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Most distorted-waves direct-reaction calculations rely upon a "zero-range approximation. "In the present
article some of the errors caused by this approximation are discussed, and a general method suitable for
numerical computation is described which does not use this approximation. Applications to stripping and
knock-on reactions are described in detail.

I. INTRODUCTION Evidently it is important to have accurate numerical
evaluations of Eq. (1) in order to have useful com-
parisons of the DAB theory with experiment. Unfor-
tunately the numerical evaluation of Eq. (1) is diKcult,
so that simplifying approximations usually are intro-
duced. The so-called "zero-range approximation" is
especially important, and is used almost always in
distorted-waves calculations which concern rearrange-
ment collisions. This approximation owes its importance
to the fact that in a rearrangement process no two of
the wave functions which appear in Eq. (1) have quite
the same argument. In particular, the vectors r, and
r~ diRer from each other. Thus, the evaluation of T~,
requires at least a six-dimensional integration, over
the space of these two vectors. The other arguments
are related linearly to r, and r~. However, when these
relations are used to express the integrand in terms of
a nonredundant set of independent variables there is
not, in general, any analytic simplification. Thus, T&,
has to be computed numerically as a general integral
in six dimensions, whereas, the zero-range approxi-
mation introduces a delta function in the integrand
which reduces T~, to a three-dimensional integral.

To understand better the zero-range approximation,
it is convenient to first isolate in Eq. (1) the matrix
element of the interaction V, taken between the in-
ternal states:

HE distorted-waves Born approximation (DWB)
is used in nearly all nuclear direct-reaction

theories. ' In this approximation the transition am-
plitude is computed as a first-order matrix element
between channel wave functions for the colliding sys-
tems A, u and the separating systems 8, b. That is,
the DWB transition amplitude for the reaction A (u,b)B
has the form of a matrix element between product
wave functions:

Ts,——(lbnfsXs&
—

&(ks,rs), VPAP, X.H &(k.,r,)). (1)

Here ifrts, fs, pA, if', are the internal wave functions for
the noninteracting, separated particles 8, b, A, u. The
interaction V is the interaction whose oR-diagonal
matrix elements are responsible for the transition, and
its precise meaning depends on the particular reaction
mechanism being studied. The functions Xq&

—
& and

X &+) are the "distorted waves. '"' They are elastic
scattering wave functions which describe the relative
motion of the pair A, a before the collision, or of the
pair 8, b after the collision. Here X,'+' is a function
of r, the displacement of a from A, and X~& & is a
function of r~, the displacement of b from B.In practice,
the functions X,&+& and Xb&-& are generated from optical
model potentials which are chosen to give a Qt to the
observed elastic scattering in the entrance and exit
channels.

Matrix elements of the form of Eq. (1) describe
many kinds of processes, such as inelastic scattering,
deuteron stripping, many-particle stripping, etc. Both
the direct and exchange terms for these processes are
of the form of Eq. (1). (Detailed discussions of some
individual processes are given in later sections. )

(2)(Bb( V (ala)= Pts*gs*VPAP d$

~ A preliminary account of this work has been given elsewhere.
LE. C. Halbert, R. M. Drisko, G. R. Satchler, and N. Austern,
in Proceedings of Rutherford Jubilee Conference, 196I, edited by
J. B. Birks (Heywood and Company, Ltd. , London, 1962)j.

t Supported in part by the U. S. National Science Foundation.
t On leave from University of Pittsburgh, Pittsburgh,

Pennsylvania.
'N. Austern, in Fast I|Ieutron Physics, II, edited by J. B.

Marion and J. L. Fowler (Interscience Publishers, Inc. , New
York, 1963).

s W. Tobocman, Theory of De'rect Ãuclear Reactions (Oxford
University Press, New York, 1961).

Here $ represents all the coordinates independent of
r, and rs. Thus Eq. (2) expresses those portions of the
calculation of Tq, which involve the internal states, and
which do not concern the scattering wave functions
x,&+& and x&& &. As a result, the calculations of Eq. (2)
generally are fairly easy, and largely analytic. (Also it
is helpful for physical understanding that calculations
involving the internal states be separated from those
involving the scattering states, because these are under-
stood on different terms. ) Qf course the matrix element

(2) remains a function of r„and rs. It plays the role of
an eRective interaction or form factor for the transition
between the elastic scattering states X &+& and Xq( ~. It
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contains all the information on nuclear structure, angu-
lar momentum selection rules, and even the type of
reaction being considered (whether stripping, or in-
elastic scattering, or knock-on, etc.). In terms of this
matrix element the calculation of the DWB amplitude
then is completed in the form

Tt& = l& dryXb *(kb,fb)

It is Eq. (3) which presents problems of calculation.
The integration still extends over both the variables
r, and r~. Both these variables appear in the form
factor, in a way that generally makes Eq. (3) a dificult
six-dimensional numerical integral. In most current
distorted wave calculations, this difhculty is removed
by the assumption that the form factor (2) has a very
small range in (r,~—rb~), perhaps because V has a
small range, or perhaps because the internal wave
functions have small ranges. This zero-range assump-
tion has the physical meaning that particle b is assumed
to be emitted at the same point at which particle a
is absorbed, so that r~——(Mz/M~)r„where M~ and
MQ are the masses of A and B. As a result, Eq. (3) is
reduced to a three-dimensional integral, and this
greatly facilitates its computation.

Only for the direct term of inelastic scattering (and
with a local interaction) is the zero-range approxima-
tion not used. In this simple case the variables r~ and
r, are equal, the form factor becomes a function of
only one variable, and. the matrix element (3) auto-
matically becomes a three-dimensional integral.

It has not been clear up to the present how much the
zero-range approximation sects the calculated angular
distributions, and in what cases the eRects are strongest,
etc. For some guide to these effects one can consider the
Fourier transforms of the product I,&+'X~& )* and of
the form factor (2), using as one of the two variables
in these expansions the momentum conjugate to
rb (M~/M—~)r, (the argument of the delta function in
the zero-range approximation). Then the zero-range
approximation is based on the assumption that the
important components of this momentum in X~&

—&*X.&+&

are much smaller than the momenta at which the
Fourier transform of the form factor (2) begins to
decrease appreciably. This implies the approximation
will be most accurate in reactions which have small
momentum transfer, such as medium-energy deuteron
stripping, or inelastic scattering. It is expected to be
inaccurate for exchange terms, or for "heavy-particle
stripping" terms, because in these cases the form factor
is not very localized, and itself involves small momenta,
The zero-range approximation probably also is rather
inaccurate in treating the contributions from reactions
occurring inside the nucleus; it probably over empha-
sizes the importance of such contributions. The average
momenta in X,(+) and X~( & are greatest in the nuclear

interior, so that there, especially, the delta function of
the zero-range approximation introduces correlations
between these rapidly varying functions, without which
considerable cancellations might occur in the integral
(3). So there has been, much interest in eliminating
this zero-range approximation from distorted wave
calculations, ' and in understanding the specific eRects
which are related to its elimination.

In Sec. 2 we give some further qualitative discussion
of finite-range effects. Then in Sec. 3 we describe a
scheme of numerical calculation by which Eq. (3) is
computed exactly. Later sections give specific formulas
for the cases of stripping and exchange scattering, while
the treatment of a general form factor is indicated in
the Appendix. Detailed numerical results of the appli-
cation of this theory to various nuclear reactions will
be described in a later publication.

The procedure to be described makes possible the
accurate evaluation of conventional DWB matrix ele-
ments, all of which are of the form of Eq. (3).However,
there are other aspects of the conventional treatment
which may be questioned, aside from the zero-range
approximation itself. For example,

(i) weak coupling is assumed; that is, the theory is
first order in the interaction V, and higher orders are
assumed to be negligible.

