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Systematic Solution of Multiparticle Scattering Problemsa
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Departmelt of Physics, Umieerssfy of CaliforrIia, Berkeley, Califorlia
(Received 26 August 1963)

Scattering problems for three or more particles cannot be solved by a direct use of those techniques, like
the Fredholm or quasiparticle methods, which work for two particles. The trouble is that the kernel
PW ffe7 —'V of the Lippmann-Schwinger integral equation is not L', even for complex W. In fact, this
kernel has a continuous spectrum, giving rise to cuts in the coupling-constant plane for multiparticle scatter-
ing amplitudes. We show how to overcome this difhculty, and calculate all Green s functions and scattering
amplitudes in a systematic and essentially rigorous manner. The dynamical equations are rewritten as a
sequence of linear integral equations for successively larger systems, each with a kernel and inhomogeneous
term which can be calculated explicitly from the solutions of the previous equations. The kernels are I.'
because they arise from connected graphs only, so each integral equation can be solved by the Fredholm,
quasiparticle, or other methods. The distorted wave approximation appears very naturally in this approach.
One minor by-product is an explicit upper bound on the binding energy of any E-particle composite system
with square —integrable potentials. A mathematical Appendix on relevant topics in functional analysis
is provided.

I. INTRODUCTION

'HIS is the third paper in our current series on the
quasiparticle method. The 6rst' showed how fic-

titious elementary particles can be introduced into any
theory, and the second' proved that two-body scattering
problems can always be solved by perturbation theory,
provided that such a "quasiparticle" is first introduced
for each resonance or bound state.

The present article is not directly concerned with the
quasiparticle idea, but rather with the more general
problem of calculating nonrelativistic scattering proc-
esses (with or without rearrangement) for arbitrary
numbers of particles. Heretofore it has not been possible
to do this in a systematic way, because the I.ippmann-
Schwinger integral equation for more than two particles
is not of the type that can be solved directly by either
the quasiparticle or the Fredholm method. The trouble
can be expressed in a number of ways:

(1) The kernel PW —Hp) IV of the Lippmann-
Schwinger equation is not of the Hilbert-Schmidt (or
L') type, even if the interactions are well enough be-
haved to give an I.' two-particle kernel.

(2) The L Skernel has a contin—uous spectrum.
(3) The graphs for the L—5 kernel are not connected.
(4) The scattering amplitudes are not meromorphic

functions of the coupling constant, but contain cuts, as
well as the poles which are present for two particles.

(5) The "Fredholm alternative" does not hold.

~ Research supported in part by the U. S. Air Force OKce of
Scientific Research under Grant AF—AFOSR-232 —63.

t Alfred P. Sloan Foundation Fellow.
' Steven Weinberg, Phys. Rev. 130, 776 (1963).This article will

be referred to as A. (See also other references quoted in A.) The
relativistic case has been treated in a preliminary way by the
author in the Proceedings of tlze 196Z High Energy Conference at
CERE (CERN, Geneva, 1962), p. 683. The discussion in A can
be extended quite easily to the true multiparticle case, as will be
shown in the next paper of this series.

s Steven Weinberg, Phys. Rev. 131,440 (1963).This article will
be referred to as H.

These difhculties are discussed in some detail in Sec.
II, and we show how to overcome them in Secs. III—VI.
Our method consists of rewriting the I.ippmann-
Schwinger equation as a sequence of linear integral
equations with connected and hence I.' kernels, ' which
can be solved in succession by either the quasiparticle,
Fredholm, or "algebraic" method, or even (if no com-
posite particles prevent it) by ordinary perturbation
theory.

To a mathematician this would constitute a solution
of the multiparticle problem, but the question naturally
arises whether it is a coevement solution for actual corn-

putation of scattering amplitudes and binding energies.
I do not know the answer, but there are two grounds for
hope. First, our experience' with two-particle problems
has shown that the quasiparticle method is a very
effective way of solving scattering problems with an I.'
kernel. And second, the formalism developed here leads
quite naturally to the distorted wave approximation.
(We may have more to say about this in a later article. )
At any rate the attitude adopted throughout the present
paper is that a problem is essentially solved if it is re-

' This is also the essence of the method of solving the three-body
problem developed by L. D. Faddeev, Zh. Eksperim. i Teor. Fiz.
39, 1459 (1960) Ltranslation: Soviet Phys. —JETP 12, 1014
(1961)7; Dokl. Akad. Nauk. SSSR 138, 565 (1961) and 145, 301
(1962) Ltranslations: Soviet Phys. —Dokl. 6, 384 (1961), and 7,
600 (1963)7 and by C. A. Lovelace, Lecture Notes ~for the
Edinburgh Summer School, July 1963, and paper in preparation.
I am very grateful to Mr. Lovelace for informing me of his work
and that of Faddeev. The Faddeev-I. ovelace method is very
similar to the one presented here for three particles in Sec. III,
with the extra advantage that the original interactions no longer
appear once the two-body problem has been solved, a point of
some importance if the potentials are very singular. However,
their method has the minor disadvantage of involving a great
many more amplitudes and equations, and the possibly major
disadvantage of being very dificult to generalize to more than
three particles. The three-particle problem is qualitatively simpler
than other multiparticle problems, because only one composite
particle at a time can appear in any state. )The work of Faddeev
has been applied in a recent article by L. Rosenberg, Phys. Rev.
131,495 (1963).7

4 M. Scadron and S. Weinberg (to be published).
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duced to a Rnite sequence of quadratures and of linear
integral equations with I.' kernels.

A word about how to save time in reading this article.
It is rather long, because we develop our method of
solution four times: in Sec. III for the three-particle
case, in Sec. IV for the T-particle case using graphs, in
Sec. V for the E-particle case without graphs, and in
Sec. VI for more general theories (with creation and
annihilation, multiparticle interactions, Bose or Fermi
statistics, etc.) by a time-dependent method. Some care
has been taken to make these sections logically inde-
pendent, so that the reader should choose among them
as his tastes dictate. Also, it should not be necessary to
refer back to papers A and B, except to learn the
physical motivation for the quasiparticle method. Much
of Sec. II can be skipped if the reader already knows
why multiparticle problems have been so intractable.

Our continuing aim is to learn how to calculate rela-
tivistic strong interaction problems. In Sec. VI of this
paper we get fairly close to the relativistic case, but at
the last minute we are forced to restrict ourselves to
theories without antiparticles, in order to get linear
equations. However, there is one moral to be learned
from this present work which we hope will continue to
be valid: Although we cannot expect the Smatrix to be
meromorphic in the original coupling constant, it is
meromorphic in a set of coupling parameters, i.e., the
magnitudes of those connected kernels which play the
role of effective interactions for multiparticle systems.

for all 8' outside the spectrum of Lt' by

G(W)=PW —B$ '. (2.4)

r,.= hm (C, i(a—Z.)

+(H—E )G(w)(Et —Z.) iC.). (2.5)

(The definition of C, and Co requires some care in
rearrangement collisions, 5 where they cannot be re-
garded as eigenstates of Bp. A way of avoiding such
complications will be presented in the next paper of this
series. )

(3) The partition function in quantum statistical
mechanics is

Z (P)—=»{exp(—P&))

z

2' Q

exp( —PE) Tr{G(E+ie) G(E $e))—dE. —

For example:
(1)A composite particle with binding energy 8 shows

up in G(W) as a pole at W= J3 (i—n the center-of-mass
system), and also generates cuts in W with branch points
at the thresholds for states containing the composite
particle. The residue of the pole gives the wave function.

(2) The S matrix for a general scattering process
a-+ b (with or without rearrangement) is

Ss,=ho, —2s.ib(E,—Es)Ts„
where

II. THE PROBLEM

We shall consider a nonrelativistic system of E
distinguishable particles, with Hamiltonian

Our whole attention in this paper will be focused on the
problem of calculating the fundamental operator G (W).

Suppose first that we were rash enough to try to
calculate G(W) by expanding in powers of V:

H=Ho+V,

where Hp is the sum of kinetic energy operators

(2 1) G(W) =P1+E(W)PZ'(W)+ ]G,(W), (2.6)

where Go(W) is the unperturbed Green's function

Go(W) = PW —Hog

and E(w) is the "scattering kernel"(2.2

&(W) =Go(W) V.

(2./)

(2.8)and V is a sum of two-particle interactions
It is unfortunate that the series (2.6) will usually

diverge just when we need it most. For instance, we
have already mentioned that composite particles gener-
ate poles and cuts in G(W); these singularities are
absent in the individual terms of (2.6), and hence can
only arise because the series diverges near the singu-
larity. So the crucial question is not so much whether
(2.6) diverges, but whether we can cure the divergence.
The purpose of this section is to show that the tradi-
tional remedies which allow us to calculate G(W) in
two-particle scattering problems lose all their potency
when applied directly to more dificult cases. By seeing

(2.3)V=+V;;.
i&j

' See, e.g., H. Ekstein, Phys. Rev. 101, 880 (1956).' Fox an example, see R. Aaron, R. D. Amado, and $.+, I,cc,
Phys. Rev. 121, 319 (1961).

These particular assumptions are chosen in the hope
that they will help to make this paper easy to read,
rather than out of mathematical necessity; we will show
in Sec. VI that all our essential results hold for theories
with Fermi or Bose statistics, particle creation and
annihilation, many-body interactions, etc., as long as
there are no antiparticles or purely neutral particles. In
the meanwhile, we will try to keep our notation and
discussion as general as possible.

