts to be added
as necessary if certain of the quantum numbers are to
be exhibited explicitly. The many-particle matrix
element reduces" to the two-particle matrix element
given below in Eq. (A1).

(fl Vls)=Q d(1)d(2)re*(1)to *(2)V(1,2)

Xti (1)res(2) —r(2)res(1)}. (A1)

Only the core neutrons (protons) will interact with an
extra-core proton (neutron) as can be seen from the
isotopic spin dependence of V(1,2) given in Eq. (16).
Only the exchange term in the brackets of (A1) then
contributes giving

(fl Vls)= —Q d(1)d(2)re*(1)ws*(2) V(1,2) v(2)ws(1),

where the sum over k is now understood to include only
the appropriate nucleons. The core is assumed to have
zero total angular momentum and we then write

(A2)

where X is the nucleon spin state. This expression is
valid for a complete shell in I.S coupling where the
shell contains 2(2L+1) nucleons. For a filled shell in

~E. U. Condon and G. H. Shortly, The Theory of Atomic
Spectra iCambridge University Press, New York, 1951),y. 173,
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jj coupling (2j+1 nucleons), we have

22+1 2l+1 2

Z wk= 2 w,-= 2 Z C- wi-x.

with
2 2l+1

C '=C ' Q Q (C )'=2j+1,
o' m

and since all projections m (from +j to —j) are sum-
med over, we have

2l+1 2l+1 2l-+I

Cm wham P Cm wjm P Cmwj~n I

which reproduces (A2) with a weight factor. Using
(A2), the form of Eq. (14) for the interaction, and
treating separately specific spin amplitudes of I and
v then allows (f~ V ~i') to be factored into separate
spatial and spin parts. We want to find V,ff«t, v, that
acts between u and v to give the same result as (f ~

V ~i),
as opposed to evaluating (f ~

V ~i) which would require
a specification of the states u and v. The spin operator
(op —ei) gives

Z x (1)x.(2) (op —oi)x.(2)x.(1)

d(1)u(1)[Q d(2)w *(2)(ppi, f(1,2) }+w (2)]v(1) .

The symmetry of the substates averages p2 to zero
giving finally for the effective interaction

+8'AG(u" +1)
Ueff

SM
(AS)

where Tii ——
~ (1—r.'r.')P' has been used to obtain

p(1) =Q d(2)w *(2)f(1,2)-,'(1—r, 'r, ')w„(2)

d (2)w„*(2)f(1,2)w„(2) ', [1+r, '(N—Z)/A]. —

and (y», B(1,2)}+ are equal within a sign, this being
provided by E'. The approximate validity of (A4) for
a force rvith finite range then depends on the range u

being short compared to the wavelength, or more
quantitatively 3k'u'/5«1. This criterion is satisfied,
although not very strongly, for nuclei where taking
a Hfdf

' and assuming an average nucleon kinetic
energy of about 30 MeV gives 3k'u'/S equal to 0.10.
Combining (A3) and (A4) gives

From rotational invariance it is sufhcient to consider
(op —oi), which gives P (v —o)5„,5„,=0 and con-
sequently the first term in Eq. (14) averages to zero.
The identity ia&Xoi= (o2—oi)P', where

P'=-,'(1+or o2)

The quantity p(1) is then the eA'ective nuclear isotopic
spin density, weighted for the range of the interaction
f(1,2), seen at the position of nucleon 1. Note that the
sum is over a/l nuclear states in the core. De6nition
of p(1) in (AS) together with the arguments of Sec.
IID then give

is the spin-exchange operator, gives for the second term
in Eq. (14)
—&„(1)(Q X.(2) (op —oi) X,(2)}~„(1)

=+2X„(1)o,X„(1)

The spatial factor from this term is [defining
y»= (pp —yi)]

and (AS) becomes finally

(8)'"X'G(u"+1)pp
Uef f o p(1+r, (N Z)/A)—

=G'o y(1+r, (N Z)/A) =G"o y—,

Xp(1) =X'p„„,i(1) =X'po —[1+,'(N —Z)/A]

(A6)

d(1)d(2)u*(1) Q w„*(2)[pgi, f(1,2)]

Xv(2)w (1). (A3)