(ii) even within the nucleus, it is assumed that the
motion of a complex particle such as a deuteron may
be described in terms of its center-of-mass motion,
without dissociation or internal excitation of itself or
the nucleus (except insofar as this can be described by
simple absorption) .

(iii) usually, certain interaction terms, such as that
between the proton and target nucleus in a (d,p)
reaction, or some exchange terms, such as heavy par-
ticle stripping, are neglected.

The question may be raised whether it makes sense
to correct the zero-range approximation without simul-
taneously —or first—correcting some of the others. In
particular, the finite-range correction involves detailed
correlations within the nuclear interior, the very region
where the approximate wave functions are at their
worst.

Nevertheless, we believe it reasonable and worth-
while to determine the eRects of 6nite range super-
imposed on a conventional distorted-wave treatment.
The zero-range approximation is probably by far the
easiest one to correct. Also qualitative results may be
enlightening. First: there may be some interesting
changes in the nuclear surface region, where the ap-
proximate wave functions are probably quite good.
Second: just because contributions to the reaction in-
tegral (3) from the nuclear interior are particularly
subject to error, it is of interest to determine whether
their importance depends on the zero-range approxi-

3 E. C. Hajbert, R. M. Drisko, G. R. Satchler, and N. Austern,
in I'roceedirIgs of Rutherford Jubilee Conference, 1961, edited by
J. B. Birks {Heywood and Company, Ltd. , London, 1962).
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mation. If the introduction of 6nite range does produce
a general suppression of these contributions, then errors
in the interior wave functions become less disturbing.
Finally, concerning point (iii) above, a finite-range
computer program will for the 6rst time allow a
realistic appraisal of the importance of many of these
terms.

II. QUALITATIVE DISCUSSION OF FINITE-RANGE
EFFECTS: PLANE WAVES AND LOCAL WKB

An exact treatment of 6nite-range effects is easy in
the p1aste-zvave Born approximation, and the results
obtained in this manner are familiar in the important
case of deuteron stripping. "4 It is interesting to review
these results, and to indicate qualitatively how they
may extend to other reactions and in what way they
may change if distorted waves are used.

The coordinate system for a (d,p) reaction is shown
in Fig. 1, with st =x, d= a, p= b. In terms of the general
notation of the preceding section, the variables indi-
cated here have the meanings: r =r~, r~ ——r„, while
r,~=r„. If for the present discussion we ignore the
spins of the neutron and proton and the target nucleus,
then ipse 1and——ip~ 1, and t——he transition amplitude
reduces to the form

Td„— dr„dr x„&—&—*(k„,r„)ip *(r„)

Fro. 1. The coordinate vectors for a general stripping reaction.

function times the bound-neutron wave function, and
the integral becomes a three-dimensional integral.

In plane-wave Born approximation Eq. (7) can be
factored, even with 6nite range. First, the use of geo-
metrical relations among the variables converts this
equation to the form

Here P„ is the wave function for the captured neutron.
It is convenient to introduce the abbreviation )&PP„*(r„)D(r„)$&aH&(ka,r +-', r„„). (8)

rpn ~yn d fyn Then replacement of the distorted waves by plane

where r„„=r„—r„. If the interaction V has zero range
this quantity D reduces to a delta function:

D=Vy =-(4)t (A/M)X8(r ) (zero-ran ) (6)

where M is the nucleon mass and S is the asymptotic
normalization factor for the deuteron. From eGective-
range theory,

g = (2p)ttst 1—ypt( —e —e)j
where e=h'y'/3f is the deuteron binding energy, and
pt( —e, —e) is the triplet effective range. ' If the inter-
action has finite range then Eq. (6) is not valid, but
will be useful for comparison. In either case the am-
plitude (4) is

D( „) p L „„(-',k —k„)]d . (9)

Because the arguments of the 7t„and Xa in Eq. (8)
are each displaced from the common value r„, there
appears in Eq. (9) an averaging of the finite-range
function D. This averaging involves the momenta of
the continuum wave functions. Finite-range effects ex-
press themselves in Eq. (9) as a departure of the second
factor from the simple constant value —(4v.)'t'(Jt'/M)X,
which it assumes in zero range. For example, if a
Hulthen wave function is used for the deuteron, the
second integral of Eq. (9) becomes

)& Q„*(r„)D(r,„)7Xa + (ka, ra) . (7) (4 )its(@s/~)&~ (&s s)L&s+ (rk

The quantity in brackets is the "form factor, "discussed
in the Introduction. In zero range it reduces to a delta

' S. T. Butler, Nuclear Stripping Reactions, (John Wiley 8z

Sons, Inc. , New York, 1957).

where (i/p)=7, as usual. Eq. (10) is familiar from
discussions of Butler stripping theory. "4 Experience
with the application of Eq. (10) for medium-energy
stripping reactions has shown that the finite-range cor-
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rection factor usually introduces only minor changes
in the shape of the Butler angular distribution, but
reduces the magnitude of the peak cross sections by
about 20%.b

Thus, there is a well-marked tendency for 6nite-range
eRects to reduce the cross section, because of averaging
of the variable r„over the oscillations of the con-
tinuum wave functions. Inspection of Eq. (8) suggests
that a similar averaging should occur if distorted
waves are used, but with the modification that in the
finite-range correction factor the asymptotic momenta
k„and ke should be replaced by the "local momenta"
of the waves X~&

—
& and Xd'+& in the vicinity of the

common argument r„. In a formal approach these local
momenta are found in the "local %KB approximation, "
in which trigonometric interpolation is used to repre-
sent the distorted waves X„' ~ and Xg&+' within a small
region about each point r„For. example, in Eq. (8)
the function X~&+& depends on the two variables r„
and r~„. In the local WEB method we approximate the
dependence on r~„as being trigonometric, with a wave-
length determined from the local kinetic energy, and
with an amplitude and phase determined from the
properties of Xe'+&(ke,r„).However, in whichever way
the local momenta are introduced, it is evident that
we thereby obtain a finite-range correction factor which
depends on r„, which must then be carried in the inte-
gration over r„. (At present some use is being made'
of the local %KB method in numerical calculations. )
We can next argue that because momenta are expected
to be at their largest in the nuclear interior, the most
important 6nite-range averaging is expected to occur
there, with a consequent reduction of the relative im-
portance of the contributions to the reaction amplitude
from the nuclear interior. Indeed it is very appealing
to 6nd a reason for anticipating some suppression of
contributions from the nuclear interior, inasmuch as
it is already known that such suppression often im-
proves the agreement between zero-range DWB cal-
culations and experiment. '

In the finite-range correction factor of Eq. (9), the
momenta k„and ke are subtracted. Hence, at the
important forward scattering angles in the (d,p) reac-
tion, the averaging of D involves a net momentum
(k„——,'ke) which, at the medium energies usually em-

ployed, is not very large compared to the inverse of the
range of D(r„„) (which is of the order 1.5 F). However,
in other types of reactions, the averaging may involve
net momenta and ranges which are much larger, and
may cause major modifications of the cross sections.
Such may be the case for so-called heavy-particle

' A. Hamburger (private communication); C. R. Lubitz, Aru-

merica/ Table of Butler-Born Approximation Stripping Cross Sec-
tions (University of Michigan, Ann Arbor, Michigan, 1957).' W. R. Gibbs (private communication).