It is well known that all physically interesting in-
formation about any system can easily be obtained if
we know the Green's function G (W), an operator defined
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r (W) =Tr (K—(W)E2 (W) ) =Tr V' . (2.10)
l
W—Hpl'

If E(W) is completely continuous, then Eq. (2.9) can be
solved by a variety of systematic methods:

(a) The qlasi particle method Thi.s was developed in
papers A and B as a way of introducing bound states
and resonances as if they were elementary particles;
mathematically it just amounts to the definition of a
reduced kernel by

v, =v—p, vlr, )(l, l v,
Ei(W) —=Gp(W) Vi=K(W)

—P, E(w) lr, )(1',
l v, (2.12)

where
l
I',) and (I',

l
are a finite set of state-vectors that

we can choose as we like. The original Green's function
and the new one are related by

G(W) =Gi(W)
+P„G,(w) v

l
r,)~„(w)(1',

l
vG, (w), (2.13)

and the propagator Q is given by

l / —'(IV)7, 2
——i2, 2

—(I',
l VGi(w) V

l
I'2}, (2.14)

where

Gi(w)=l W—Hp —Vi) ',
Gi(W) =Gp(W)+Ei(W)Gi(W).

(2.15)

(2.16)

The point of the method is to choose the reduced kernel
so that (2.16) may be solved by perturbation theory:

Gi(W) =11/Ki(w)+ Ki(w) y ' ' ]Gp(w) (2.17)

allowing an immediate evaluation of G(W) from (2.13)
and (2.14).This is always possible if E(W) is completely
continuous, since then it can be uniformly approximated
with arbitrary precision by a kernel of Rnite rank like
the sum in Eq. (2.12); in particular we can always
choose this sum so that

llE, (w) ll &1, (2.18)

which immediately implies the absolute and uniform
convergence of (2.17). (The bound llEill, and such terms
as "absolute" and "uniform" are dedned in Appendix

how these remedies fail, we will learn how they can be
modi6ed and made to work.

In seeking a better solution for G(W) than the series
(2.6), it is usual to start by rewriting Eq. (2.1) in the
Lippmann-Schwinger form

G(W) =Gp(w)+E(W)G(W) . (2.9)

The solution of such linear integral equations is known
to be straightforward if (and really only if) the kernel

E(W) is of the "completely continuous" type, described
at the end of Appendix A; E (W) is completely continu-
ous if (but not only if) it is an I.' or "Hilbert-Schmidt"
kernel, i.e., if 2 (W) & po, where

A.) A more constructive argument may be based on the
observation that (2.1'7) will converge as long as the
completely continuous kernel Ei(W) has no eigenvalues
outside the unit circle. (See Appendix A, Theorem V.)
This can always be arranged by choosing the

l
I',) and

(F, l
in correspondence with the wave functions of all

resonances and bound states, as discussed in paper B.
)In the absence of composite particles, or more pre-
cisely, if all eigenvalues of a completely continuous
E(W) lie inside the unit circle, the introduction of
quasiparticles becomes unnecessary, and the quasi-
particle method reduces to the ordinary Born series
(2.6).) The quasiparticle method has been applied to
two-particle scattering, and seems to work very well. 4

(b) The algebraic method 2Th.is is similar to the
quasiparticle method, except that we don't take a 6xed
number of

l
I',) and then calculate Gi(W) by (2.17), but

instead take more and more terms in (2.12) so that
IIKi(w) II

~ 0 and Gi(W) ~Gp(W). The G«en's func-
tion G(W) is then obtained from (2.13) and (2.14).
Again, this method works because a completely con-
tinuous operator can be uniformly approximated with
arbitrary precision by a kernel of finite rank.

(c) The modified Fredholm method. All versions of the
Fredholm method are based on the fact, that if E(W)
is completely continuous then G(W) is a meromorphic
function of the coupling constant, and hence may be
written

G(W)=D-'(W)E(W) (2.19)

where the operator iV and the c-number D are entire
functions of the coupling constant. Smithies' has given
modifmd Fredholm series for N and. D (involving
TrK', TrK', etc but n.ot TrE) and has proven that
these series converge if r(w) is finite. This is a slightly
stronger assumption than complete continuity, the extra
strength being needed to show that TrE', TrE', etc. all
exist.

So we see that if r(W) & pp, or at least if E(W) is
completely continuous, then all our troubles are over. In
fact r(W)2s finite for nonrelativistic two-particle scat-
tering, under reasonable restrictions on the interaction.
In this case the kernel is

where

b(P—P')
(el V» I q'), (2.20)

W—212/2t2 —P2/2M

Pl+P2 21 (m2P1™1P2/mi+m2),
M=mi+m2, t2= (mim2/m, +m,).

The 8 function prevents (2.20) from being an 12 kernel
as it stands, but we can factor it out in the usual way by

7 C. A. Lovelace has suggested using this method to solve the
Faddeev-Lovelace three-particle equations, Ref. 3.

F. Smithies, leEegra/ Equations (Cambridge University Press,
New York, 1958).
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and this integral equation has an L' kernel if

, 1&ql v sl q') I'
(PE& g goo.

I
W—qs/2yl'

(2.23)

We will assume from now on that (2.23) holds for all the
V;;. It should be recalled that 8' is complex or negative,
so that condition (2.23) only amounts to a not un-
reasonable limitation on the high-q behavior of the
interaction. ' In particular, for a local potential, V12(r),
condition (2.23) becomes

d'r V12'(r) & ~ (2.24)

and thus holds for any decent short-range potential. Lif
V12(r) is a local central potential, then in each partial
wave the kernel is L' if

r2V122(r)dr & ~ and V12'(r)dr & ~, (2.25)

and this holds even for the Coulomb case. ~~

But, unfortunately, this very satisfactory situation
does not persist when we turn to any problem more
complicated than two-particle scattering. I.et us con-
sider for a moment the next easiest problem, that of the
scattering of three distinguishable particles with two-
body interactions U;;. In this case the kernel has matrix
elements

(Pil 2P2IE(W) IP1'P2'Ps')

3(E' p' —2' p'')
(~(P3 Ps )(q12I V12I q12 )

W—Q; P,2/2212;

+~(P1—Pi')(q28I V23I q23)

+&(P2—Ps')(qisl V»lqis')). (2.26)
~ In scattering problems it is necessary to set 8 =E+ie, with

L'&0 and s -+0+, and in this limit the integral (2.23) becomes
infinite. However, the quasiparticle and Fredholm methods retain
their validity for s -+ 0, provided that G(W+se) has a well-deQned
limit. This point is discussed brieQy in Sec. III of paper 8, and
much more fully in the work of Lovelace, Ref. 3. )It is interesting
that the existence of the scattering matrix has been proved by a
time-dependent method by J. M. Cook, J. Math. R Phys. 36, 82
(1957}, using just the assumption (2.24) needed to show that
E (W) is L' for complex W.g Our attitude throughout the present
work is that the methods which allow us to calculate G(W) for
complex or negative 8' will also work for G(E+ie); this has always
been borne out in practice. (See note added in proof. )

defining

&p.p. lG(w) I p 'p. ')
=—&(P—P')&ql G(W —P'/2~)

I
q'). (2 21)

Then Eq. (2.9) becomes

&(q—q')
&qlG(W) lq')=

W—q2/2ii

„&ql V lq")(q" IG(W) lq')
+ dsq" (2.22)

W—q2/2p

The over-all 8 function is completely innocuous, since it
appears in both E(W) and G(W) and hence can be
factored out just as in the two-body case. In the same
way, if V» and Vsi were zero then, the factor 5(P2—ps')
could also be factored out. However, if any two of the
V;; are nonzero, then there are no 5 function factors in
G(W) except the over-all momentum conservation 8

function, and so we have to leave the three 6 functions
inside the brackets in (2.26) as indispensable parts of
the scattering kernel. This obviously then implies that
E(W) cannot be regarded as an I2 kernel, since Tr(EEt)
will contain terms like LS'(pt —Pi ))' in its integrand.

The same difhculty obviously occurs in all multi-
particle problems since the matrix element of U;; con-
tains N —2 "dangerous" b functions, i.e., 8 functions for
momenta which are not conserved by the full inter-
action, and hence which cannot be factored out. This
bars the way to a systematic solution of these problems
by the quasiparticle, algebraic, or Fredholm methods.

At 6rst glance, the fact that X(W) is not an L2 kernel
may seem like a pedantic difFiculty, since we are
generally used to thinking of all 5 functions as innocuous.
In any case there does not exist any theorem to the
effect that a kernel mus3 be L' in order to be completely
continuous. However, a moment's reflection will show
that the dangerous f) functions in (2.26) and more
complicated kernels occur just because of the one
cardinal feature that makes multiparticle processes so
diGerent physically from the two-particle case, i.e., the
possibility of a subset of particles interacting with each
other, but being too far away from the other particles to
interact with them. We shall now show that E(W)
is not completely continuous, and that the Fredholm,
quasiparticle, and algebraic methods actually do break
down in multiparticle problems. The "physical" reason
is that although these methods correctly display the
bound-state poles which prevent the convergence of the
ordinary Born series, they cannot cope with the cuts
which also prevent the convergence of Eq. (2.6) in
multiparticle problems.

