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The reference spectrum method of Bethe, Brandow, and Petschek for the calculation of the ground-state
properties of nuclear matter is applied to the boundary-condition model of Feshbach and Lomon for the
two-nucleon interaction. The short-range contribution to the reference G matrix is evaluated analytically,
and the formulas needed for evaluation of the outer contribution given. The method is applied to a simple
model interaction (boundary condition plus square well acting in S states only) and results compared with
those from typical hard-core potentials. The correction terms to the reference approximation are found to
be about one MeV per particle. The important region of intermediate state momenta in which the reference
spectrum should be fitted, is again found to be near 4 F '.

I. INTRODUCTION

'N a recent paper, Bethe, Brandow, and Petschek'
~ ~ have presented a reference spectrum method for
calculating the properties of nuclear matter. The
method has two aims: 6rstly, it provides a convenient
and transparent method for carrying out the calcula-
tions of the Brueckner' theory, and secondly, it provides
more insight into the role of the two-body interaction
in determining the properties of the many-body system.
In this respect it follows the line of development of
Moszkowski and Scott, ' and of Gomes, Walecka, and
Weisskopf. 4 In all of these papers, the two-body inter-
action has been considered to contain a repulsive coze.

An alternative representation of the two-body inter-
action is provided by the boundary-condition model

(denoted BCM) of Feshbach, Lonmn, and collabo-

rators. ' Here the long-range parts of the force are de-

rived from a potential, which can largely be taken from
theory as the one-pion exchange potential and some
version of two-pion exchange. The short-range forces,

' H. A. Bethe, B. H. Brandow, A. G. Petschek, Phys. Rev. 129,
225 (1963).This paper is denoted BBP in the text.

2 Among the numerous papers by Brueckner and collaborators,
K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 (1958)
may be consulted for other references.

'S. A. Moszkowski and B.L. Scott, Ann. Phys. (N.Y.) 11, 65
(1960).

4 L. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann. Phys,
(N.Y.) 3, 241 (1958).

'H. Feshbach and E. Lomon, Phys. Rev. 102, 891 (1956).
H. Feshbach, E. Lornon, and A. Tubis, Phys. Rev. Letters 6, 635
(1961).

about which expei. imental evidence is most equivocal,
are represented by an energy-independent boundary
condition on the wave function at a fixed radius about
one-half pion Compton wavelength. The view is that the
interaction energy at short radii is very large compared
to the bombarding energy used in the study of the
forces. This model provides a good fit to phenomenologi-
cal phase shifts, which at least shows that our knowledge
of the form of the two-body force at short radii can be
reduced to a small number of boundary-condition
parameters. It is therefore of interest to see the pre-
dictions of the BCM for nuclear matter, and to compare
these with the predictions of hard-core potentials. Some
progress in this direction has been made by I.omon and
MacMillan. ' Their method is the direct one of solving
the G-matrix equations in momentum space.

In this paper we apply the - reference-spectrum
method of BBP to the boundary-condition model. This
provides us with a simple method of calculating the
properties of nuclear matter, and further it allows us to
calculate in coordinate space where the BCM is in-

tuitively more meaningful. This development is con-
tained in Sec. II, III, and IV. We adhere closely to the
notation of BBP in order to facilitate comparison with
their work, and for sake of brevity to avoid rederiving
numerous results. In Sec. V and VI, the method is

applied to a nonrealistic but simple. model interaction.

6E. Lomon and N. MacMillan, Ann. Phys. (N. V.) 23, 439
(1963).
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ft=I'i+1 (2.2)

This boundary condition is reproduced by the follow-
ing pseudopotential, suggested by a paper of
Moszkowski and Scott':

ve(r) = (M/5') Ve(r) =+~, r&c e, —
= —(7r'/4e' 2f/c—e), c—e& r &c,
=0, r) c.

(2.3)

We have in mind the limit e —& 0. For example, consider
the 5-wave radial equation in the two-body problem:

d'u/dr'+ (/P —ve(r))u(r) =0.
In the interval c—e&r&c the solution is

(2.4)

where
u(r) =sin~(r c+e), —

~ =rr/2e 2f/7rc—

(2 3)

(2.6)

Besides illustrating the method, this allows us to com-
pare the wave functions and single-particle spectra
with those obtained from hard-core potentials. We find
that the "important region" of intermediate states is
again near 4F '; the reference spectrum should be ad-
justed to the nuclear spectrum in this region. We have
estimated the Pauli and spectral corrections to the
binding energy, finding them to be about one MeV per
particle.