~ R. H. Bassel, R. M. Drisko and G. R. Satchler, Bull. Am.
Phys. Soc. 8, 57 (1963);G R. Satchler, in D. irect Interactions and
Nuclear Reaction Mechanisms, edited by E. Clementel and C. Villi
(Gordon and Breach, Science Publishers, New York, 1963).

stripping; for a (d,p) reaction the appropriate momen-
tum is then (ko+ke/Mg) and the "range" is of the
order of the nuclear radius. Knock-on scattering, dis-
cussed in Sec. VI, also gives rise to large Inomentum
transfers, and is accordingly sensitive to 6nite-range
eRects.

These qualitative ideas are discussed again in Sec.
VI. It will be noted there that the above discussion of
them has been somewhat over-simplified.

III. DERIVATION OF THE EXACT FORMULAS

We now describe the procedures by which the dis-
torted-waves amplitude of Eq. (3) is computed nu-

merically, without use of the zero-range approximation.
It will be seen that the basic formal structure of the
calculation, in its use of spherical harmonic expansions,
is the same as in the zero-range case, so that much
of the coding done for zero-range calculations can be
taken over intact, and so that detailed comparison
with zero-range results is straightforward.

The amplitude (3) must be specified more carefully.
If the spins of the particles are designated Jg, J~, s,
and s~, and their corresponding s components by M~,
Mts, m„and mb, respectively, then the amplitude (1)
becomes

Tbe—= (JltMtt)sbmb, kb l
V

l J/Mg&s Jse&ke)

dr. drbxbt &*(k—b, rb)

X(JsMts, sbmbl Vl JAMz, s m )& '+l(k. ,r ) (11)

It is convenient to expand the form-factor matrix ele-
ment in the usual manner, ' ' such that each term in
the expansion corresponds to the transfer to the target
nucleus of a de6nite angular momentum j, which in
turn is comprised of an orbital part 1 and a spin part s,
according to the vector coupling

3= Jn —Jg, s= S —sb, 3=1+s.

The multipole series for the matrix element can be
written with Clebsch-Gordan coeKcients"

(JiiMti sbmb l V
l JgMg, s.m.)

=Q (Jpj M&M& Mz l JnMs)—
X (lsmm mb!jM& —Mz)—
X (s,sbm„—mb l sm —ntb) (—)" 'i

XGt„(rb,r. ; bB,aA), (12)

where m=MB+mb M~ m, Th—e sym—bols . bB, aA

e G. R. Satchler, Nucl. Phys. 18, 110 (1960).
9 R. H. Bassel, R. M. Drisk. o and G. R. Satchler, Oak Ridge

National Laboratory Report No. 3240 (unpublished).
'e D. M. Brink and G. R. Satchler, Angular Momentum (Oxford

University Press, New York, 1962).
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as arguments of G denote the dependence on the various
nuclear quantum numbers. It will be convenient later
to have the inverted form of this expansion

Gi„„=i'[(2l+1)/(2JB+1)]

(—)'b b(tsmm, —»zb
l jMB—M~)

M~M ~m tbmrb

X (Jg jM&MB —M&
l JBMB)(s.sbm, m—b l

sm. m—b)

X (JBMB sama l V I JziMg, sama) . (13)

The phase factor i' is included to ensure convenient
time reversal properties. " By its construction, G&„„
transforms under a rotation of the coordinate system
like the spherical harmonic F& *. Another property
carried by G is the parity of the nuclear transition,

II =17(zz)zr(A)zr(b)zr (B),

where zr(i) is the parity of the internal state of particle i
[Since G is a function of two position vectors, this parity
is got generally related to l. Only in the zero-range
approximation is the parity of G necessarily given by
(—)'.j It is helpful to write G as the product of two
factors,

Giaj» (rb&ra) =& i»jf i»jm(ra&ra) ~ (14)

The separation into a spectroscopic coeffic:ient (or
"reduced width') A i„and the form factor fi„, is one
of convenience, so that for example, standard types of
form factors with simple normalization may be used in
computation. In general A ~„carries such quantities as
fractional parentage coefficients for the initial state and
final state, and also the overlap integral of the two
parent states.

The expansion (12) has the convenience that (in
the absence of spin-orbit coupling in the distorted
waves) the different values of I, s, and j contribute
incoherently to the differential cross section. Even with
spin-orbit coupling, j remains incoherent. In any case,
often only one value of /, s, and j is allowed, or is
important, and we shall concentrate on one such term.
Neglecting spin-orbit coupling, we then define partial
amplitudes by

(2l +1)'i' p„'"(k ak, )

For the distorted waves in Eq. (14) we use the
familiar" partial-waves expansions

x.~+& (k.,r.)= (4r/k. r.)
X P i Xz &a (ka&ra)jzz..~ (ra)Y7„~ *(ka)

&
(16a)

X a *(kb,rb) = (477/kara)

i zbx»&bi(ka, ra) V&P b(rb) I »~a+(kb) (16b)

Here r" denotes the polar angles of the vector r, etc.
These expansions are almost the only orderly approach
to computation of the distorted waves, and are integral
parts of all accurate distorted-waves computer pro-
grams. Also, since the form factor fi transforms like
V~ *, its expansion into a double series in spherical
harmonics of r", and r"y takes the form

f,„(rb,r.)
Fbi, z..(rb,r.) I"» '(ra) I'»" ™(r'.)

IgI I'M

X(LbL,Mm M
l tm) —. (17)

The Clebsch-Gordan coefficient displays the selection
rule

lI.—Lal &«L.+Lb,

which limits the double summation. Sy inversion we
have

«7.,7..(r a,r.)
=Q (LbL.Mm M

l
tm)—

X dr" drbfi (rb, r ) V7b (ra) Fz (r,). (18)

Then in terms of this expansion of the form factor and
in terms of the partials wave-expansions (16), the result
of integration of Eq. (15) becomes

(21+1)aP' (kb, k.) = (16zr'/kak ) P i - " 'Izbz '

XQ (LbLaM»z Ml tm) I'Lb (k—b) I'7. (ka) & (19)

where the radial integrals are

radraxzbi" (kb, ra)

XPiz 7 (rb r )xz, ' '(k„r ). (20)The differential cross section is then given by

do' jbajbb kb 2JB+1
l Ai&j,

d~ (2175')' k. 2J~+1 iaj 2s,+1»
The expression (19) simplifies if we choose the s axis
along k, and the y axis along k Xkb, and put 0 as the
angle between k and kg, then for m&0,

dr, drbxb&
—ia(kb, rb) fi„(ra,r,)X 7+1 (k„r,) . (15) JI Ql~zb

where p, is the reduced mass of the pair a, 2,, etc.
(From now on, for simplicity we will drop the labels
s and j, as these play no part in the calculation now
to be described. ) The finite-range problem has become
the problem of evaluating Eq. (15).

P'-(8) = (4~/k. k,)

X Q i»+~b '(2La+1)*(Latm, —»zlL, O)
I~7bL tz

X [(La—m)!/(Lb+m)!]~Pzb (8)Izbz.,', (21)
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while for m(0 we have the symmetry relation

ply 11( )napl —~

Here G is the parity of the nuclear transition, hence of
the form factor, as discussed earlier. Thus, the finite-
range problem reduces to the problem of evaluating the
radial coeKcients in Eq. (18) and carrying out the
integrals of Eq. (20). Of course both steps are much
lengthier than the corresponding steps in a zero-range
calculation, even though the sum in Eq. (21) has exactly
the same structure as in zero range.

In the special case that the form factor fl (rb,r,) has
the parity II= (—)', under simultaneous inversion of rb

and r, the comparison between zero range and finite
range becomes especially close. Many important physi-
cal applications have this property, which we may call
"normal" parity. For example, in deuteron stripping
(with neglect of tensor forces and the deuteron D state),

fl-(r. ,r.)=0 l-*(r-)D(r..),
and

r„=2rq —r„r„„=2(r—e r„~ .