In order to facilitate our discussion of integral equa-
tions like (2.9) or (2.16) whose kernels are not neces-
sarily J' or completely continuous, we have assembled
in Appendix A a review of the relevant portions of the
theory of functional analysis. The essential trick is to
define the Green's function G(W,X) for a complex
coupling parameter X by

G(W, X) =Gp(W)+RE(W)G(W, X) . (2.27)

I This discussion applies in its entirety also to the re-
duced Green's function (2.15).) It is well known (and
proven in the Appendix, Theorem 1) that the Maclaurin
series expansion (2.6) of G(W) =G(W, 1) will converge
uniformly and absolutely if G(W, X) is a bounded
analytic function of X within the unit circle IXI 1.
(The precise meaning here of "analytic, " "bounded, "
"uniformly, "and "absolutely" is explained in Appendix
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~ . .3/2

ll«w)ll~ &
2s-I Im(2W)"'I

—1/2

dsrl U;;(r) I' (2.31)

where p;; is the reduced mass of particles i and j.) One
immediate consequence of some practical importance is
that the spectrum lies entirely outside the circle

I~I(IIE(w)fl ' (232)

and. that therefore the Green's function G(W,X) is cor-
rectly given by the absolutely and uniformly convergent
series

G(W,) )= I 1+ ) E( W) +& sE'( W)+ ]Gs(W)

for at least all X inside the circle (2.32). In particular,
the Born series (2.6) will work if (but not only if) X= 1

lies in (2.32), i.e., if the V;; are sufficiently weak so that
E(W) (1. The particular upper bound (2.31) on
E(W) is of no value here for scattering problems,

where W approaches a positive real value and (2.31)
becomes infinite. But (2.31) is finite for W(0, and it
yields an absolute upper limit on the binding energy of
any E-particle bound state

A.) Instead of working with G(W, X) it is convenient in-
stead to define F(W,X) by

F{W,) ) =E(W)+)~E(W)F (W,) ) (2.2S)

=E(W)+'AF(W, ) )E(W), (2.29)
so that

G(W, X)= f 1+ELF(W X)}Gp(W) . (2.30)

Clearly, G(W, ) ) will be bounded and analytic wherever
F(W;A) is bounded and analytic. The points 'A where
F(W;A) is not both bounded and analytic are col-
lectively called the spectrum of E(W). The basic aim of
the quasiparticle method is to de6ne a reduced kernel
K'i(W) Lsee Kq. (2.12)$ whose spectrum lies outside the
unit circle, while the Fredholm method is just a way of
rewriting the integral equation so that its kernel has no
spectrum at all. In either case we can then use a simple
perturbative expansion in the modified kernel to find the
Green's function.

In order to decide when these methods work, it is
necessary to analyze the spectrum of E.The erst step is
to note that E is bounded, a fact proven in Appendix 3
under assumptions somewhat weaker than our general
assumption that all V;; satisfy (2.23). (If the V;; are
local potentials satisfying (2.23), then the bound of E
is subject to

there exists a (norrnalizable) eigenvector Y such that

EY=X 'Y. (2 34)

(ii) The residual spectrum of E consists of all X for
which there exists a (normalizable) left-eigenvector C't

such that
(2.35)

but for which (2.34) has no solutions.
(iii) The contirsuous spectrum of E consists of all X

for which, given any e&0, there exists an "approximate
eigenvector" Y„such that

VG (W*)C'=X '*C' (2.39)

Multiplication on the left by G&(W) O shows that (2.35)
always implies the existence of a solution of (2.34), i.e.,

&=Gs(W) OC

and that, therefore, there can be no residual spectrum.
But E (W) does have a continuous spectrum for 1V~ 3.

As an example, we shall show that if X(W) is the point
spectrum for the two-body, center-of-mass system of
particles 1 and 2, then X(W—E) will be in the contimi-
ous spectrum of the three-particle kernel E(W) for all8)0. Just let 'f be a normalized state in which particles
1 and 2 are in an eigenstate of their two-body scattering
kernel, while particle 3 has a nearly sharp momentum p,
but is so far away from particles 1 and 2 that its wide
spatial spread doesn't overlap them. For example, we
may take

(2.36)

(2.37)

b««r w»ch (2.34) and (2.35) have no solutions.
A completely continuous kernel can have at most a

point spectrum, " so if E(W) can be shown to have
either a residual or a continuous spectrum then it will
stand convicted of being not completely continuous. It
is easy to see that E(W) does not have a residual
spectrum, since time-reversal invariance tells us that
there exists an antiunitary operator Q' such that

Q~VQ~
—i= V Q~Gs(Wa)Q~ —i=Gs(W) (2.3g)

But (2.35) can be written

g p 'I' dsrI V "(r)l'
Sx'

(2.33)

«xpL —l&'(p —p)') exp(ip R) (2.40)

where q» is the relative momentum of particles 1 and 2,

ThisformulawasgivenforlV=2 in Eq. (132)of paper B.
It is shown in Appendix A that the spectrum of a

general bounded (or at least closed) kernel E consists of
three disjoint sets:

(i) The point spectrum of Econsists of all X for which'

Very often the spectrum is de6ned to be the set of all 1/X
satisfying (i), (ii), or (iii). With this convention, a completely
continuous kernel may have a continuous spectrum consisting of
just the point 1/X=O. In fact E'(lF) does have such a continuous
spectrum in the two-particle case, since T, can be chosen to be a
wave packet with well-de6ned kinetic energy and zero potential
energy.
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and P is an eigenstate of the two-body kernel with

d'qio I4 (q») I'=1
(2.42)

(eoI V»Ieo')
X(W) d'q»' f(q»',. W)

W—(q»'/2u»)

=4 (q»; W) (2 41)

p„= (m, mo)/(m~+mo),

The parameters a and IRI will be allowed to become
in6nite, with

I Rl))u, while p is held 6xed at a value
such that

y /2Po + y Po mp(ml+m2)/(m$+mo+mo) . (2.43)

The state Y is constructed so that as
I
R I~~ (with a

and p 6xed), particle 3 gets so far away from 1 and 2
that V~3Y and V23Y become zero; in momentum space
this is, of course, due to the rapid oscillations of the
factor exp(iyo R) in the integrals for V~oY and VooY.
Hence, as

I
R

I
—+ pp,

(q» po IE(W) I Y) ~ (q» po I Go(W) V» I Y)=
I I

d'qlo'
ig~)

(qloI V12 I q12 )f(q12', W—&) expI —&&'(po —y)'] exp{ipo R}

W—(qio'/2plo) —(pa'/2 pa)

If we now let a —&~, the Gaussian in p3 —p will become
more and more sharply peaked about p3—p, so that the
p3 in the denominator may be replaced by y. Using
(2.41) then gives

~(W—Z)E(W) IY) IY), (&,~ ) (244)

Iiut Y does not have a well de6ned limit as I R I~ pa and
u~pp, so X(W—E) is in the continuous spectrum of
E(W).

This hardly qualifies as a rigorous proof of the exist-
ence of a continuous spectrum, but the argument is
physically rather convincing. It shows that E(W) is not
completely continuous in problems involving more than
two particles, and in fact because of the same dangerous
8 functions that prevent it from being regarded as an L'
kernel. We can generalize the particular continuous
spectrum found for the three-particle case to a general
statement:

Suppose X s(W) is in the point spectrum of the center-
of-mass scattering kernel Es(W) for a system 5 of ~ 2

particles. Then for all E&0, Xs(W —E) is in the con-
tinuous spectrum for any larger system which contains
S as a subsystem; the locus of Xs(W E) for 0&8&pp-
forms a cut in G(W, X).

So we finally see that there is no hope that a direct
application of the quasiparticle, algebraic, or Fredholm
methods could be used to calculate G(W) in general
multiparticle processes. The existence of cuts in the
coupling constant P shows that the quasiparticle method
may fail, since (2.13), (2.14), and (2.17) make sense only
if G(W, X) is meromorphic for

I

'A
I & 1, while the

Fredholm method must' fail because (2.19) makes sense
only if G(W, X) is meromorphic for all X. Furthermore,
the algebraic method cannot work because a kernel
which is not completely continuous can never be ap-
proximated arbitrarily closely by a kernel of 6nite rank.

We now also see what our problem is: Can we refor-

mulate the Lippmann-Schwinger equation (2.9) for
G(W) as a set of linear integral equations with kernels
which are free of dangerous 8 functions, and which
therefore have a chance of being completely continuous P

H=Hp+V,

where Ht) is a sum of kinetic energy operators

Hp= py /2my+po /2mo+po /2mo,

and V is a sum of two-particle interactions

V= Vlo+ V13+V28 ~

(3.1)

(3.2)

(3.3)

A three-particle term V»3 could be included with only
minor modifications. Our object is to calculate the exact
Green's function

G(W) =$W H)——(3.4)

Let us define three "partially connected" Green's
functions I.;;(W) by

Gg(W)=L, , (W) jGp(W), (ij=12, 13, 23), (3.5)

where

G;g(W)= [W Ho V'] '—— —(3.6)
and

Go(W)—= I W—Hpg '. (3 &)

We can then define a "completely connected" Green's
function C(W) by

G(W) =C(W)+Lgo(W)+Lgo(W)
+Lop(W)+Gp(W) . (3.8)

III. THE SOLUTION: 3 PARTICLES

In this section we show how to solve any three-body
problem in which the interactions are reasonably decent.
The Hamiltonian is taken as
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Our reason for calling these operators partially and
completely connected will be made clear in the next
section, if it is not obvious now.

A little trivial algebra shows that

I,, (W) = K;; (W)G;; (W) (3.9)

where
C(W) = I(W)G(W), (3.10)

K;;(W) =Gp(W) V~), (3.11)

and the "irreducible kernel" I(W) is

I(W) =Lu(W) f V23+ V18)+L23(W){Vu+ V18)

+L»(W) f Vip+ U28) (3.12)

(Again, the term "irreducible" is justifled in Sec. IV.)
Substitution of (3.5) and (3.8) in (3.9) and (3.10) then

yields our integral equations for L;; and C:

In other words, (q I L»(W) I
q') is just the two-particle T

matrix (off the energy shell), except for two extra energy
denominators. As discussed in Sec. II, Eq. (3.21) can be
solved by either the quasiparticle, Fredholm, or alge-
braic methods, providing that V12 is decent enough so
that"

(3.22)
I
w —«'/2t »I'

We will take it for granted then that L12(W), and also

L28(W) and L18(W), can be calculated without difliculty.
The next step is to construct the kernel I(W) of the

integral Eq. (3.14) for C(W). This is a trivial task; the
erst term is just

(P1P2P3 I L12(W) V28 I Pl P2 P3 )
=&(yl+P2+P3)&«12IL12(W P3/2t 8) I'«12 &

X&«28"
I U» I q»'), (3.23)

L,, (W) =K,, (W)G, (W)+K,, (W)L,, (W) (3 13) where

and
C(W) =B(W)+I(W)C(W), (3 14)

with the inhomogeneous term given by

8 (W) = I(W)[L,2 (W)+Lip(W)
+L28(W)+Gp(W)). (3.15)