II. THE PSEUDOPOTENTIAL

In the boundary-condition modeP (BCM) of nuclear
forces, the outer part of the two-body force is derived
from a potential, while the short-range forces are de-
scribed by an (in this paper) energy-independent
boundary condition at a (fixed) radius r= c:

(cdu (/dr)
I
„,= f iud(c) . (2.1)

u~(r) is r times the actual radial wave function, so is
normalized to a sine wave at infinity. Our boundary
condition parameter is therefore related to the Ii~ of
I.omon et al. by

boundary condition. Lomon' has an alternative ap-
proach, using a combination of delta functions and
differential operators at r=c, which is apparently
equivalent to a velocity-dependent interaction. How-
ever, it is noteworthy that in the hermitized form of his
pseudopotential' a hard core is introduced for r&c;
therefore, it seems that our methods are closely related.
Our only claim is that (2.3) is a convenient form for our
particular application with its emphasis on coordinate
space, and being a real static potential it is automati-
cally Hermitian.

G~ = v —v(1/e~)G~

subsequently G~ is the solution of

(3.2)

Gx GR+GRt IGÃ
cB cN/

(3.3)

One expects that G~ will be a good approximation to
G~, so that (3.3) can in fact be solved by iteration.
(3.2) is easy to solve since the reference energy de-
nominator is taken to be a quadratic function of the
relative momentum. This is done by replacing the
actual intermediate-state energy spectrum by a quad-
ratic reference spectrum which is a good fit to the
actual spectrum in the important range. The important
range is determined by minimizing the second term on
the right-hand side of Eq. (3.3), and for hard-core type
potentials is k=4 F '. Introducing the reference wave
function f by

(~lvlk)=(v IG"
I ~&,

III. REFERENCE WAVE FUNCTION:
UNCOUPLED STATES

In the reference spectrum method, ' the solution of
the G-matrix equation

Gx v v (Q/cN) GN (3.1)

is carried out in two steps. One first constructs a refer-
ence G~ matrix, which satisfies

for small e. At r =c we have

(cu'/u) =ac cot~e —+ f (2.7)
as required.

Higher partial waves differ from (2.4) by the presence
of the centrifugal barrier term; since this is bounded
while in the limit (2.3) is not, it is clear that the same
device will work. The pseudopotential, of course, is
different in each partial wave, using the appropriate fi
for that wave.

The main feature of (2.3) is that the deep attractive
well contains almost exactly a quarter wavelength, the
"almost" being adjusted so as to reproduce the
boundary condition. The hard core used for r&t, —e

guarantees that an energy-independent attractive well
will suffice to reproduce the energy-independent

' S. A. Moszkowski and B. L. Scott, Phys. Rev. Letters 1, 298
(1958).

(3.4)

the wave matrix 0 by

and the distortion of the wave function by

one finds $Eq. (3.10) of BBP]
(V2—~')|-= —~*vP

(V'+k') q =0.

(3.5)

(3 6)

(3.7)

(3.8)

Proceedings of the Rutherford Jubilee International Conference,
Manchester, l961, edited by J. B. Berks (Academic Press, Inc. ,
New York, 1961),p. 413.

9 J. W. M. Dumond, Ann. Phys. (N. Y.) 7, 365 (1959).

We follow SBP in expressing energies in units F ', the
conversion factor being 5'/M'=41. 497 MeV —P.' Our
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k, deno ted k 0 in 83P, is half the relative momentum
of the interacting pair of nucleons for which we are cal-
culating the G-matrix element. g is a positive constant
depending on the total momentum of the pair, and the
starting energy: its order of magnitude is discussed in
Sec. 7 of BBP.

The partial wave decomposition of (3.7) is carried
out by introducing the expansion

. 8 (kr)
y =Pi(21+1)i' Ei(cos8),

kr

and similarly dining the radial components X~ and N~

of f and P, respectively. One has

(~ +~ ). («) =- (k +~ ) &,(k )

with solution

(3.18)

(k2+pz) -y, (kb)
( )=I I a (v )-e (k )

&k'-~'~ -e (vb)

-~ E~ (~k)~ (~ )-a (~k)~,(;.)S, (3.19)

that a hard core of radius c is a special case of (3.16),
the limit f-+ ~. In this limit (3.17) reduces to (5.5),
(5.10) of BBP.