The parity here is the parity of the bound-neutron
wave function. With normal parity, Eq. (18) yields
the selection rule

L,+Lb+i= even number.

This same selection rule appears automatically in all
sero-rurige calcllatiorIs, because in these calculations Eq.
(18). reduces to an integral over three spherical har-
monics which have the same argument; such an integral
is proportional to the factor (I.bl, 00

~
L„O), which

vanishes unless L,+Lb+i=even number. " Evidently
for the case of normal parity the sum in Eq. (21)
includes the same terms as in the zero-range case, and
we can rewrite the amplitude (21) so as to display
formally the geometrical factors which are used in the
zero-range calculations. ' ' "The expressions become

P'-=(2 '"/&.~b) 2 r.....™F..-(0)I....', (22)
LbLa

where

Jg,i,.' (—) '2lr'"Il——,,r,.'/(2Lb+1)'"(Lbl00~ L,O), (23)

and the gamma coeKcient

&s.br..' =i" ' '(2Lb+1)L(Lb —m)!/(Lb+ m)!$'t'

X(Lbl00
~
L,O)(Lblrlb, —m

~
L.O), (24)

is identical to that used in the zero-range approxima-
tion. ,

" In this form the only change required from
current zero-range calculations is in the technique of
evaluation of the radial integrals JLbL, '. The generaliza-
tion to a calculation which includes spin-orbit coupling
in the distorted waves is simple. The F are replaced

"R. H. Bassel, G. R. Satchler, R. M. Drisko, and E. Rost,
Phys. Rev. 128, 2693 (1962).

by more complicated geometrical coeKcients which

depend also on s, j, ln„mb, I, and Jb (where J =L,
+s, etc.), and which also appear in the corresponding

zero-range calculation. At the same time the correspond-

ing spin-orbit distorted waves have to be used. Other-

wise the structure of the formalism is unchanged. (The
formalism which has been coded includes the possi-

bility of spin-orbit coupling for spin-~ or spin-1

particles. )
The most difficult step of the finite-range calcula-

tion lies in the evaluation of the "nonlocal" kernels

Flr, br,.(rb,r,) of Eq. (18). The subsequent double radial

integral of Eq. (20) is reasonably convenient for nu-

merical integration, once the nonlocal factors have

been determined. These factors incorporate essentially

all the physics which distinguishes different types of
reactions, and different models for a particular reac-

tion. It is worth noting that they do not depend upon
the bombarding energy (provided V is energy inde-

pendent) or upon the parameters which characterize

the distorted waves. Hence, a particular set of kernel

functions F&»&, may be used in many different calcu-

lations. Since, by far, the greater part of the computing
time goes into evaluating these functions, considerable

savings may be made this way.
It must be expected that special methods will be

developed to evaluate these nonlocal kernels in different

cases. Later sections are devoted to discussions of
some special methods. Evidently a well-designed nu-

merical procedure should treat the calculation of the
nonlocal kernels as a distinct unit, which can easily

be changed. However, one trick used for evaluating

the nonlocal kernels is general, and shall now be

described.
For l=O the integral of Eq. (18) is the expansion of

a scalar. As a result three of the four angle integrations

may be done immediately, and

Fo~b(rb, r,) = (—) 2lr(2L+1)'t'

X foo(rb, r.)&i( )&t, (2&)

where tl= (r", rb) is the cosine of the angle between

r, and r&. We shall now show that for l/0 it is always
possible to reduce Eq. (18) to a firlite linear combina-

tion of integrals of the type of Eq. (25). In general,

fl (rb,r,) is a product of several factors, each of which

may be nonscalar and contain a spherical harmonic of
the polar angles of a vector r which is some linear corn. —

bination of r and r~. Many reaction models are in-

cluded in a form of fl which has three factors, at
least one of which is scalar. A general treatment of
such a form is given in the Appendix. The basic trans-
formation used is one which converts the spherical
harmonic Fl (r'), where

r= sr,+trb,
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into spherical harmonics in r",and r& separately, namely, "
2l+1 "'

r'Vp(F) =P Pkr/(2K+1))' ' (&&~)' "(«t)"
Xp, O'A

for deuteron stripping, and that it is also applicable to
many other stripping reactions by simple changes of
numerical values of parameters.

Prom the discussion of the preceding sections it is
evident that the form factor is

X (1—Vm —pp! lm) Yg g"-&(r.) V~"(ib), (26)

where A runs from 0 to E, and where
fi~(r b)r.)= i'P&~*(r.~)D (ra.), (28)

xf

is the binomial coeKcient. LThe derivation of Eq. (26)
may be based on the principle that a solid harmonic
of a vector r is a homogeneous polynomial in the
Cartesian coordinates of r.j Because the values of i
which are of most interest are usually rather small, the
sum in Eq. (26) includes only a few terms, and leads
to a very convenient reduction of Eq. (18) into inte-
grals over the one variable p. Illustrations of the ap-
plication of this method are given in the next section.

The zero-range equivalent of a form factor must be
so normalized as to yield the same results yielded by
the exact form factor in the limit that the distorted
waves have infinite wavelength. It, therefore is

f&„&-"&(rt„r,)=8(rb (iV~/MB)r. )

f) ((Mz/M&)r +s,r,)ds. (27)

The radial integrals J~,z,.' computed in finite range
may be compared one-for-one with those computed
from Eq. (27), to see in detail what are the 6nite-range
modifications.

IV. STRIPPING

Here the projectile is assumed made up of the emitted
particle 6 and another particle x which is captured by
the target, so that the course of the reaction is

a+A ~ (b+x)+A ~ b+(x+A) ~b+B.

t For a (d,p) deuteron-stripping reaction, for example,
we have a= 1, b= p, x=l.j The interaction responsible
for the transition is taken to be Vb, usually assumed
central- and spin-independent, so that Vq = Vq, (rq,).
In deuteron stripping this interaction is V„„.We also
usually consider reactions in which b and x are initially
in an s state of relative motion within u, and only give
attention to more complicated kinds of relative motion
for x and A within B.This is appropriate for deuteron
stripping; stripping from non-S states is discussed in the
next section. We therefore develop a scheme of analysis
for the special case of S-state projectiles and central
interactions, with the understanding that it is applicable

fg (r) = i'u( (r) I')~(r) (29)

is the normalized wave function for the bound state of
the captured particle, that is, for the relative motion
of A and x within B. The factor D was discussed in
Sec. II. It is the product of the interaction V~ times
the internal wave function of a. In our special case D
is a scalar,

In zero range, D becomes proportional to a 8 function.
We now rewrite the form factor in terms of the standard
variables rb and r„ the displacements of b and a from
8 and A, respectively. The transformation of variables
is determined from the geometry, as shown in Fig. 1,
giving

r,a=a(ra pre)—, rq, ——n(rt, —br,),
where n, y, 8 are various ratios,

~=~&Lx(A+~)?', v=(b/~), b=(A/B),

(30)

r,~=n$r, +y'r q' 2yr, rqy7'", —
r t ~=aP'r, '+r q 2br, rqyg'~', — (32)

where p, = (r Pq) is the cosine discussed in connection
with Eq. (25). The integration 'over p, is equivalent to
an expansion of this scalar part of f~„,

w((r.~)D(rg.) = Q (E+ ', )gx(r~, r.)Px(II),-(33)
X~0

where, by inversion,

of the masses of particles a, A, b, 8, and x. It is the
form factor of Eq. (28), using the variables of Eq.
(30), which must now be introduced into the calcula-
tion of the angular integrals of Eq. (18).