«12 (m2P1 mlP2 )/(ml+m2)
=pl'+ [ml/(m, +m, )]p„

«23 = (m3p2 m2P8)/(m2+m8)
= —P3—[mp/(m2+ rn3))yl',

P2 Pl+P2 Pl P8 Pl

(3.24)

The 6rst step in solving these equations is to find the

L,; (W). The kernel of the integral equation (3.13) for

L12 1S

(PiP2P81K»(W) I yi P2 P8 )
=~(yi +P2 +P3 )&(P3—P3 )

(qul vul «12'&X,(3.16)
[W—(P3'/2») —(q»'/2t »))

where we have chosen a reference frame with

pl+P2+p3= 0 (3.17)

and again use the notation

«12—= (m2«1 ml'«2)/(ml+m2), (3.18)

t812= (mlm2)/(ml+m2)

t88= m3(ml+m2)/(ml+m2+m8) .
The solution of (3.13) will thus have the from

(3.19)

&PlP2P8 I L12(W) I Pl P2 P3 )
= ~ (Pl'+ P2'+ P8')~ (P3—P8')

x&qu I Lu(w —p82/2») I qu'), (3.2o)

with the reduced matrix element obeying the integral
equation

(qlz-(W) I q)
&ql V»l q'&

(W—q'/2p») (W—q"/2tl»)

&«I v„l q"&&q-
I
z„(w) I q &+ (3.21)

W—q'/2p „

Note that q»' and q»" mix initial and final momenta,
keeping (3.23) from being a separable kernel. The other
five terms in Eq. (3.12) for I(W) are given by formulae
which differ from (3.23) only by permutations of 1, 2, 3,
so we can regard I(W) as known. The inhomogeneous
term 8 (W) can then also be found from (3.15) by simple
quadratures.

The final step is to solve (3.14) for C(W). Again, this
may be accomplished by the quasiparticle, Fredholm, or
algebraic inethods, provided that I(W) is an L' kernel.
And now we reap the benefit of our reformulation of the
dynamical equations, for (3.23) and its five sister
equations show that I(W) is entirely free of dangerous 5

functions. That is, if pl+p2+p8 ——0, then I(W) can be
written

&P1P2P8 I I(W) I Pl'P2 P3 )
=~(yi +P2+P8 )&Piy2P3II. (W) I Pi P2 P3) (3.25)

a.nd I, ,„(1F) contains no 5 functions at all. The 5

function in (3.25) is of course innocuous, since it appears
in C(IV) and B(W), and can therefore be factored out
of (3.14). Thus I(W) has at least a chance of being an
essentially L' kernel, i.e. , of having III(W) II2( ~ where
the "center of mass Hilbert-Schmidt norm" III(W) II. is

d pld p2d p3ti(pl+p2+p3)

X d'pl'd'p2'd'p8'8 (yl'+p, '+p, ')

—I/O

x l&P,P,P, II.. (W) ly 'y 'p '&I' (326)
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Whether or not III(W) II2 is finite clearly depends on the
behavior of the interactions for large momentum, unlike
the case of the original Lippmann-Schwinger equation,
where IIK(W)lls could not possibly be finite for any
choice of interactions.

It is shown in Appendix C that III(W)II2 is finite,
provided that (3.22) holds for all V;„ i.e.,

r'3(W) —= d'qd'q'( ~,
W—q2/2p,

(ij =12, 13, 23) (3.27)
and provided that

IIK,, (w)K, , (w) II, &

(ij k = 123, 312, 231; note K;;=K;;), (—3.28)

where
II II2 is defined in general by equations like

(3.26) and (3.25). If the V;; are local potentials, then
(3.27) and (3.28) are satisfied if, and only if,

3;;=— dsrI v;;(r) I'& ~ (ij=12, 13, 23). (3.29)

So we see that I(W) is an L' kernel, and (3.14) can
therefore be solved for C(W) without difficulty, as long
as the V;; are reasonable interactions, like Vukawa po-
tentials. We could then construct the full Green's
function G(W) from (3.8); however, this is never
necessary since the L;; and Gs terms in (3.8) contain ()

functions which kill their contribution to the nontrivial
part of the three-particle S matrix, and which also
prevent the three-particle bound state poles from ap-
pearing anywhere but in C(W).

We hope that this method is practical, as well as
correct in principle. Such matters are outside the scope
of this article, but there is one special class of ap-
proximations which deserves mention here. Suppose
that we know that particles 12 and 23 form bound
states with binding energies 8» and 823 which might
for example appear respectively in the initial and Anal

states. In some cases it would then be reasonable to
make the pole approximation"

(qi2I Li2(W) I
qi2')=—412(q12)$12 ('q12 )/W+Iii,

(q» I L»(W) I
q»')—=p23(q»)l(»'(q23')/W+I~23, (3.30)

(q13 I Lis(W) I qls )=o.
(This is essentially the lowest order quasiparticle or
algebraic approximation. ) Using (3.12), (3.20), and
(3.23) gives the irreducible three-particle center-of-
mass kernel in this approximation as

I( 8123)+=q (3.32)

by any of the standard methods available for L' kernels.
If we use (3.31) in the integral equation (3.14) and
make the further assumption that overlap integrals for
lt 12 and $23 can be treated in first order, then (as shown
in Fig. 9) we get the well-known distorted wave ap-
proximation for the S matrix.

IV. THE N-PARTICLE SOLUTION: GRAPHS

We have not yet made any attempt to motivate our
method of solving three-particle problems, except by
showing that it works. Actually, the manipulations
leading to Eq. (3.14) represent one special case of a very
general approach, which will be presented in Sec. V for
E particles and in Sec. VI for still more general theories.
In order to make very clear the motivation for what we
have done for X=3, and what we shall do for general X,
we will describe our general approach here in terms of
perturbation-theoretic diagrams, although of course our
work does not rest on perturbation theory, but is rather
intended to supplant it.

The diagrammatic representation of the perturbation
series (2.6) is well known. Suppose we want to find

(4 IG(W) Itis), where C and Cs are E-Particle eigen-
states of the unperturbed Hamiltonian Ho. Any nth
order term in this matrix element is represented by a
diagram drawn according to the rules:

(1) Draw 1V horizontal "particle lines. "
(2) Draw 33 vertical wavy lines called "vertices" in a

well ordered sequence from right to left, each vertex
connecting a pair of particle lines.

(3) Associate an intermediate state with each set of
E lines lying between two vertices, by labeling each line

(a}

(c)

We are assuming local potentials for simplicity, and
have set

V3 V31+ V32 y Vi V12+ V13 ~

Knowledge of the kernel (3.31) is sufficient to allow us
to calculate three-body bound-state problems by solving
the eigenvalue equation

(P1P2P3 I Io.m. (W) I Pl P2 P3 )
=~ (q )~ *(q ')V (p' —p'')/W+I~. —p.'/2:

+li23(q 3)0 3*(q23') Vi(pi —Pi')/
(W+8, 3

—Pi'/2P, ) . (3.31)

(e) (s) (h)

"Making the same pole approximation in the Faddeev-
Lovelace three-particle equations (Ref. 3) seems to yield a model
suggested recently by R. D. Amado (to be published) rather than
the distorted wave approximation shown in Fig. 9.

FIG. 1.The sum of all graphs for the three-particle Green's function
G(W), up to second order.
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with an "internal momentum"; associate the lines
entering the diagram from the right and leaving at the
left with the states Cp and C by labeling these lines
with the momenta of the particles in these states.

The term in 6 p corresponding to a given diagram is
then calculated as the integral of a product of factors:

(1) For each state (i.e., each set of E lines between
two vertices, or before the first vertex, or after the last)
include a factor

p,2 1

IW —Ej '= W
s=l 281 '

where E is the total kinetic energy of the state.

(2) For each vertex connecting line i with line j
include a factor

&q 'I I" lq"»(y" —p") II &(y '—p ') (42)

where the pg,
"and y~~ are the momenta of the particle

lines coming in to the vertex from the right or leaving
to the left; y,, and q;; are the total and relative momenta

p' =p'+p q' =( p' — 'y')/( '+ ) (43)

(3) Integrate over all internal momenta.

As an example, we have drawn in Fig. 1 all diagrams
for three particles up to second order. The contribution
from graph (e) is

&piy2P3l «'(W)
I
pi'p2'p3') =

while that from graph (g) is

&yiy2P3I G'" (W) I
Pi'P2'P3') =

d3p /ld3p Ild3p / I

(W Ei E2 E3) (W Ei E2 —E3 )—(W —Ei E2 E3 )

+(3112 I
I 12I 1112 )b(P12 P12 )b(P3 P3 )(a12 I

l 12I 3112»(P12"—P12 )'5(P3 P3 ) I (4 4)

d3p I ld3p I ld3p I I

(W—Ei—E2—E3) (W—Ei"—E2"—E3")(W—E,'—E,' —E,')

&«q»l I'»I&»"»(y» —y»")b(P3 —P3")&e3"
I
1'»I+3')b(P23"—P»')b(yi —yi'). (4.5)

After performing aH the integrations, any term like
(4.5) arising from a connected graph will involve only
the over-all momentum-conservation 8 function, while a
term like (4.4) which arises from a disconnected graph
will contain additional 6 function factors, in this case
b(P3 —P3').

It is also possible to represent integral equations
graphically. As an example, we have displayed in Fig. 2

the Lipprnann-Schwinger equation (2.9) for the three-
body Green. 's function, with kernel E(W) given. by
(2.26). The notation is obvious, except perhaps for the
point that I/-(W) does not include the energy denomi-
nator (4.1) for the lines coming into it from the right,
since this factor is already present in G(W).

Inspection of Fig. 2 immediately reveals why E(W)
cannot possibly be a well behaved (i.e., completely
continuous) kernel, and hence why we cannot find G(W)
by direct use of the methods which work well for two-
particle problems. It isjust because the diagrams repre
sentigg E(W) are r3ot connected Aconnecte. d diagram

Fxe. 2. Graphical representation of the Lippmann-Schwinger
equation for the three-particle Green's function.