In the limit f(1,2) —+ b(1,2), we can employ a second
identity

[p&i,b(1)2)] = (ppi, b(1,2) }+8') (A4)

where I" is the coordinate exchange operator. The
proof rests on the observation that integrals over
d(1)d(2) of 8(1,2) multiplied by nonsingular antisym-
metric functions of 1 and 2 are identically zero. The
operators in (A4) can connect only states of opposite
symmetry since p21 operating on a symmetric state
gives an antisymmetric state and vice versa. Hence,
only one of ppib(1, 2) or 8(1,2)ppi has a nonvanishing
contribution, depending on whether the initial or final
state is antisymmetric, respectively, and so [p»,b(1,2)]

where G'=0.22&(10 '.
Although the shell model has been used at a few

points in this section, the only assumption actually
required is that the core remain unchanged and have
zero spin. If Eq. (14) is modified to have isotopic spin
dependence

r+'r '+r~'r '+ei(1+r,'r, ')+ep(1 rg'rg'), (17)—
then the isotopic spin dependence of (A6) is modifmd to

[a+br, (N Z)/A], —
where

(u"+1)o=( "+1)+2ep,
(u"+1)b = (u'+1) (1—2e,)+2 (e2—ei) .

The contribution of Eq. (14) to the electromagnetic
coupling (14') averages to zero as can be seen in the
reduction from (A1) to (A3).
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$22(1)= P i'(23+1)e"'P2(x)R2~(r) x=k r,
L=O

assuming a spherically symmetric nuclear potential. If
interaction with the nuclear potential were ignored,
then RI,2(r) ~ j&(kr), where j&(x) equals (2r/2x)'"
XX+i~2(&), St=So, and the wave function becomes
exp(iks+i52). However, this wave function is assumed
known, and the correction due to the parity noncon-
serving interaction of (A6) is

(—G" V)P '(2)~(2),
2' r12

(81)

where ri2 ——
~
ri—r2~ and the integral extends over the

nuclear volume. From symmetry V, and V„give no
contribution, and taking the incident neutron to be
polarized in the positive s direction, (81) becomes

—iMG" e'~ "»
~*(2)A'(2)&(2) (82)

r12

The coeflicient of exp(ikri)/ri in the limit ri~ ~ of
(82) is the scattering length f' and for k~0, (82)
together with V', =x(8/Br)+D1 x2)/r]8/Bx —gives

8 +1
f'= iG"M Q—i'(23+1)e'"

L=0
r'drdx

)+1
X xP&(x) Rat'(r)+ R,2(r)— Rg2P2+i(X)

APPENDIX 3: IRREGULAR SCATTERING LENGTH
FOR LOW-ENERGY NEUTRONS

That part of the scattering length for low-energy
neutrons sensitive to longitudinal polarization of the
neutrons is computed for a simple nuclear model. I.et
P„t(1) represent the wave function of the neutron
propagating with momentum k in the positive s direc-
tion where

This expression is readily simplified using J',+' P2P2 dx
= (2/21+1)5|2 and Po(x) 1, P, (x) =x to give

f '= 2G"Me'"
8 2E„'+ l4,) 'dr-

r
(83)

For a square-well potential R»=[k/Kj2(KR)]j i(Kr)
for r&R, where K = (2MU)'" with U the depth of the
potential. The coeKcient of j& correctly matches the
interior solution to the incident (asymptotic) plane
wave provided the phase shift 81=0. For this potential,
tan52 ——(kR)'[C(P) —1]/3 where f =KR and

C(f) =3j (|)/Uo(t) =3(1—
l otl)/l' (84)

Expression (83) gives

f'=2G"MkR'C(l )/3. (83)

In. the limit U —+0 we have K —+ k=0 and C(0) =1
giving the same final result for f' as would be obtained
by initially assuming exp(iks) for the unperturbed wave
function, i.e., neglecting the nuclear forces. The cor-
rection for these forces is then the expression given in
(84) if the approximations discussed above are em-
ployed. For thermal neutrons scattered by nuclei, the
phase shift 81 will become important only if C&1015.
The expression (84) is rather inconvenient for esti-
mating C, since t for heavy nuclei may be 10 or larger.
Small relative uncertainties in f' will then make large
uncertainties in cot( We ca.n make use of the experi-
mentally determined quantities f and R by way of the
relation R/(R f) =f' c—otl given from the square-well
model. The correction C is then given from (84) to be

C=3f/2R2(f R)'(1/M—U) =3j/2R2(f R), (86)—
if f, R are in, fermis since MU 1F ' if U is estimated to
be about 40 MeV. Expression (86) also is probably less
sensitive to the specific model for the nuclear
interaction.