Because D is a scalar it is already of the convenient
type treated in Eq. (25). However, the transformation
of solid harmonics of Eq. (26) must be used for the
wave function. The wave function is first rewritten as

p& (r) =i'w&(r)Lr'F~ (r)j. (31)

The factor w~(r)=r 'u~(r) is well behaved at r=0,
inasmuch as any eigenfunction I& must be proportional
to r' near r=0 Then w. e may use the expansion (26)
for the solid harmonic in brackets in Eq. (31).The re-
maining, scalar, part of f~ is the product wq(r, ~)D(rq ),
and is a function of the scalar variables

"This result has also been derived by M. Moshinsky,
Nucl. Phys. 13, 104 (1959), and by M. K. Banerjee (private
communication}.

gx(r~, r.) = dew~(r'~)D(r~*)&x( ). (34)
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FIG. 2. Triangular inequalities for the Racah coeKcient
W(abed; ef) For th. is coetiicient not to vanish, any three coiinear
quantities must be able to form a triangle.

XW(L,XLbl —X; Kl). (35)

The 8' is a Racah coefficient which arises when we
combine and integrate the pairs of spherical harmonics
from Eqs. (33) and (31), and. sum the associated
Clebsch-Gordan coefficients over magnetic quantum
numbers. ' There are certain selection rules implied by
Eq. (35) which restrict the numbers of terms con-
tributing. For the Racah coefficient W(abed, ef) to be
nonzero, all the connected triads in the pyramid shown
in Fig. 2 must satisfy triangular inequalities, so that
in the present case,

0&&&1,

i
L„—h

i
(K&L.+X,

iLb —Ki &l X&Lb+K. — (36)

Further, parity conservation (exhibited in the Clebsch-
Gordan coeKcients) requires that only even values of
(Lo+Lb+l), (L,+K+'h) and (Lb+ K+l—) ) enter.
The first of these is the condition we called "normal
parity, " such that the finite-range calculation has the
formal structure of a zero-range calculation with altered
radial integrals, as in Eq. (22).

Under the above selection rules both the E and )
sums in Eq. (35) are finite, and are convenient to
perform. The values of X are small numbers, because
/ is a small number. The values of E are limited to a
small range in the vicinity of I., and I.&. Both these
sums are consequences of the introduction of the finite-

Upon introducing these expansions into Eq. (18) the
radial factors are finally found to be

F)I.br,.(r b,r.)=n'La. (2l+1)J~'

Xp (r,)"(—orb)' "(—) (2K+1)grc(rb, r,)

range interaction and collapse to closed form in the
zero-range limit. We see this most easily by noting
that in the zero-range limit

D(rb.) ~ D&(rb*),

where Do is some appropriate constant, and that g~
then is easy to evaluate

glc(zero-range) = (Ds/2a)wq(r, )5(rb —Sr,)/cr'rbs. (37)

This limiting form for g~ is independent of E, and,
therefore, standard theorems about Racah coefficients"
enable the K sum in Eq. (35) to be performed. The
remaining sum on ) then is also easy, and finally,

F~ r br, (zer or ange)

=Darb 'b(r b
—br.)N)—(r.)

X$(2L,+1)(2Lb+1)/4a (2l+1)j"'
X(LbL~OO

I
l0) (38)

One of the more important points at which to identify
finite-range modifications, therefore, is in the functional
structure of the gx(rb, r,), the expansion coeKcients of
the scalar part of the form factor. With finite range it
is clear that the g~ must drop off rapidly with E for
the higher K values, merely because Pz(ib) in Eq. (34)
is oscillatory, and it is clear that this eKect must be
most important at small radii. (As an extreme ex-
ample of this, we note that in the limit that both mg

and D are constant, gx vanishes unless K=O.) Finite-
range modifications that are related to properties of
the bound, final-state wave function f~ (r,~) also show

up in the E dependence of the g~. The other source of
finite-range modifications in the stripping amplitude
is the oscillations of the distorted waves themselves.
These oscillations affect the double radial integrals of
Eq. (20) insofar as the grc depart from 8-function form.

The calculational procedure used for stripping can
now be summarized: (i) First Eq. (34) is applied, to
determine the expansion coefficients gx(rb, r,). (ii)
These coeKcients are introduced into the sum, Eq.
(35), and the radial factors Fqr,.l.b(rb, r,) thereby de-
termined. (iii) These radial factors are introduced into
the double radial integral, Eq. (20), and the coefficients
in Eq. (22) for the stripping amplitude thereby deter-
mined. (iv) Physical quantities of interest are evaluated
from the amplitudes (22) as in standard zero-range
calculations.

Step (i) in the above sequence, the determination of
the gz(rb, r,), is the only step which is really trouble-
some. In our present procedure this step is performed
by straightforward numerical integration of Eq. (34)
for each value of E, and for all those pairs of values
of rq and r which lie in a band centered around the
zero-range line, r~ ——br, . This procedure is general. It
may be used for applications in which D has an ap-
preciable range, say, for reactions induced by heavy
ions. If D actually has a fairly small range then only
a narrow band of values of rq, r need be used, and it
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might be supposed that the method would simplify.
Unfortunately this general method does not simplify,
because adequate representation of a short-ranged D
requires use of a finely spaced net in r&, r,. It is inter-
esting, therefore, that Eq. (34) can be integrated
analytically if D has Gaussian form, and if the wave
function m~(r, ~) can be treated as constant. Further-
more, the entire Eq. (34) can be integrated analytically
if D has Gaussian form and if fq is an eigenfunction in

a harmonic oscillator potential, and in this case the
result of integration is a sum of modi6ed Sessel func-
tions of half-integer argument. This latter fact has
disadvantages for practical calculations of deuteron
stripping, because oscillator eigenfunctions are un-

physical in the region of the nuclear surface and
beyond, where usually the largest contributions to the
reaction originate. Similar objections can be raised
against other forms for wg which can be expanded
analytically. However, the analytic integration of Eq.
(34) with a Gaussian D and oscillator w~ might be
useful for checking the accuracy of a numerical pro-
cedure of integration.

Another useful check of the numerical procedure is
obtained in the plane wave limit-. Although the use of
this limit for the distorted waves & &+& and X~& ~ does
not simplify the calculation of gx(rs, r,), it does yield
a simple factored form for the over-all amplitude, as
explained in Sec. II. The finite-range amplitude is then

simply the zero-range amplitude multiplied by the
Fourier transform of the range function D. Calcula-
tion using the numerically evaluated gx(rb, r,) must be
able to reproduce this result.

If much calculation with fairly short-ranged func-
tions D is to be performed, as, say, for deuteron strip-

ping, then it might be profitable to shorten the calcula-
tion of Eq. (34) by expanding separately the two

functions which enter. In terms of the two Legendre
expansions

WI,,(rb, r )= (39)

D„(rs,r )= (40)

we obtain for gx(rs, r,) itself the expansion

gx(rs, r,) =s- g L(2p+1) (2q+1)/(2E+1)]

X (pq00 i
EO)'JFg,Ds. (41)

Now special methods can be applied for the expansion
of m& and D separately, which cannot be applied for
the expansion of their product. In particular, because
D is not very precisely defined, physically, it is nor-

mally possible either to use a function D whose ex-

pansion can be computed analytically, or to choose a
convenient analytic set of D~ as the definition of D.
These coefficients would then be common to all strip-

ping reactions initiated by a given type of projectile,
and would therefore not need to be computed separately
for each application. The expansion would then be
very convenient if the coeKcients 8 «should drop o6'

suKciently rapidly with q, so that only a few need be
carried. /These coeKcients certainly must be computed
numerically, because any physically interesting Schrod-
inger eigenfunction N,~(r,z) is only known numerically. j
It is of interest, therefore, that if D has a short range,
then the relevant 8'«do drop rapidly with q. For
deuteron stripping probably only two or three of these
coeKcients need be carried, and these are available
without much calculation.