(bj G c

(cj G c + + c~c
+ ~c

FIG. 3. Cluster decomposition of the Green's functions for 2, 3,
and 4 particles. For pictorial clarity it is assumed here that the
only interactions present are U», U», and U34.

individual diagram composed of re connected compo-
nents will contain m —1 additional dangerous 8 functions
required by the conservation of the total momentum of
each cluster of connected lines. LSee Fig. 1(e) and Eq.
(4.4).j These subtotals are not conserved by the full
I3.(W), so these 8 functions can't be factored out; hence
E(W) cannot be regarded as an I.2 kernel, and we can
expect cuts in G(W) as a function of the coupling con-
stant. This dif6culty is present for any sort of inter-
actions, and cannot be eliminated by imposing restric-
tions on the V;;.

will contain no 8 functions after integrations have been
performed over internal momenta, except for one in-
nocuous factor required by the conservation of total
momentum. LSee Fig. 1(g) and Eq. (4.5).$ But an
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The problem posed at the end of Sec. II can thus be
x.eformulated: Can we find some way of rewriting the
Lippmann-Schwinger equations (2.9) as a set of integral
equations with kernels which correspond to connected
diagrams only)

The first step is to note that G(W) may itself be de-
composed into connected parts. " This is shown in
Fig. 3 for the cases %=2, 3, and 4, and expressed
formally for %=3 by Eq. (3.8); for X=1 the only con-
nected diagram is a simple line. (For pictorial clarity we
have drawn Figs. 3, 4, 6, and 7 under the assumption
that the only interactions are V», V», and V34 This is
a completely inessential restriction, and is not made
anywhere but in the figures. )

We shall now show that the connected parts of the
Green's function obey integral equations with con-
nected kernels. If a general connected diagram is bi-
sected by slicing through some intermediate or initial
state (i.e., by cutting open the E lines of the state) then
the part to the left of this state will be connected if this
state is early enough (i.e., far enough to the right) and

(a)

I

I

I

I

(b)
I

I

l

t

t

(c)
I

l

ii
I

I

FIG. 4. Some typical connected graphs for the four-particle
Green's function. The vertical dashed lines mark the critical states
of each graph; the subgraphs to the left of these lines are irre-
ducible.

disconnected if this state is late enough (i.e., far enough
to the left). We will define the critical state of any con-
nected graph as the latest (leftmost) state which we can
slice through and still leave the part of the diagram to
the left of this state connected. The critical states of four

"This cluster decomposition is the same as that used to calcu-
late virial coefRcients in classical statistical mechanics by Ursell,
Mayer, and others, and in quantum statistical mechanics by
Ilhlenbeck, Lee and Yang, and others. ) For references, see T. D.
Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959).g It is also the
same as that used to calculate many-body ground state energies
by J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (195'7), and
by N. M. Hugenholtz, Physics 23, 481 (1957). In all oi these
references the purpose of decomposing Green's functions, partition
functions, resolvents, etc. into connected parts is to isolate objects
with a simple volume dependence. This is really our purpose too,
since instead of talking about dangerous 8 functions we could have
used box normalization, with the result that the Fredholm or
quasiparticle solution of the ordinary Lippmann-Schwinger equa-
tion would give nonsense for inanite volume. LThe example at the
end oi Sec. II shows that intrnite volume is necessary for It (W) to
have a true continuous spectrum. g The cluster decomposition used
here is also the same formal device as that used in the theory of
noise to reduce the correlation function of X random variables into
its "cumulants"; see, e.g., R. Kubo, J. Math. Phys. 4, 174 (1963).

C )J
/'

l )J G lJ
Fio. 5. Structure oi the sum C(W) of all connected graphs.

~" RE = KE '~
FIG. 6. The 6nal linear integral equations for the connected

Green's functions C(W), for 2, 3, and 4 particles; these equations
are obtained by substituting Fig. 3 into Fig. 5. We are again as-
suming for pictorial clarity that pq&

——pq4 ——&13——0.

connected graphs are indicated by vertical dotted lines
in Fig. 4. A connected graph will be called irreducible if
its critical state is the initial state, as in 4(a) and (b),
and reducible if it is an intermediate state, as in 4(c) and
4(d). In general, the part of any connected graph to the
left of the critical state must be irreducible, while the
part to the right is completely unrestricted, and may not
even be connected. Thus, the sum C of all connected
graphs may be written

C(W) =I(W)G(W), (4.6)

where I(W) is the sum of all irreducible graphs and
G(W) is the sum of all graphs; this equation is shown in
Fig. 5, and given for 1V= 3 by (3.10).If we substitute for
G its decomposition (Fig. 3) into connected parts, we
obtain an integral equation for C with kernel I, shown in
Fig. 6 for E=2, 3, and 4, and given for X= 3 by (3.14).

So far, our discussion has been strongly reminiscent
of the development in relativistic theories of the Bethe-
Salpeter equation. However, there now appears a vital
difference: It is possible to give a formula of finite length
for our kernel I!Suppose we bisect any irreducible con-
nected graph in I by slicing through the earliest inter-
mediate state, i.e., just to the left of the rightmost
vertex. By definition, the part on the left must be dis-
connected. Since the whole graph is connected, this part
on the left must consist of just two connected parts
which become linked together by the rightmost vertex.
For example, the irreducible graph in Fig. 4(a) consists
of a connected graph joining particles 1, 2, and 3 linked
to the particle 4 line (itself a one-particle connected
graph) by Vs4, while Fig. 4(b) consists of a connected
graph joining particles 1 and 2 linked by V» to a con-
nected graph joining particles 3 and 4. %e see then that
the sum I of all irreducible connected graphs consists of a
finite number of parts, in each of which a pair of con-
nected subsystem Green's functions are linked together
by a single initial interaction. The equations for I are
given in Fig. 7, for the cases iV=2, 3, 4, and presented
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(a)

(bj + ci

(cj I: I

Fro. 7. The formulas for the irreducible kernels I(W) appearing
in the integral equations for C(W), for 2, 3, and 4 particles. We
again assume that V14——V24

——V13=0. Observe the crucial prop-
erty, that all graphs for each I(W) are connected and hence free
of dangerous 5 functions.

formally for X=3 in Eq. (3.12).
It is therefore possible to solve S-particle problems in

a completely systematic and straightforward manner,
by induction on X. We must 6rst solve for the two-
particle connected Green's function, using the ordinary
Lippmann-Schwinger integral equation )Figs. 6(a) and
7(a)]. This is then used to construct the three-particle
irreducible kernel in Fig. 7(b) and the inhomogeneous
terms in the integral equation in 6(b). The kernel is
connected and hence (as we have seen for %=3) com-

pletely continuous, so 6(b) can be solved by any of the
standard methods used in two-particle problems, e.g. ,
the quasiparticle, Fredholm, or algebraic methods. And
so on.

These graphical considerations lead very naturally to
an understanding of the famous distorted-wave ap-
proximation. Suppose that the initial state consists of
two bound systems X and F consisting, respectively, of
particles 1, 2, , Xx and Xx+1, , 1V. Suppose also
that the final state consists of two bound systems X' and
I", composed of particles 1, 2, Xx and Xx+1,

~, 1V. (In the simplest case of single particle scattering
by a bound system we would have Xx=Ex'=1, while
for single particle rearrangement scattering we would
have Xx= 1, E» ——E—1.) These bound states give rise
to poles in the connected Green's functions C(W) for
these four sets of particles. It is not unreasonable to
guess that these poles will dominate the irreducible

kernel I(W), leading to the approximation shown in
Fig. 8, where we only keep those terms in I(W) con-
structed out of Cx and Cy or Cx and Cy' and represent
these functions by their pole contributions, with the
residues given as usual by the wave functions of the
various bound systems. )For X=3, see Eq. (3.31).) In
order to calculate the Smatrix it is necessary to take the
matrix element of the X-particle kernel C(W) (stripped
of final and initial energy denominators) between fx fr
and it xPr. If we assume that the overlap between these
two configurations is small then the S matrix will be
given approximately by the sum shown in Fig. 9. The
"ladders" on right and left just serve to correct the
plane-wave relative motion of X, F and X'I"' into wave
functions distorted by the effective potentials Vx&
a,nd V~ y.

V. THE N-PARTICLE SOLUTION

We will now present the exact integral equations
suggested by the diagrammatic considerations of the
last section.

X X' ~ ~ X X

y iW y
Y Y Y Y

X X' X X X X

y - y y - y
Y Y' Y Y' Y Y Y Y

+ j I +

FIG. 9. The distorted wave approximation for the S matrix of
the process X+V —+ X'+I"', derived by stringing together any
number of I s from the first line of Fig. 8, and then continuing with
a string of I's from the second line of Fig. 8, with a single overlap
integral inbetween. Again, the notation + ~ ~ ~ indicates a few addi-
tional terms arising from other V;; that can link the two sub-
systems.