It is no more dificult to handle the higher partial
waves. Equation (3.13) becomes

where b =c—~ ~ c. We again find that as q —+ 0,
ye ,=7r——(2fie)/~c,

(3.Io&

(3.11)

VP=d'/dr' —l(i+ 1)/—r'. (3.12) (
dpi

C = I) =
g

dr ), (3.20)

%'hen the boundary condition is replaced by the
pseudopotential (2.3) we can take over the above
formalism. We first show that Ni in (3.11) obeys the
same boundary condition at r=c as it did in the two-

body problem. Clearly Ng =0 for r&c—e, while in
c—e&r&c we have (consider /=0, m*= 1)

(iP/dr' —y' —so)NO(r) = —(k'+y') sinkr. (3.13)

For small

Np (c) f
hm -- - -= hm y cotye=—I (c) C

(3.16)

just as in (2.7)
In practice, therefore, one need not worry about the

region r&c but need only solve (3.11) in the region
r) c subject to the two-point boundary conditions,

Eq. (2.1) at r = c, and g —+ 0 as r ~ ~ . In the case of no

outer potential (pure boundary-condition model), we

can do this explicitly

since eg is strongly attractive. The solution is

('r'+ k' — sink (c—e)
N0 (r) = —

~

sin kr+ sing (r—c)
sing 6

+AD sing(r —c+e) . (3.15)

The constant Ao is determined after we solve (3.11) in

the region r&c subject to Xo(r) ~ 0 as r +~. H-ow-

ever, A 0 is of order 1, and therefore in the limit e —+ 0,
) one 6nds

as reqMI ed.
Returning to the special case of the pure 8CM, the

solution of (3.11) for r& c is of the form

xi (r) =8ixi(yr),

Xi(z) = zi'+'ki'+' (iz)

(3.21)

(3.22)

is the spherical Hankel function of imaginary argument,
times s, which is real, positive, and decays exponentially
for positive real argument. The constant 8~ is deter-
mined by the boundary condition (3.20). Defining

XI'(yc) I(I+ 1)
CI'i= —pc = yc+ + . , (3.23)~ (v ) 2(v.+1)

kepi' (kc) —j(pi(kc)
ei(c) = gi(kc)+

f1+I'«
(3.24)

91(kr)zi (r)Ni (r)dr = (k'+y')

X yP(kr)dr —~'

C

+ Pi (kr) V 12NI (r)dr (3.25).

A ~ then follows by continuity of eE, before going tp the
lll11lt 6 ~0.

To conclude this section we evaluate the short range
part of the G" matrix. In view of (3.4), (3.11), we have

The first term in (3.25) is just the contribution of the
hard core in the pseudopotential. The second term
valllslles 111 the 111nlt 8111ce Ni is nonzelo oilly 111 a str1p
of width a. The third term contr ibutes because of the

go follows by application of (3.10). We note in passing discontinuity in the derivative of Ni(r) at r=c—e. We



4tr k' 0

GIII(k) =——(y2+k2) gl2(kr)dr
k2M 0

+«(c)(gl(kc)f k—egg'(kc))/c . (3.26)

De6ning the matrix operator

d' J(J'—1)

(4.3)
d2 (J+1)(J+2)

NI(c) as given by (3.24) is the case of no outer po-
tential; but must be determined in the general case.
We again note that the second term of (3.26) reduces to
(5.14) of BBP 111 tllc hard-core 11111lt:

Lkgl'(kc) —PIjul(kc)

(our prime indicates differentiation with respect to the
argument, not just d/dr).

The boundary edge term in (3.26) vanishes when fl
happens to coincide with the free wave boundary con-
dition, but the core volume term does not. This is not
unreasonable since within the framework of the BCM,
this is not taken to mean weak interaction for r(c, but
rather to be the accidental result of strong interactions.
It has perhaps been noticed that (3.24) is singular if
fl+cPI=O. MRthclllatlcRlly this colllcs Rbollt bccausc
XI of (3.21) by itself satisles the boundary condition
(3.20), leaving no room for a unit multiple of the un-

perturbed function gl. A corresponding problem could
arise with a general outer potential. However, this is
unlikely to occur, since negative fl& —(1+1) corre-
spond to short-range attractive forces strong enough
to accommodate a bound state.