The properties of the 5'«are seen by considering in
detail the function wt(r, ~),

w~ (r,~) =w ~(nfr, '+y'r s' 2yr, r s—p$'I')
=w~(nL(r, —mrs)'+2yr, rs(1—p)]'I') . (42)

A Legendre series in p, is a rearrangement of a power
series in p, or in (1—p), and converges rapidly if either
of these other series converges rapidly. Now a short
range for the function D emphasizes the region p=1
and r, =rb. Also, in deuteron stripping the parameter
values in Eq. (42) are n=2, y= —', . Then for radii r„rs
which are large compared with the range of D it is
clear from the argument in (42) that an expansion in
(1—4a) has good convergence. For small r and rs,
good convergence follows for another reason —that in
this region e&(r,z) is dominated by the centrifugal
potential, and that, therefore, in this region w~(r, @) is
approximately constant. A further way in which expan-
sion of zv~ is convenient is that the first two terms of
the expansion involve the value and first two derivatives
of m&, which are readily obtained. Higher terms can
in principle be obtained by using the Schrodinger equa-
tion as a recurrence relation for the power series ex-
pansion of m&. As yet we have not tested this method
numerically.

Finally, two alternative schemes which have been
used for including 6nite-range eGects in stripping reac-
tions should be noted. In the first, ' r,g and rq, are
chosen as variables. Although this seems a natural
choice when D(rs,) is of short range, it involves a
Taylor expansion of the distorted muses. This must be
carried out anew in every calculation, whereas the g~
described above may be stored numerically and used
in many calculations. A similar scheme" uses r and
r~ as variables, which involves expansion of one dis-
torted wave, &~' ', and of the bound-state wave func-
tion f~~.

The second scheme" is closely related to the ex-
pansion proposed above for D and m & separately, except
that the whole calculation is carried out in momentum
space. This then involves a Fourier expansion of the
distorted waves, and again obscures the important and

'3 F. P. Gibson (private communication).
'4 D. Robson, Nucl. Phys. 42, 592 (1963).
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useful factorization expressed in, for example, Eqs. (3)
and (15).

V. STRIPPING FROM NON-S STATES AND
"HEAVY PARTICLE" STRIPPING

In the detailed discussion of the preceding section
it was assumed that the transferred particle x was

originally in an S state of motion relative to b when

they formed the projectile a. We consider briefly here

the changes involved when this is no longer true. Such
a generalization is required, for example, if the effects
of the deuteron D state are to be included in deuteron

stripping, or if the concept of stripping is to be ex-

tended to other classes of reactions such as nucleon
transfer in heavy-ion scattering. One such process,
which has received considerable attention, is the so-

called "heavy-particle" stripping (HPS). Suggested
some years ago, this is supposed to resemble ordinary

stripping except that the role of projectile and target
nucleus are interchanged. The emitted particle b now

originates in the target nucleus, and by analogy the
interaction responsible for the transition is that which

binds b to the rest of the target nucleus. There is still
considerable discussion as to the physical importance
of this reaction mode, and even as to its precise theo-
retical formulation. Nonetheless, bypassing the latter
question, it is clear that any realistic study of the
importance of HPS must take into account distortion
effects. ' Further, the zero-range approximation is

hardly appropriate here (both the bound state of

b+x and the interaction Vb, now have ranges
comparable to the size of the target nucleus). So it is
of interest to discuss the application of the present
techniques to HPS for the same simple 3-body model

of stripping that was introduced in the previous sec-
tion. The notation of the previous section immediately
covers HPS if we interchange the interpretation of a
and A as projectile and target, and write the HPS
reaction as a(A, b) B.

The more complicated types of stripping reactions
just mentioned all are special cases of the basic formal-

ism of the present article. Only the procedure of
calculating the radial kernels of Eq. (18) becomes more
complicated. The principal new feature here just is
that the internal angular momentum of nucleus a,
formed from b and x, will generally be nonzero, and
that as a result the form factor fi will include two

factors which are nonscalar under rotations, botlz of
which have to be expanded by application of Eq. (26).
The general treatment of this type of form factor is
given in the Appendix. Not only is the discussion in

the Appendix a generalization of the stripping formal-

ism, but also of the formalism for the exchange-knock-
on process of our next section. There also the main
text will emphasize a special case. The form of the
general result for the radial kernels of Eq. (18) is seen
in the Appendix to be very similar to that found in the
last section, for example Eq. (35), except that the

angular momentum algebra becomes more complicated.
In particular the expansion of a nonscalar wave func-
tion iP, introduces an additional summation variable
X' with attendant angular momentum coupling factors.

VI. EXCHANGE-KNOCK-ON PROCESSES

Here the target nucleus A is assumed made up of the
emitted particle b and another particle (or "core") c,
which captures the incident projectile a, so that the
course of the reaction is

a+A —+ a+ (b+c) ~ b+ (a+c) + b+B

The interaction responsible for the transition is taken
to be Vb„ the entire physical interaction between
particles a and b, and this we assume to be central
and spin independent, as in Sec. IV. This Vb, presents
some problems of principle, as it is partly responsible
for the optical model interactions between a and A and
b and B. However, the interest in the present paper
concerns the kinematical structure of the integrals
which arise, and therefore, to give the theory definite-
ness, we ignore these questions and just regard Vb,
as a known, simple potential.

Several illustrations of exchange-knock-on processes
may be mentioned. These are (p,e) reactions, the ex-
change terms in (p,p') reactions, and the knock-out
term in (d,p) reactions. The last one of these examples
concerns a term which might compete strongly with
normal stripping if the target nucleus has a very loosely
bound nucleon. In all these examples some antisym-
metrization may be called for, and the knock-on am-
plitude may be only one term of a linear combination
of interfering contributions from different reaction
modes. In any case, it should be computed.

It is instructive to discuss a physical situation which
presents a nontrivial and rather typical illustration of
a knock-on process. We may imagine particles a and b

to be spinless, and we may imagine nuclei A and 8 to
each be described by a single parent state of the core
c; in these states c has angular momentum J„and b

and a have angular momenta lb and l, respectively.
Then the expansion (12) which defines the form factors
fi is in general found to have several nonvanishing
terms, arising from the coupling of l and lb to various
values of l. Each term is weighted by the coefficient
A ~, whose l dependence is just that of the Racah
coefficient W(4, /,JgJ~,' U,). This coefficient controls
the importance of the contributions which the various
angular momentum transfers l make to the physical
reaction amplitude. Of course if there is more than
one parent state J„or if a, b have spins, the coeffi-
cients A&„would not be just Racah coefFicients, but
would be more complicated. ' If in addition more than
one pair of orbits l„ lb are involved, then each of the
form factors fi which arise in Eq. (12) can be ex-
pressed as a sum of terms like the ones we are about
to discuss. In any case we learn from the example that
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in a knock-on process several terms in Eq. (12) are
likely to be important. Of course it remains true that
the different terms of (12) make incoherent contribu-
tions to the diRerential cross section, provided spin-
orbit coupling can be neglected.

The form factor for our simple model is determined
from Eqs. (13) and (14) to be

f$ (rb,r.)=P p (l.lb/„, p—balm)( )"—»-

where the bound-state wave functions are

P(„(r)=PN ((r) Y)a(r) . (44)

From the geometry shown in Fig. 3, the variables in
Eq. (43) are related by

r„=y'(r,+n'rb), rb, p'(rb——+p'r ),
rb, = orb —fr„

where the mass-ratio coeKcients have the values

y'=AB(AB ab) ', n—'= (a/B), P'= (b/A),

g=cB(AB ab) ', t =—cA(AB ab) '. —

(45)

=2v Q v (rxr,b) Yx~*(~b)Yxo(~.).
KQ

(46)

Substituting expansion (46) into Eq. (43), and this

In the limit that the masses of the particles a, b are
negligible compared with the masses of the nuclei A, 8,
it is seen that n' and p' become negligible, but that
y', g, 1 take on the value unity. An expansion technique
which is useful when n' and P' are nonzero but small
is described in the Appendix.