In order to give a formal statement of the decomposi-
tion of G(W) into its connected parts, it is necessary
first to define the Green's function Gs(W) for any
subsystem S consisting of EB~Sparticles, as

G.(W) =LW-a.g-, (5.1)

X X

~l

Y
l l

FIG. 8. The "pole approximation" for the irreducible kernel
I(S'). We only keep those terms arising from simultaneous bound
states of subsystems X, F' or X'F'. The horizontal wavy lines
represent the "propagators" PW+Bg ', and the small semicircles
indicate the wave functions of the various bound subsystems. The
notation + ~ ~ ~ means that there are a few other terms arising from
difFerent ways that interactions V;~ can link the two subsystems.

where H8 is the Hamiltonian of the subsystem. For in-
stance, the Hamiltonian for the subsystem consisting of
just particle i is

H;=p s/2m;, (5.2)

while the Hamiltonian for the subsystem consisting of
particles i a,nd j is

H~g H;+H,+Vg= H;;, —— (5.3)

and so on. In general, any opera, tor A q labeled by some
subsystem S will act only in the momenta of the E&
particles in S, and its matrix elements will be diagonal
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fA s,Bs"]=0. (5.6)

If we used perturbation theory to calculate Gs(W),
then each term would be represented by a graph with
Es particle lines, according to the same rules as in
Sec. IV. We want our formal definition of the connected
part Cs(W) of Gs(W) to correspond to the sum of all
connected graphs for Gs(W), so that the total G(W) is
made up out of the Cs(W) as shown in Fig. 3. But this
requires us to know how to combine graphs for subsys-
terns 5', S",etc. into larger disconnected graphs for the
subsystem S'+S"+. . For cV= 3 there is no problem,
since the addition of a single loose line to a connected
two-particle graph can be accomplished I as shown in
Eq. (3.20)] by supplying a b function, and shifting the
8' argument by the relative kinetic energy of the loose
particle. However, for X~4 it becomes necessary also to
combine two or iriore nontrivial connected graphs, as in
the third term of Fig. 3. The work of Hugenholtz" in
many-body perturbation theory has shown that this
must be done by performing a convolution on their 8"
variables. Our work in this section will be independent
of perturbative expansions, but we can see from the
Hugenholtz theorem that we had better make use of
convolutions in defining the cluster decomposition of
G(W) into its connected components.

For our present purposes, we can regard the convolu-
tion f*g as a purely algebraic operation. If f(W) and

g(W) are operator functions of the form

f(W)=Q u„LW—A ] '

a(W)=& bpLW Bp] '—(5 7)

where the a and by are c numbers, and where the A and

Bp are operators such that

(5.8))A.,Bp]=0,

in all other momenta. For example,

&pt. .p~ I
A'I p

' . p~')

=&p'IA.:Ip ) II b(p —p '), (5.4)

&p
. pvlA, jlpt'. p~')

=&p'p;IA', lp, 'p, ') ll b(pk —pk'). (5.5)
igij

If two subsystems S' and S"are dhsj oint (i.e., have no
particles in common), then any two operators labeled
with S' and 5" will corrrmute:

convolution is bilinear, associative, and commutative:

f(W)*Lag(W) pbbs(W)]
=- jJf (W)*g (W)+ b f (W)*h, (W), (5.10)

f(W)*kg(W)*h(W)]= I f(W)*g(W)] h(W), (5»)

f(W)+g(W) =a(W)+f(W). (5.12)

The Fourier transform of f*g is the ordinary product of
the Fourier transforms of f and g, so it would be possible
to avoid convolutions altogether by working in a time-
dependent formalism; this is done in Sec. VI.

The corkeected part Cs(W) of Gs(W) can now be
defined implicitly by"

xs
G, (W)= P-

=i m!

G,,= C,,+C,*C, , (5.15)

G', k =C,,k+C,j+Ck+C'k~C,
+C, k*C;+C,*C,aCk, (5.16)

G'jkt=C kt+C jk*"Cl+Cj'l*Ck+C''klaCj+CjklkC

+C'i*Ckt+C'kaCj t+C'taC, k

+Cij+Ck@CL+Cik+Cj@C l+Cil@Cj+Ck

+Cjk*CPC t+C~ t*C'+Ck+Ck PC'+C~

+C,aC;*Ck*Ct. (5.17)

Here i, j, 0, I, are any unequal particle labels be-
tween 1 and S, and we have omitted the S' arguments.
Equations (5.15)—(5.17) correspond to Fig. 5; also

(5.15) and (5.16) correspond to (3.5) and (3.8), since

I-g2 ——Cg2*C3, etc.
These equations can be solved successively, yielding

explicit definitions for the C s .

X Zisl Cs (W)*Cs (W)* *Cs (W), (5.13)
SI ~ ~ ~ Spg

where the sum +is' is over all ways of splitting the
system 5 into m disjoint subsystems 5&, ~ ~ ~, 5, whose
union is S. The sum receives equal contributions from
mz terms differing only in the permutations of the C
factors Lsee (5.12)], so we have supplied a factor 1/m!
to keep the counting correct. We will see that the Cs
defined by (5.13) are indeed of the form (5.7).

For subsystems S containing up to four particles, the
cluster-decomposition formula (5.13) reads

G,=C;,

then we define their convolution as

f(W)*g(W)—=Q jk bp[W A Bp] '. (5.9)— —

Note that f+g is again an operator of the form (5.7). The

"N. M. Hugenholtz, Physica 23, 481 (1957).

C, (W)=—I W—H;] ',

C,, (W) —= I-W-H. ,]- -I-W—H, —H,]-,
C;; k(W) =P4' H;; k] ' $W H,, —Hk] —'—— —

t! W H'k Hj] ' LW—Hj—k H'—] '—— —
+2$W H, H, Hp] '—— —

(5.18)

(5.19)

(5.20)
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the sum again being taken over all ways of partitioning
S.Thus the coefficients 1, —1, 2, —6 appearing in (5.18)—
(5.24) are just the first, few values of (—)™1(m—1)!
As promised, the Cs(W) do turn out to be of the
form (5.7).

Now to dynamics. Figure 7 suggests that we should
define our irreducible kernel Is(W) for Xs~ 2 as

Is(W)= 22' —'Cs (W)+Cs" (W)Vs s" (5.23)
S'Sll

The sum runs over all ways of splitting the system. S
into a pair of disjoint subsystems S' and S",and Vs s
is the sum of all V;; with particle i in S and particle j
in S",or vice versa; in other words, Vs s is the sum of
all interactions which can link graphs for Cs and Cs"
into a connected graph for Cs. For Vs=2, 3, and 4,
Eq. (5.23) gives

I;,=[C;*C;]V;;, — (5.24)

I...—=[c,,*c.](v,,+v;,)+[c,.*c;](v;,+v„)
+[Cl~+C'7(Vl'+V"), (5 25)

Igkt= [C' k*cl](v l+ V l+ AVE)+ [ .
ACE* kC]

X (V;g+ V;g+ V&u)+[C;gg*c](Vg+ Vp, +Vi )
+[ Cgg* C]( ,V, +Vs„+V(;)

+[C@*cag(v;a+V;i+ V;a+ V;r)

y[c;,*c;,](v;;+v, ,+v„+v„)
+[c;t*c;k](v;;+V;A+ V l;+ V lk) (5.26).

We will supplement this with a definition for the case
&S=&:

I;=—1. (5.27)

With this definition of Is(W), it is possible to show
that

Cs(W) =Is(W)Gs(W) (5 28)

Ca~i= [—W H—';a~] ' [—W H—';~ H—i] '

[W— H—;;g H—g] ' [—W H—;t, ( H—;]
—[W—H, ~~

—H;] '—[W—H,;—H~~] '
[W—H;y—H; (7—' [W—H;(—H;g,—] '

+2[W Hg; —Hp —Hi]—'+2[W H;y—
—H —H (] '+2[W —H (

—H; —H p7
'

+2[W H, y
—H, —H—(] '+2[W—H, )

H, H—g,] '—+2[W—
Hp( —H, H—;] '—

6[W—H; —H; —Hs —Hr] —'. (5.21)

It can be shown that in general

m—I

c (w)—= 2
m=1 m

[W Hs, Hs—, —IIs—]—', (5.22)
SI ~ ~ ~ Sm

&[2 (u' —1'')7 II ~[1'—v''],
i+s i+s

(5.32)

which can be factored out of (5.29). This can also be
proved formally from (5.23) by induction on Xs. So
Is(W) will be an essentially L' kernel if the interactions
V;; are nice enough. We will not make any attempt here
to decide just how nice they have to be, but our work in
Secs. II and III suggests strongly that for local po-
tentials the necessary and sufhcient condition for all
Is(W) to be L' is that

theory (see Fig. 5); it will also be proved in Sec. VI in a
more general context. The reader may amuse himself for
hours by verifying directly that (5.26) and (5.21) do
satisfy (5.28).

Substitution of the cluster-decomposition formula
(5.13) for Gs(W) in (5.28) now gives the integral
equation for Cs.

Cs(W) =Bs(W)+Is(W)Cs(W), (5 29)
where

&8

Bs(W) = Is(W) 2—
~=2 m!

X P Cs~(W)* *Cs„(W). (5 30)
SI ~ ~ S~

Equation (5.29) corresponds to Fig. 6 and to Eq. (3.14).
Suppose now that we have calculated the Cs (W) for

all subsystems S'QS with Es (Es.The kernel Is (W)
and the inhomogeneous term Bs(W) can then be ob-
tained from (5.23) and (5.30), using the convolution
integral

Cs (W)ecs" (W)= Cs (s)Cs" (W—s)ds, (5.31)
27ri

the contour running counterclockwise around the singu-
larities of Cs (s) on the real s axis. Alternatively we
could calculate the Cs in a time-dependent formalism
and just multiply them, as shown in Sec. VI. (We have
also developed soluble integral equations for the
Cs+Cs + themselves. ) Thus, as already noted in
Sec. IV, it is safe to regard (5.29) as a sequence of linear
integral equations for successively larger systems, with
"known" kernels and inhomogeneous terms. The only
question is whether Is(W) is an L' kernel (or at least
completely continuous), so that (5.29) can be solved by
the quasiparticle, Fredholm, or algebraic methods dis-
cussed in Sec. II.

It is easy to see that Is(W) has at least a chance to be
L', since it was speci6cally constructed to be -free of
dangerous 5 functions. Inspection of Figs, 3 and 7 shows
that the only 8 functions in matrix elements of Is(W)
and of Cs(W) are the innocuous factors

We will not prove this here, as it has already been
proved for E=3 [note that (3.12) and (3.10) correspond
to (5.25) and (5.28)7 and for general Ã in perturbation for alii, j.

d'r
I
V,"(r)12(~
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Thus for well-behaved interactions there is no ob-
stacle to a systematic calculation of the connected
Green's function C&(W) for any system S. We can then
obtain the total Green's function Ga(W) from (5.13),
but as already noted for Jqq=3, it is Cs(W) that we
really want to know.