IV. COUPLED STATES

For the coupled states of angular momentum J and
parity (—)~+I the partial wave radial equations take
their simplest form in the entrance channel picture. '
From BBP Eq. (6.9) we have

[d2/dr2 P(v+1)/r2 —pq(g, ,y, —«,&(r))—
2+1

ol'I" (r)«"I'(r) (4 1)

These are two coupled equations, for 6xed l and
l'= J+ j.. A solution consists of a two-component radial
function; the first index on N~ ~~ is used to distinguish
the components. The second index labels two inde-
pendent solutions of the equations. For example, whenj= 1 we have P =0,2. The 5-wave dominant solution is
labeled l=o; we write

satisfying
(V'q2+k2) /~=0

(4.5)

(4.6)

%e mill also have use for

(XJ,(7r) 0
!x~=!

0 Kg+, (yr)l
(4 7)

(4 8)

The boundary condition (2.1) as applied to these states
can be interpreted as a matrix equation, with a real,
Hermitian, ' 2&2 boundary condition matrix

00 02

20 22

Tile ltldlccs 0 2 will bc J—1 J+1 ill tile CRsc of gcllel'Rl
J.As explained in Sec. II, our f matrix will differ from
that of Lomon et al. by a unit matrix.

This boundary condition is duplicated by the
pseudopotential

o„~(r)=+~, r&b

t'&OO OO2

b&r&c
(520 822)

(4.10)

we rewrite (4.1) as

(V'J2 —y2) (g—I)= —n'I (4.4)

The components of the potential matrix e~ are obvious
from (4.1), Our notation allows us to write the two in-
dependent solutions (4.2) side by side as a solution
matrix, This is a useful concept since multiplication
from the right by a 2g 2 normalizing matrix E does not
alter the information it contains, but corresponds to
taking linear combinations of the two original solutions.
For simplicity of notation a superscript Jon the solution
matrix is often suppressed.

The unperturbed solution matrix is clearly

t'XOO) f'oiO —
olOO)

Exoo) & —Noo &

while the D-wave dominant solution is

(
&o2) —Noo )
X22/ $2—N22)

(4 2)
With

(4.2')

=0, c&r

I oo
———(or/2o)2+ 2foo/«,

oo2=+2fo2/«= &2o &

o22 = —(2/2o}2+ 2f22/co,

c—b=c —& 0.

(4.11)
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The treatment given so far has assumed the reference
effective mass to be one; otherwise our proof that the
reference wave function will obey the boundary condi-
tion at c, breaks down. This occurs since x of (2.6) is
replaced by (m*)'~'x, and (2.7) is seen to be replaced by
a hard-core boundary condition for m~/1. This ex-
treme sensitivity of the boundary condition to the
effective mass is clearly unphysical, and wrong. If one
regards the BCM simply as simulating the effect of a
hard core plus a strong finite inner potential, the
boundary condition evolved be slightly different for the
reference wave function, but not greatly different.

Part of the difhculty is clarified" by looking back to
the integral equation (3.1), and regarding the BCM
interaction as

v= vv+vouter ~ (4.22)

In so far as the pseudopotential v„ is concerned, the
matrix elements (k

~
v~ k') will not become small until

k'&v./2e, where e is the width of the potential. Due to
the volume element k"dk', most of the contribution to
the sutn over intermediate states will come from mo-
menta =v-/2e. In the limit of zero width, the contribu-
tion of v„ to 6 should depend only on the effective mass
at Aconite k, and not on the effective mass of the refer-
ence spectrum which is usually determined at k=4 F '.
(Lomon" has a proof of this assertion, but we have not
seen his argument. )

To remove this difFiculty with the effective mass, we
have argued as follows: Within the framework of the
BCM there is a special emphasis upon the wave function
at the boundary radius, and one ought to choose the
pseudopotential so as to preserve this property. The
freedom to choose a reference spectrum with m~/1 is
useful to give a better 6t to the nuclear spectrum. One
can combine these objectives by setting

v„=v'/4&'—m* 2f/can*, —c—a&r&c. (4.23)

The outer potential remains unchanged. The choice
(4.23) makes vv different in the many-body problem
than in the two-body problem, but it has the advantages:

tending to g(kr) as r~ ~. The G" matrix is con-
structed from (4.19) to (4.21), where again v~ —+ m~v~.

V. A SIMPLE MODEL INTERACTION

The previous sections have shown how the reference
spectrum method can be applied to the BCM, and the
reference G matrix evaluated, but we have not yet
justified the reference approximation.