To compute the DWB amplitude from Eq. (43)
we follow the standard procedure of Sec. III. It is
necessary to compute the radial coeflicients F~L.Lb(r b,r,),
and these are obtained by substituting Eq. (43) into
Eq. (18). The transformation of Eq. (26) may be used
to eliminate the complicated spherical harmonics

Y~.& (r"„)and Y4»(rb, ) in favor of spherical harmonics
of r" and fb separately. The calculations are straight-
forward, and are described in the Appendix. However,
it is interesting to give attention to the case in which
the projectile masses a, b are negligible compared with

A, B. Then the coeKcients n', P' go to zero and Eq.
(26) need not be used. This case is interesting because
it still includes the major eRects of 6nite range on the
knock-out process. We expand the scalar interaction V
in spherical harmonies,

Fic. 3. The coordinate vectors for exchange-knock-on.

into Eq. (18), yields the radial kernels

+lLbL (rb, ra)

=-', z'—'—
tbsp(2l. +1)(2lb+1)j'"N4(r.)u~b(rb)

XQ (—)x(2E+1)(1JMOi L,O)(lbEOO
i
Lb0)

XW(L l,Lblb,' El)v~(rb, r,). (47)

Eq. (47) is symmetrical under the interchange of the
pairs L., /. and Lb, lb. The angular momentum cou-
pling in Eq. (47) is controlled by the Racah coeKcient.
According to Fig. 2, certain triads must satisfy tri-
angular inequalities, so that

lb+i, &l&

kalb

—l, i,
Lb+L,&l& iLb—L.t,
Lb+lb&E&

)
Lb—lb(,

L,+l &E& [L,—l
]
.

The Clebsch-Gordan coeScients enforce the parity
rules, that only even values of (l,+E+L,) and
(lb+E+Lb) shall enter.

Equation (47) has much the same structure as Eq.
(35) in the case of stripping. The bound-state quantum
numbers t„ lb usually are small numbers, and this
restricts the summation. But now the subsequent sum-
mations, in computing the amplitude, do not take on
an equivalent "zero-range form" because the parity is
not "normal. "The parity is (—)'+", rather than (—) ',
and odd values of (l+l,+lb) and (l+L,+Lb) are
allowed. Once again the summation over E collapses
in the zero-range limit (because in this limit vs be-
comes independent of E and may be removed from
the sum), and only "normal" parity terms survive.
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In order to anticipate some of the 6nite-range effects
which may appear in the knock-on amplitude it is once
again interesting to examine the plane-wave limit. If
the no-recoil form of Eq. (43) is substituted into Eq.
(15), and plane waves are used, then we obtain

(21+1)"'p'™=p (/. lbfs. ,
—pb~lm)( —)" »

Xexpi[k, r,—kb rb]. (49)

This equation is more complicated than the corre-
sponding equation for stripping, and does not auto-
matically factor. However, an approximate factoring
does appear if we can assume that the range of V is
small enough so that the bound-particle wave functions
may be evaluated at the average position variable,
r= s(rb+r.).Then

dr&i.„.*(r)i'»b(r) exp$ir (k,—kb))

drb, U(rb, ) expL —-', irb, (k.+kb) j. (50)

The two integrals in Eq. (50) involve momentum trans-
fer vectors which have very different structures. Thus,
the first integral tends to be large at forward scattering
angles, where k,—kb is small. Then at such forward
angles the momentum k,+kb is large, so that strong
finite-range effects are suggested by the second integral.
The two integrals tend to reverse their roles at large
scattering angles. In either event, strong Qnite-range
effects are expected. A similar discussion is given in a
recent article by Rodberg, " and the conclusions are
conlrmed by explicit calculation of proton scattering
from carbon, "and of the (ss,p) reaction on silicon. "

VII. SUMMARY AND DISCUSSION

Exact numerical calculations with finite-range inter-
actions are much more diKcult than with zero-range
interactions. However, we have shown that the 6nite-
range calculations can be arranged so as to be practica].
The methods which are described in this article have
been built into a code for the IBM 7090 computer,
and preliminary results have been obtained. The code
and detailed numerical results will be described in
another article.

"L. Rodberg, Nuc1. Phys. 47, 1 (1963). We are grateful to
Dr. Rodberg for the opportunity to see this paper in advance
of publication."C.A. Levinson and M. K. Banerjee, Ann. Phys. (N. Y.) 2,
471 (1957).

"A. Agodi, R. Giordano, and G. Schiffrer, Phys. Letters 4,
253 (1963).

In the qualitative discussion it has been seen that
6nite-range corrections for deuteron stripping are not
expected to be drastic, except in possibly suppressing
contributions froin the nuclear interior. However, the
plane-wave estimates did suggest that other reaction
processes may be much more sensitive to finite-range
effects."

For deuteron stripping, the present indications from
the exact numerical calculations are that the 6nite-
range effects only lead to a partial suppression of con-
tributions from the nuclear interior. The shape of the
differential cross-section curve tends to be altered
rather little, and it is still often necessary to use radial
cutoffs on the stripping integrals in order to obtain
agreement with experiment. ' When cutoffs are not
used, there is a noticeable over-all reduction of the
magnitude of the cross section, but only to the degree
expected from the suppression of interior contributions.
When a cutoff close to the nuclear surface is employed,
finite-range effects are very small. However, more
striking effects have been obtained for other processes,
such as (p,cr), as expected from the larger momentum
transfers involved.

Both in Eq. (9) and in Eq. (49) it is seen that irb

plane waM appr-oximation the finite-range correction
factor is of the nature of a Fourier transform of a two-
body interaction. This transform can fall off rapidly
if the relevant momentum difference should become
large. For example, if the two-body interaction should
be of Gaussian shape then the rate at which the Fourier
transform drops with momentum may become very
rapid, and toward large scattering angles the cross
section may drop by several orders of magnitude. It
is especially interesting that the numerical calculations
show that such drastic finite-range effects tend to
disappear when distorted waves are used. With dis-
torted waves there is no tendency for the introduction
of the finite-range interaction to force the cross section
down to exceptionally small values.

The inhuence of distorted waves in a finite-range
calculation was previously discussed in Sec. II, and it
was pointed out that distortion tends to introduce
.into the wave functions higher momenta than are
present in the plane waves. This tends to enhance
finite-range effects. However, more generally, distor-
tion spreads the momentum distribution of the wave
functions, and not only high momenta but also low
momenta are introduced. This allows effects from low-
momentum differences to dominate at scattering angles
where the plane-wave theory would lead one to expect
strong effects caused by high-momentum differences.
For this reason the high-momentum parts of the
Fourier transform of the two-body interaction are not
very important. They are small. How small they are
does not matter, because enough of the large, low-
momentum parts of the transform enter the calcula-
tion to dominate the results. Two interactions which
agree at low momenta tend to give indistinguishable
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cross sections. (This last fact is of practical use, be-
cause it means that the convenient Gaussian interac-
tion may be employed without noticeable error, so
long as distortions are appreciable. )

APPENDIX

Many models for the "eBective nuclear interaction"
of Eqs. (2) and (12) can be written as a sum of terms,
each of which has the structure

4 i„,*(ri)A...(r2)N3(23).