A very simple way of summarizing what we have ac-
complished is just to say that if each Is (W) is replaced
by )kBIq(W), then the Green's function G(W) will be
meromorphic in each of the )ka. The cuts in G(W) as a
function of the coupling constant only arise if we are
foolish enough to identify all the X& with a single com-
plex variable ).

VI. THE GENERAL SOLUTION

We now turn to a far more general sort of theory than
has concerned us till now. Our assumptions in this
section are:

(n) The physical Hilbert space is spanned by a com-
plete orthonormal set of "bare particle" states

G(t) —=exp (—iHt) . (6.4)

If we can find G(t), then G(W) and the 5 matrix can be
obtained from

here is (y), and it will not actually be used until the end
of this section. (However, for the sake of simplicity we
will throughout make use of one of its consequences,
that O'IO)=0. It would be easy to avoid even this as-
sumption during most of the discussion, but at the cost
of some tedious algebraic complexities. ) We have left
room in these assumptions for creation and annihilation
processes, because we want to be able to treat an
interaction like d ~ p+e as if the deuteron were ele-

mentary, and also because it brings us closer in spirit to
the relativistic case.

Our task as before is to calculate the Green's function
for a given H. However, instead of working with G(W)—=

I W—B$ ', we shall instead use a time-dependent
formalism and try to calculate

Io& Ipi& Ipips& " Ipips" p~& ", (61) G(W) = —i e'~'G(t) dt, Im W) 0,
where p now denotes the type of particle as well as its
momentum and spin. These states are appropriately
syrnmetrized or antisymmetrized, as required by the
Bose or Fermi statistics of the various particles. With-
out loss of generality the states (6.1) can be regarded as
built up from the bare vacuum

I
0) in the usual way by

the action of creation operators at(p).
(P) The Hamiltonian II is some given linear operator

~'(pi+" +P.r—e—. —tl ) (6.3)

This requirement is indispensable to our method of
calculating Green's functions, and is also necessary if
the S matrix is to be physically sensible. "

(y) There is a conserved additive quantum number
A which takes only positive integer values for the vari-
ous particles, and of course is zero for the bare vacuum.
Thus there are no antiparticles or holes. In our previous
work

I
based on the Hamiltonian (2.1)$, A was just the

number of particles, but we now allow for creation and
annihilation processes by allowing particles with A = 2,
3 ~ as well as 2 = 1.

The only speci6cally nonrelativistic assumption made

' E. H. Wichmann and J. H. Crichton, University of California
Lawrence Radiation Laboratory Report No.i UCRL-10860 (un-
published), and to be published.

h(pi p q q )~'(pi) "~t(p.)
St

X~(qi) rt(qi)dPi. .dqi e (6.2)

(The "integrals" here include sums over spins and
particle types. ) Of course any linear operator on the
states (6.1) can be written in this form, but we shall
make the speci6c assumption that each form factor
h(pi .p,qi ~ qi) is free of all 8 functions, except for an
over-all momentum conservation factor

0
c'w'G(t)dt, ImW&0. (6.5)

The point of adopting the time-dependent approach is
the same here as in Goldstone's development of many-
body perturbation theory, "i.e., it eliminates the neces-
sity of performing convolutions of the lV's. The reader
who prefers to avoid a time-dependent formalism may
easily translate all the equations of this section back
into the 8" language used till now.

In order to separate the connected part of G(t), we
shall first have to introduce a new combinatorial tool.
For any pair of linear operators Qi and Qs, we define the
disconnected product QiiglQs as a linear operator with
matrix elements

"J.Goldstone, Proc. Roy. Soc. (London) A259s 267 (1957).

(pi "p~lQiQslqi" q~)
=-z r. "'~(p' "p- IQ. lq* q-*)

X(p,- "p~ IQslqt*' q~**& (66)

The sum gt~& is over all 2~ ways of splitting the 1V

initial indices 1, 2, , Ã into subsets 1~, 2*, , S*
and 1*~, 2**, , 1V**,with JtJ*+X~*=Xand 0&X*

ai&&. For each i&&a Q&e& contains (hr ) terms Like-.
wise, Qt~& runs over all 2~ splits of 1 M into
1' M' and 1" M". The sign factor is +1 or —1

according to whether the two permutations 1 S~
X*1"* S*' and 1 M~ 1'. -M'1". M"

contain altogether an even or an odd number of
interchanges of identical fermions.

The disconnected product is bilinear, associative, and
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—(Qi8Q2) =Qi8Q2+Qi8Q2
dt

(6.12)

The disconnected product may be used to give a very
general definition of the connected part C(t) of the
Green's function G(t), by stating the general cluster-
decornposition formula"

commutative:

( Q+ Q)Q =- (Q Q)+ (Q Q. ) (67)

(Q Q. )Q =Q (Q Q), (6.8)

Q18Q2 Q28Q1 ~ (6 9)

LStrictly speaking, (5.9) holds only if Qi and Q2 have no
matrix elements between states which differ by an odd
number of Fermions, but this will always be the case for
G(t) and all other operators to be considered here. $
Also, if a(p) and ot(p) are any destruction and creation
operators,

~i(p) (Q18Q2) =~(p)Qi8Q2+Q, 8ii(p)Q2, (6.10)

(Q.Q. )"(p) =Q "(p)8Q.+Q Q"'(p). (6.»)
H Qi and Q2 are time-dependent then

among m) e C(t)'s without skipping some of the C(t)'s.
A theory with a Hamiltonian like (2.1)—(2.3) will thus
always have only Ii(t) and I2(t) nonzero, while a
relativistic Yukawa interaction could contribute also to
I3(t), and a relativistic Fermi interaction would yield a
nonzero Ii(t), I2(t), I&(t), and I4(t) The. I (t) may be
regarded as corresponding to graphs for the Green's
function, in which m connected subgraphs are linked
together on the right by a single interaction (which
must obviously involve at least nz lines); in particular I2
corresponds to Fig. 7 and to Eq. (5.23).

This definition is not very convenient for calculating
or using the I„,(t). Instead, we may note that

I,(t) =C(t)H,

I,(t) =-', Ct'~ (t)H —C(t)8C(t)H,

(61g)

(6.19)

1.—C'"'(t)H=I (t)+ g C™"I(t)8I,(t) (6.17)
m! ~=& (m —r)!

since the creation operators in II must be distributed
by (6.11), either among all nz C(t)'s, or among only
r(m of them. Equation (6.17) can be successively
solved for the I (t), giving

C[m] (t)
G(t) =A,+P (6.13)

Is(t) =-',C"'(t)H+-'C~'~ (t) 8C(t)FI
—-,'c(t) 8C~'i (t)H, (6.2o)

m=1

where Ao is the projection operator on the bare vacuum

A,—= lo)(ol

and C'"'(t) is the nz fold disco-nnected product,

c"'(t)=c(t) c"'(t)—=c(t)c(t)
Equation (6.13) is a direct generalization of (5.13).

Now, on to dynamics. Schrodinger's equation for
G(t) is

and so on. These equations may be regarded as the
formal definition of the I (t), replacing the discussion of
the previous paragraph.

Returning to Schrodinger's equation in the form
(6.15), we see immediately by summing (6.17) from
m= 1 to ~, that

00

i C(t)+C(t)8 P —Ct ~(t)
m=l gZ!

iC(t) =G(t)H. (6.14)
m-l y~!m=1

= Z I-(t)+ 2 —C'"'(t) Z I-(t)
Differentiation of the cluster-decomposition formula
(6.13) by use of the rule (6.12) allows us to write this as and, therefore,

iIC(t)+C(t)8 P C~ "~(t) = P Ci "~(t)H. (6—.15)
nz=l ~! m=l ygI

i&(t)= 2 I (t).
m=1

(6.21)

Consider any particular term (1/nz!)C' '(t)H. By suc-
cessive use of (6.11) it is possible to distribute the crea-
tion operators in H Lsee Eq. (6.2)j among the individual
factors C(t). We shall define the irreducible kernel I (t)
as that part of (1/m!)C'"'(t)H in which one or more
creation operators are thus distributed by (6.11) to each
of the nz factors C(t). In general, if no term in the
Hamiltonian contains more than n creation operators
then

I (t)=0, (m&n) (6.16)

for it is not possible to distribute ~ m creation operators

dp lp)&p I
(6.22)

Before going on to solve (6.21) and (6.22), we will

pause here to prove that C(t) and the I (t) are cori,

sec/ed, in the sense that any matrix element of any of
these operators is free of all 6 functions, except for a

We also need an initial condition. Since G(0) is 1, C(0)
must be the connected part of the unit operator. It can
be seen either intuitively, or by inspection of (6.13), that
this is just the projection operator Al on all one-particle
states:
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single over-all factor required by momentum conserva-
tion. Equation (6.22) shows instantly that C(t) is con-
nected at t=0 Th. us if we can prove that the I (t) are
connected whenever C(t) is connected, then (6.21) will
allow us to conclude that I (t) and C(t) are connected
for all t. So suppose C(t) is connected. Using assumption
(hi) and the connectivity of C (t), it is easy to see that the
only way that any term of C& '(t)H can conserve the
total momentum of some proper subset of particles is if
these particles (or all the other particles) are not acted
on by H, but instead are acted on by one or more C(t)'s
in the disconnected product which act on no other
particles. But according to its original definition, I (t)
is just that part of C' '(h)H/m! in which this doesn' t
happen, and therefore is connected whenever C(t) is;
thus, I (t) and C(t) are connected (in the sense of being
free of dangerous 8 functions) for all t.

In solving (6.21) and (6.22) it will be very convenient
to define a total irreducible kernel by

where C(t; A') has nonzero matrix elements only be-
tween states which both have the value A' for the
conserved quantity A. The same decomposition holds
for B(t), I(t), G(t), A. i, etc. We can then write our basic
equations as:

C(t; A) =B(t;A) i —I(t—h'; A)C(t'; A)Ct', (6.29)

A

B(t; A) =A, (A) —i P P&» — I(t—h', A)
m=2 A1 ~ ~ Appl, yg!