In the case of hard-core potentials, BBP have
argued that the important range of intermediate-state
momenta is from k=2 to 4 F ', and that over this
limited range the intermediate-state energies can be
well approximated by a quadratic form. The actual
"important range" is determined by examining the
correction term G"—G~ (3.3); which to good approxi-
mation can be expressed as an integral over the Fourier
transform of the distortion, l (k) Lsee (6.3)j. 1 (k) has a
maximum in the indicated range of momenta, essen-
tially because the hard core scatters into intermediate
states k=v./2c. A good fit of the reference energy I'.~

to the actual energy E~ in this range will minimize the
"spectral correction. "

As a test of our method, and with a view to seeing
what range of intermediate momenta are important in
the BCM case, we have applied it to a simple model
interaction. This acts only in 8 states, and consists of a
boundary condition f at radius c, with a square well of
outer radius "a"and depth 3A/fv' beyond. The radius c
was arbitrarily taken at 0.7 F, in the range of phe-
nomenological its; the other three parameters were
adjusted to give infinite scattering length, effective
range 2.50 F, and to have negative phase shift beyond
240 MeV. The resulting phases (Fig. 1) lie within —,

"
of Breit's" '50 phase for the set YLAM, between 25 and

i.o-

0.6—

(i) The boundary condition at r=c, which is the
distinctive characteristic of the BCM, is preserved.

(ii) The contribution of vv to the G matrix becomes
insensitive to the reference effective mass, as discussed
above.

(iii) One can use a two-parameter reference spectrum
which provides a better agreement with the nuclear
spectrum.

0
Q4

GO

— 0.2—
Vl

0
CL

-0.2—

0

With the prescription (4.23), the calculation of G~
proceeds as follows: In the reference wave equation
(4.1) or (4.4), the outer potential is replaced by
v~ —+ m*v~. The equation is solved in the region r&c
subject to uj(r) satisfying (2.1) at r=c unchanged, and

"The argument in this paragraph was suggested by Professor
Bethe."E.Lomon (private communication). See also Ref. 6.

-04
50 IOO l50 200 RN f00

Energy {MeV)

Fn. 1. The circles are phase shifts calculated from the model
interaction consisting of a boundary condition f=0.7466 at
c=0.7 F, and a square well of depth 14.26 MeV and outer edge
2.52 F. The scattering length is in6nite, and effective range 2.50
F. The solid line is from the fit VLAM of Breit et al.

"G.Breit, M. H. Hull, K. E. Lassila, K. D. Pyatt, and H. M.
Ruppel, Phys. Rev. 128, 826 (1962).
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60,

40-

20-

We found that (5.4b) agrees with (5.3) in (5.4a) to a
few tenths of a McV.

Finally, we used the estimates of BBP Sec. 1 for the
e e gy denominators:

0

k'=-,' (k„'+0.6k p'),

y '=2hkp' —k',

ass= (36—0.6)k p'+3k',
(5.5)

FIG. 2. Potential energy spectrum calculated for kz=I.O I
w~=I, A=I.4I. The solid line is the output nuclear spectrum
having the same mean value (self-consistency) as the reference
spectrum (dashed line).

300 MeU. The parameters are f=0.7466, a=2.52 F,
v=0.3436 F ' equivalent to 14.26 MCV. The square-
well shape has some defects, too much of the attraction
occurring at large radii, but the problem is soluble
analytically.

Jn the calculations we have made certain additional
approximations. First, we have replaced the hole states
by a quadratic "approximate spectrum" having the
same e6'ective mass as the reference spectrum, as sug-
gested by HBP Sec. 7.

U"(k) =os+ark'

U"(k )=ho+ark '. (5.1)

This has the great virtue that the energy denominators
involve only

The constant 6, is adjusted so that U" agrees with the
actual hole-state energy for an average nucleon in the
sea; viz. k = (0.6)'i'ks. Using the correct hole energies
would make 6 a function of k . 6 of cou.rse has no direct
connection with a gap at the Fermi surface.

In calculating the single-partic]e spectrum from the
diagonal elements of the G matrix we used the two

approximations )Eq. (7.5) of BBPj, G=Gs, and

where we assume the hole state k to interact with a
state k„at the average momentum, and average over
angles.

The calculation proceeded as follows. For fixed kp,
trial values of 6, tv* were selected. For values
k =0(ks/8)kr, the parameters (5.5) were evaluated
and U(k ) evaluated as in (5.3). An integration
(5.4a) gave U, and the binding energy per particle
E/2 = 2"+-,' U.