In the expression (51),N3 is a scalar, while in general the

(r) =N, (r;). Y&,~'(r;) (52)

are not, but carry angular momentum l;. In general
the arguments have the form

r1=$11 +/lrb r2=$2r~+/2rb

r3= ($3r,+tbrb(. (53)

Several examples of the form (51) have been discussed
already. Stripping from 5-state projectiles (Sec. IV) is
of this form with /2=0 and r2 ——r3 ——rb, . The relations
corresponding to Eq. (53) are given in Eq. (30). The
extension to non-S-state stripping (Sec. V) consists of
/2/0 In the .knock-on process (Sec. VI), pi, „, and

@1,„, correspond to the orbits into which a is captured
and from which b is ejected, respectively, while N3

corresponds to the interaction Vb, . The relations be-
tween r;, r„and rb are then given by Eq. (45). In the
limit of no recoil, t~=s2=0; we shall return later to
the interesting case that tl/$1 and $2//2 are small.

The terms (51) are always required in the covariant
combinations which behave like I'~ * under coordinate
rotations, as in Eqs. (12) and (14),

/lim= Z (/1/2~1, —~2I/213)( —)"'41»1*41»2233 (54)
I$1/I 2

Each such term corresponds to transfer of angular
momentum /, 2', and parity change, (—)"+".The l'3&

in Eq. (54) should also be labeled with /1 and /2, and
possibly other quantum numbers, but these will be
omitted for simplicity.

The general form (54) has some advantages for
numerical computation. The properties of a speci6c
reaction model are contained in the radial functions
23,(r;), and the coefficients $,, t, , but the angular mo-
mentum algebra now to be described is common to all
such calculations. Thus, a Qexible computer code may
carry options for the I; and have the s;, t; as input
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This expansion is easily carried out using Eq. (26) and
the generalization of Eqs. (33) and (34), namely

gX(2 b,2.)= dI3I X (/3) W 1 (2 1)W2 (2 2)B3(2 3) (56)

where p, =lb F, and w;=23;/r; '. The result is

+LLbL (Yb fa)

2 Q ($12 )tl 11(/ltb)b ($12t ) b(22/b2)l 2blgX(2'b 2, )
) 1X2K

&& P (—)»-'2+"~"1(2/,+1)(2/, +1)(2K+1)
AgA, b

X t (2A.+1)(2Kb+1))&&((A~00~ L.O)

X (A bK00
~
Lb0)(/1 —X1X200

~
A,O)(/2 —l12X,OO

~
Ab0)

l j. l2

f2/1) *('2/2
&(W(L Lb/l, Ab, /K)~

~ )
A.ll —'Ai l12

&2X,i dX,
Ab X1 l2 X2

(57)

In the expression (57), the sums are limited by the
following triads which must obey triangular inequali-
ties: (L,/i, K), (LbAbK)., (A, /1 —),1,X2), (Ab/2 —X2,X1),
(/L, Lb), (//1/2), (/A, Ab), of which the first four must
also have an even sum. The last factor in Eq. (57) is
the 9-j symbol"; numerically this is computed"as an
expansion over a product of three Racah coefficients.
Of these three, two are very simple to compute be-
cause each contains one argument which is the arith-
metic sum of two others. "

The simple examples discussed in the main text are
limiting cases of Eq. (57). Putting /2

——0 (so that X2——0,
il.,=/1—)11, Ab ——Xl, and /1 ——/), Eq. (57) reduces to the
form of Eq. (35). The no-recoil limit of Sec. VI is also
of interest. The sum over ill, X2 in Eq. (57) arises from
the expansion of the spherical harmonics in Pi», and
pi,„„in the form factor (54). With the no-recoil model
for knock-on reactions, this expansion is no longer
necessary because r&=r, r2=rb. Then ) &=) 2=0 only,
so that A, =/1, Ab ——/2 and Eq. (57) reduces to the form
of Eq. (47).

It is also of interest to consider an approximate
scheme for use when tl/$1 and $2//2 are very small, so
that only the values 0 and 1 need be considered for P &

and. ) 2. This corresponds, for example, to taking recoil

parameters. Exceptions occur when special cases such
as /2=0 (Sec. IV) or neglect of recoil (Sec. VI) are
considered. The algebra then simpli6. es sufficiently to
justify separate calculational procedures.

With the form factor (54) we need the radial coeffici-
ents in the bipolar expansion corresponding to Eq. (17),

/ii (rb,r.)
—QL L M+LL L (2 b 2 ) I L (2b)PL (1 )

X(L~.Mm M—~/~) (5. 5)
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+tLbLa= +lLbLa ++tLbLa

where the zero-order term

&1L,L."'(rb,r.)
=-,' p gx(rb, r,)ul(sir, )u2(t2rb) (—) (2K+1)

(59)

X (l,KOO
~

LaO)(l2KOOi Lb0)L(2l, +1)(2l2+1)j*'

XW(L Lblll2, lK), (60)

has the same form as the no-recoil expression, Eq. (47).
The 6rst-order correction is

+LLbL "(rb ra)

= 12Q (2v+1) (22t+1) (2K+1)glr(rb, ra)( )Lb+"+'—

into account to first order in the knock-on reaction.
It may also be applied to "heavy particle" stripping
if the target is suKciently massive. Explicit expressions
for this case could be obtained by substitution in Eq.
(57), but a more convenient and consistent approach
is to make a Taylor expansion of the it &„,

@1 (rl) =pl ($11 )+tlrb'Vfl (sir )+ ' ' (58)

(where V is the gradie t with respect to sir, ), and
similarly for pi, „,. Then to first order in tl and s2 we

may write

When e3 represents a. two-body interaction potential,
it will often be possible to use forms such as a Gaussian
for which analytic expressions are available for the g~.
The radial parts of expression (61) also involve the
derivatives of N~ and m2 through the combinations d„
and d„, where

d 1,.+, (x) = [(d/dx) (l,/—x)]u, (x),
dl, (x) = [(d/dx)+ (l„+1/x)]u, (x) . (63)

The summations in Eq. (61) are quite limited. The only
values of v and g allowed are v=i~~1, g=l2~1. The
first Racah coefFicient in Eq. (61) therefore has simple
explicit forms, as also do the second two Clebsch-
Gordan coefficients. The remainder of Eq. (61) has
the same structure as the no-recoil term, Eq. (60).

Finally we consider the special case of this approxi-
mation where rs= r2. This would be the case for heavy-
particle stripping; It is then unnecessary to carry out
the expansion (62); u2(r2) may be combined with u2(r2),

u;(r2)u (r2) = u2(r2) .

Since this is equivalent to replacing u& by unity in the
integral (62), this leads to go=2 if K=O, but zero
otherwise; that is, the E sum disappears from Eqs.
(60) and (61). Explicitly the results are quite simple,

H1LbL. "' ——8L 1,8Lb~.,ul(sir, )u2(t.rb) (—)

Since the expansion (58) has been used for the func-
tions p, the glr in Eqs. (60) and (61) arises from the
expansion of ub(r2) alone,

XLtlrbu2 (t2rb) 4 (Slra)+ $2raul (Slra)da (t2r b)j
X(vKOO~L 0)(rtKOO~Lb0)(v100(l10)(2t100(l20)

IVII., I. ")
XW(l l bt; l1)W(L L 2t lK) (61) L-(2l+1)(2l P1)j i W(L L ll . l1)

X(l1100
~

L 0)(l2100i Lb0)

X Lt lr bu2 (t2r b)d„(sir.)
+$2raul(slra)d2(t2rb) J,

gx(rb, r.) = dt rx(t )u2(r2) . where now d„acts on u2. Only the values L,=/1&1,
I.t, =l~&i enter into H&'.