For ks=kir, and 1.5 (0.5) 8.0 F ' the single-particle
potential was evaluated and a least-squares 6t of
(5.1a) between, say, 2.0 and 5.0 F ' defined the new
I'cfcI'cncc spectrum. Thc dlGcrcIKc

U" (k )—V=A'ks'6/Mits" (5.6)

gave the nem 6, while m* follows from the quadratic
coef5cient ci in (5.1a).

The calculation mas repeated using the new 6, m*;
in three or four iterations self-consistent values of these
parameters mere obtained, making the reference spec-
trum a good fit to its own output "nuclear" spectrum.
Using the self-consistent parameters the Pauli and
spectral corrections were then evaluated for an average
pair in the sea, as discussed in the next section.

In the final calculations presented here the effective
mass mas fixed at one, which is necessary to make the
spectral correction small. The fitting range was taken
as 1.5 to 4.5 F ' so as not to overweight large values of
U(k). The self-consistent spectrum for ks =1.0 F ' is

shown ln Fig. 2 as a solid linc thc IcfcI'cncc spectrum
is the horizontal dashed line. Only the potential energy

U(k) =p„&» (k~~G ~kN)

=p(kniGuikn). ,;.. (5.3) 0-

p is the number of states, 2k~'/3s', in the Fermi sea.
This is equivalent to assuming quadratic dependence
of G on the state e; n is the average momentum in the
sca. Some con6dence in the second approximation was

a6ordcd by the fact that in a preliminary calculation we

made the drastic simplification of estimating the mean
potc~t1al energy per particle U by the approximation i.8

U= (1/p) 2 U(~)—

=p(mn( Ga
( mrs), „.

(5.4a)
FIG. 3. Binding energy per particle versus ky for the simple-

model interaction. The solid line is the reference-spectrum calcu-
(5.4b) lation. The circles include Pauli and spectral corrections.
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is shown, so the deviations should be compared with
the kinetic energy which is 750 MeV at k=6.0. The
output "nuclear" spectrum turns over at high k
because of our interaction only in S states. If higher
partial waves were interacting via a short-range re-
pulsion there would be a further rise in U(k) above
5 F ', which would alter the self-consistent values of
6, stan*. The behaviour of U(k) just above kp is quali-

tatively reasonable, in that there is a small energy gap
(no relation to 6!) but we cannot claim quantitative
accuracy here.

The calculated binding energy per particle is showlx

in Fig. 3. The solid line is the reference spectrum ap-
proximation, while the circles are 6nal values including
estimates of the Pauli and spectral corrections. Satura-
tion is seen to occur at low density (k&=1 F ') and with

weak binding ( 3 MeV per particle). The low density
is possibly due to the large boundary radius used in our
model. More realistic boundary condition radii seem to
be about 0.6 F, which would lead to more binding, and
higher density. Some other parameters are listed in

Table I.
In Fig. 4 we plot the wave functions Ns(r), gs(kr), and

the distortion Xs(r) calculated for an average pair in

the sea at kg=1.0 F '. It is interesting that Xs(r) is

negative outside the boundary, and is in very close

qualitative agreement with that obtained by BBP for
the Gammel-Thaler potential (cf. Fig. 13 of BBP).The
BCM is thus seen to simulate the same short range
forces as the potential models. The healing distance is

quite comparable with that found by BBP in spite of
the unrealistic wide square well of our model. If our
self-consistent 6 were greatly reduced, our healiog
distance would be increased by the square well.

The Fourier sine transform of the distortion, x(k'),
is needed to evaluate corrections to the reference ap-
proximation. From Fig. 4, we expect x(k') to be nega-
tive at low k', to vanish when the maximum of sink'r

falls near the boundary radius c, and to have a positive
maximum when the 6rst loop of sink'r falls entirely
inside c; for k'= a/c=4 F '. This is borne out in Fig. 5.

' The peak at 4 F ' occurs at about the same place as for
hard-core potentials, because our boundary radius is
about double typical hard-core radii. Since this peak is
the one important in determining the spectral correc-
tions, the criteria for fitting the reference spectrum will

be very similar for the BCM and the hard-core potential.

1.0-

c: .6"
O

~W

V
~'

,/

a~

~ 2

0

'0 I l

I 2

gory w ~

pit& I

r~ (F)

l

4

Fro. 4. Wave function N(R) (solid line) and distortion (dashed
line) for an average pair of nucleons at kg=1.0 I' ', b, =1.41. In
a hard-core potential, the discontinuity in x(R) is replaced by a
rapid drop just outside the core.

The shape of x(k) was found to be quite insensitive

to k p, 6 and no~, the main difference lying in the height
of the negative peak at low kg. Two examples are shown

in Fig. 5. The negative peak is sensitive mainly to the
value of 6, but tends to be smaller at larger kp.

GN GB GRtl IGB
r1 ()&

Pen eN)
(6 1)

In this section we discuss the corrections to the binding

energy of nuclear matter, for which purpose one needs

only the diagonal matrix elements of (6.1), and only
the spin-isospin average of these. BBP fFqs. (6.18)—
(6.37)) have expressed this quantity as

(t I
GN —G"

I q),.= 8(k')r(k')dk', (6.2)

VI. CORRECTION TERMS

The true "nuclear" GN matrix satisfies the integral
equation (3.3). Assuming that the reference Gn matrix
is already a good approximation to G~, the correction
to G~ is approximately

TABLE I. Self-consistent calculations arith constant U~.

kg(F ')

1.4
1.3
1 ~ 2
1.1
1,0
0.9
0.8
0.7

1.61
1.57
1.52
1.47
1.41
1.35
1.28
1.20

U(MeV)

-22.8-31.4—35.0—34.8—32.1
-27.8
-22.7—17.6

13.0
5.3
0.44-2.34—3.61-3.82-3.41—2.69

0.27
0.33
0.53
0.75
0.91
0.98
0.96
0.89

0.7
0.6
0.32
0.15
0.13

1.7—1.0—2.4—2.7—203—1.8

$hU $LLU
(Mev) (MeV) E/A (Mev)

E/A (Mev) Pauli Spectral Total

~3o

FIG. 5. Fo(k), the Fourier sine transform of the distortion of the
S wave, divided by k0. The two curves are calculated for
(a) ky ——1.0, b, =1.41 and (b) kg=1.3, ~=1.57.
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where
cr (k'):= ee, k'& k p

= (e" —e~)e%") k'& k p

and in the case of S-wave interaction only,

F(k') = (6/k') [xo(k')]'=—6F'(k')

(6.3)

(6.4)

(6.5)

k is the relative momentum of the two initial-state
nucleons in the unperturbed state

~
p&. Xo(k') is the

Fourier-Bessel transform of the distortion Xo(r) in the
S wave; explicitly

xo (k') = sink'r Xo(r)dr . (6.6)

The regions of integration in (6.2), above and below
kp are called the spectral and Pauli corrections, re-
spectively, the distinction being useful in view of (6.3),
(6.4).

It is seen from (6.1) that a more elaborate calculation
than we have performed would modify the output
"nuclear" spectrum at each iteration by the addition
of a term U~ —U, „~~„t which can be calculated by
taking the matrix element (6.2) summed over hole
states. This we have not done. In effect, we have
assumed either that this correction will be small, or at
least that it will be relatively constant over the im-

portant region of momenta for which the reference
spectrum is fitted. We have, however, estimated the
correction to U which is due to (6.3), using the approxi-
mation (5.4b):

DU= pL(mn
~

G~ G~
~

mn)]...— (6.7)

i.e., spin-isospin average, and computed for an average
pair of nucleons in the Fermi sea. Since this approxima-
tion was remarkably good for U itself, it should be
quite adequate for estimating the corrections. This
estimate of hU of course ignores possible changes in the
selfconsistent parameters 6, m*, which would result
from the improved calculation of U~ mentioned above.

From (6.3) it is seen that while the Pauli correction
involves only e~, which is known, the spectral correction
requires a knowledge of e~ as well. Further, (6.4) is
small in the region k'=4 F ' where our calculation of
e~ is most reliable, so that the bulk of the spectral cor-
rection comes from small and large momenta where our
knowledge of e~ is imprecise. We must regard the com-
puted spectral corrections as only order of magnitude
estimates. In the evaluation, we took e" as in (5.5) and
e~—e"=2(U~—U'~), U~ being the output spectrum
as in Fig. 2, for example.

The major difficulty in applying the reference spec-
trum method to the BCM is connected, with solving the
integral equation (3.3); or more precisely, with evaluat-
ing the spectral correction in the approximation (6.1).
For a general value of the reference eGective mass
b(k') in (6.4) will be of order (k')' at large rnomenta,

but P(k') will be only of order (k') '. This is because in
the BCM, x(r) has an actual discontinuity at the
boundary radius as shown in Fig. 4. In the case of a
hard core potential, x(r) has only a discontinuity in

slope, giving an extra power of k in its Fourier trans-
form. It is seen that in the BCM, the integral (6.2) will

be linearly divergent, which means that the approxi-
mation (6.1) is unreliable.

This difFiculty may be removed by choosing the
reference effective mass to agree with the nuclear-
spectrum effective mass at infinite momentum, so that
B(k') is only of order one. The convergence of (6.2) is
then just as good as in the hard-core case, but the
freedom of adjusting the effective mass is lost, and the
correction terms may be somewhat larger. In our par-
ticular application to an interaction only in S waves
(or any case with only a limited number of partial
waves), the nuclear spectrum has an effective mass
asymptotically equal to one. In this application we
have therefore restricted m*=1, which implies a con-
stant U~ as already displayed in Sec. V. U", in this
case, is taken to be an average value of the nuclear
spectrum over the range of rnomenta where F(k) is
large, which will minimize the spectral correction.

In a more realistic application the choice m~=1
would not be obvious. If one follows BBP in assuming
a repulsive core acting in all partial waves, the asymp-
totic effective mass would be m*=1—2(c/ro)'. On the
other hand, one might revert to fitting both 6, m* over
a finite range of momenta, and then ignore the resulting
divergence at very high momenta on the grounds that
the actual behaviour of the spectrum is uncertain. The
BCM differs from hard-core models in its treatment of
the interaction between 0.4 and 0.6 F, and this only
effects F(k) for k&7r/0. 2 15 F '. A cut off in the inte-
gral at this value would seem reasonable.

The calculated correction terms are included in
Table I, The Pauli corrections are seen to be fairly
constant; the spectral correction increases rapidly with
kp. The variation is due to changes in the spectrum,
the wave functions being quite stable.

As an additional check on the approximations, the
calculations were repeated using the constraint U~=O.
This clearly gives a smaller 6, and more binding in the
reference approximation. However, the spectral cor-
rection is now entirely repulsive, and large, so that the
final results agree to about one MeV. Calculations were
also performedusing an eR'ective mass m~Q1, ignoring the
divergence in the spectral correction. These give 6=1,
slowly increasing with kp, and m*=0.9, slowly decreas-
ing. The reference approximation to the binding energy
was little changed, but the spectral corrections were

several MeV attractive. It is thus clear that diferent
assumptions about the behavior of the interaction at
higher energies, and in higher partial waves, can. make
significant changes in the results via changes in the self-

consistent reference-spectrum parameters.
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VII. DISCUSSION

AVe have shown how the reference spectnim method
of Bethe, Brandow, and Petschek' can be extended and
applied to calculate the binding energy of nuclear
matter when the two-body interaction (BCM) is de-
scribed by the boundary-condition model of Feshbach,
Lomon, and collaborators. ' The chief merit of our
method is that the calculations are simple, and carried
out in coordinate space where the BCM is most easily
visualized. As in other applications of the BCM to the
many-body problem, we replace the boundary condition
by a singular pseudopotential at the boundary radius.
Our particular choice of pseudopotential is convenient
for use in the reference-wave equation, and preserves
the boundary condition at r=c in the many-body
problem. The contribution of short-range forces to the
reference G matrix is given by simple explicit formulas
which may be of special value for applications to 6nite
nuclei using the G matrix as the effective screened
interaction.

The method has been applied to a simple model
interaction (in S states only), which was chosen to
agree with phenomenologically determined phase
shifts. In order to make the spectral corrections small,
the reference effective mass was 6xed at one, making
our reference potential energy somewhat different from
those expected in a realistic calculation. However, the
distortion of the reference wave function is very close
to that found with realistic hard-core potentials,
(making the important range of intermediate-state
momenta again near 4 F ') and is independent of kp.

For our model potential, we found saturation at 3 MeV
binding energy, and kp =1 F '. The low density is at-
tributable both to the large boundary radius used, and
also to the large values of 6 consequent upon our 5
state only interaction. Both these features will improve
in a realistic calculation.

The boundary-condition model expresses our knowl-

edge of the short range part of the two-body inter-
action in terms of a small, perhaps minimal number of
adjustable parameters, without arbitrarily deep and
perhaps oscillating potentials in the region near 0.5 F.
It is therefore of interest to see whether its predictions
for nuclear matter agree with those of hard-core po-
tential models, and to discover whether the actual
details of the short-range interaction are important. We
intend to apply this method to the realistic BCM
parameters determined by Lomon.
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