XC(t'; Ai) C(t'; Ap) g
SC(t'; A )Ct', (6.30)

I(t; A) =A, (A)H(A)+I, (h; A)+ +I„(t;A), (6.31)

I,(t;A)=+&»{-,'[C(t; A,)gC(h A,)jH(A)
A1A2

—C(t) Ai) C(t; Ap)H(A, )}) (6.32)

I(t) =AiH+Ip(t)+ .+I„(t), (6 23) I,(t; A) = P&» {i[C(t;A,)gC(h; A,) @C(h; A,)j
A1A283

so that (6.21) becomes

iC(t) = {C(t)—i1,}H+I(t) . (6.24)

[The term A.iH is put in I(t) because the Hamiltonian
itself acts as an irreducible graph in one-particle states. ]
Now (6.22) and (6.24) yield

or

C(t) =A, —i I(t')G(t —t')Ch'

C(t) =i1,—i I(t—h')G(t')Ch', (6.25)

where

C(t) =B(t)—i I(t—t')C(t')Ch', (6.26)

corresponding to Fig. 5 and to Eq. (5.28).
We can obtain an integral equation for C(t) (corre-

sponding to Fig. 6) by substituting the cluster-de-
composition formula for G(t') in (6.25):

XH(A)+-'C(t; A i) SC(t; A p)

C(t; Ap)H(Ap) ——,'C(t; Ai)

3[C(t; Ap) g C(t I A p) jH(Ap+Ap)} . (6.33)

Here Ai(A') is the projection operator on a l one-
particle states with A =A'. The sum g&"i runs over all
integers A ~, A2, ~ ~, A whose sum is A; the individual
A; thus take values from 1 to A —m+1. [Formulae for
I4, etc. can easily be obtained from (6.17), but it is very
unusual to have n&4, or even m=3, in nonrelativistic
theories. j

Our prograin for calculating C(t) is now rather obvi-
ous. If we have calculated C(t; A') for all A'(A —1
then (6.30)—(6.33) allow us to calculate B(t;A) and
I(t; A) by straightforward integrations. Equation (6.29)
is then an honest linear integral equation for C(t; A)
(with known kernel and inhomogeneous part) whose
solution is discussed below. Furthermore, it is trivial to
start the program going, since

I(t; 1)=hi(1)Hp(1), B(t; 1)=A, (1) (6.34)

m=2 yg!
I(t t )C (t )Ct (6 27) and, therefore,

C(t)= Q C(t; A'), (6.28)

Ilut the kernel I(t) and inhomogeneous term B(t) de
pend on C(t), so (6.26) is thoroughly nonlinear. In order
to make progress toward a workable program for
actually calculating C(t), it will be necessary at this
point to make essential use of assumption (y) for the
6rst time.

The chief consequence of A conservation is that it
allows us to break the problem into sectors with

=-1, 2, ~ ~ by writing

C(t; 1)=xi(1) exp{—i[Hp(1)tj'}, (6.35)

where IIp(1) is just the kinetic energy of all particles
with A=1.

The only remaining question then, is whether (6.29)
can be solved for C if we know 8 and I.This can best be
answered by writing it in the 8' representation:

C(W; A) =B(W; A)+I(W; A)C(W; A), (6.30)

where C(W; A), B(W; A), and I(W; A) are related to
the corresponding time-dependent quantities by formu-
las like (6.5). We have seen in Sec. II that such linear
integral equations can always be solved by a variety of
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straightforward methods if the kernel I(W; A) is I.', or
at least completely continuous. But we have already
noted that I(t; A), and hence I(W; A), is connected, in
the sense that its Inatrix elements contain no b functions
except for the ones required by over-all momentum
conservation. Our experience with the two- and three-
particle problems indicates that I(W; A) will therefore
be an L' kernel, under some reasonable restrictions on
the interaction. The integral equation (6.30) can thus
be solved by either the quasiparticle, Fredholm, or
algebraic methods, and C(t; A) then determined by

C(t; A) =— dWC(W A)e " '

2xj
(6.31)

the contour being taken counterclockwise about the
singularities of C(W; A) on the real W axis. Presumably
(6.29) could also be solved directly, without this detour
through the 8" representation.

VII. CONCLUSIONS

The nonrelativistic multiparticle scattering problem
has been reduced to a set of linear integral equations
with I-' kernels. We have been content to list the
methods (quasiparticle, Fredholm, algebraic) by which
such equations can be solved, but it may be useful in
closing to say a few more words about the quasiparticle
Inethod.

A bound state of an entire system S (or for a par-
ticular value of A) occurs when the connected Green's
function for that 8 (or that A) has a pole. Such poles
arise when one of the eigenvalues of the corresponding
irreducible kernel passes unity. LSee Eq. (3.14), or
Fig. 6, or Eq. (5.29), or Eq. (6.30).j If an eigenvalue

passes through the unit circle at a complex value close
to unity, we have a resonance instead of a bound state.
More generally, we speak of a composite particle being
present for each eigenvalue that ever gets outside the
unit circle. (See paper B for a full discussion of these
matters in the two-particle case. ) Since each irreducible
kernel is completely continuous, the integral equation
for any connected Green's function can be solved by a
simple perturbative expansion in powers of the corre-
sponding irreducible kernel, providing that there are no
composite particles for the entire corresponding system
(or the corresponding A value).

If there is a composite particle in some system (or
with some value of A), then it is always possible to
rewrite the theory so that the composite particle is re-
placed by a fictitious elementary particle, or quasi-
particle. Th.e details will be discussed in our next paper,
but the essential points are already given in Sec. II.
[Just replace E(W) by I(W) in Eqs. (2.11)—(2.18).$ If
every composite particle is eliminated in this way for all
subsystems of the system of interest (or for all A values

up to and including the A value of interest), then every
one of our integral equations can be solved by simple
iteration.

Our work in this paper does not provide even a solu-
tion in principle of the true many-body problem, for as
E—+~ or A —&00 the number of equations also becomes
indnite. This problem can be hidden by using hole
theory, but the equations are then as nonlinear as in
relativistic problems.

APPENDIX A: THE ANALYTIC FOUNDATIONS
OF PERTURBATION THEORY

In this Appendix we offer a rigorous account of the
mathematics needed for a general understanding of the
convergence or divergence of perturbative expansions. "
Most of the material below may be found in the mathe-
matical literature on functional analysis, ' though not
perhaps collected in a form suitable for immediate
application to perturbation theory.

We consider a linear integral equation of the form

FLX3=E+)EFPj=Z+'AFPhE, (A1)

or equivalently

(1—XE)(1+),FP g) = (1+ELFDt]) (1—)E)= 1. (A1')

Here the kernel E is a general linear operator defined
everywhere on a Hilbert space K, and the coupling
constant ), is a complex variable. For the present, we
don't assume that E is Hermitian, L', or even bounded,
or that X is a separable space. (The I.ippmann-
Schwinger equation for multiparticle scattering theory
may be cast in this form, with

F= — V, E=- V,8'—H S"—Hp
(A2)

The integral equation resulting from the introduction of
a quasiparticle is also of the form (A1), with a modified
kernel. Also, any linear integral equation with kernel
)E can be solved immediately if we know FP.].) Our
main question is: When can we solve (A1) by the

"A less self-contained treatment was presented in Sec. III of
paper B. Our discussion there was limited to I.' (or "Hilbert-
Schmidt" ) kernels.

'r Some books which have been useful include (in order of in-
creasing abstractness): B. Friedman, Princip/es and Techniques of
Applied Matttematics (John Wiley, New York, 1956); F. Riesz
and B. Sz-Nagy, Functional Ana/ysis (Frederick Ungar, New
York, 1955); N. I. Akhiezer and I. M. Glazman, Theory of Linear
Operators in Hitbert SPace (Frederick Ungar, New York, 1961);
E. Hille, Functional Analysis and Semi Groups (Americ-an Mathe-
matical Society, New York, 1948). Our treatment is closest to
that of Hille, except for our discussion of completely continuous
kernels. (I am told that there is a second edition, by Hille and
Phillips, which goes somewhat further than the first. )
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"Born" series

PP.]=Z+XZP+&PZPq "P (A3)

given within this circle by its Taylor series expansion

II+II—= [&+I+&)'" (A5)

Boundedness of Q allows us to define a finite quantity

IIQII as the least upper bound:

IIQII =—lubIIQ+II/II+II

It will be understood that to be bounded an operator
must be de6ned over the whole Hilbert space K.

If an operator Q[)] is analytic for all Xg K), then it
follows by the rules of ordinary analysis that all deriva-
tives of any matrix element (C

I QP,]I
4) will be analytic

in S, and that these derivatives can be used I;o con-
struct a Taylor series expansion of the muIrix element
about any point Xp+$, which will converge in any
circle about ) p which lies entirely in S. The following
fundamental theorem shows that these results apply
also to the operator Qp, ] itself, provided that it is
bounded as well as analytic in S.

Theorem 1 If an opera. tor QP,] is bounded and
analytic for ) in a finite open region S, then it has
"derivatives" Q&"&[l&.] which are themselves bounded
analytic operators for XQ S, and which satisfy

d"

For finite matrices the answer is very simple and well
known"; the series (A3) provides a solution of (A1) if,
and only if, X is less in absolute value than the reciprocal
of any eigenvalue of E. We will see that this is always,
more or less, the right answer for a general kernel E,
but that it is strictly valid only for the special class of
"completely continuous" operators.

We begin by defining the two operator properties that
will be indispensable to our discussion. After proving a
theorem about a general operator function QP,], we
will then return to F[X].

Defililioe 1. A general operator Q[»] which depends
on a complex parameter X is said to be arIalytic within a
6nite open region S of the complex X plane if each 6xed
matrix element (4 I Q[k] I @& is an analytic function of X

for X&X).
Definitio Z. A general operator Q is said to be

boleded if there is a number M such that for any state
vector 4:

(A4)

where the length II%'ll of any state vector 4 is defined as
usual as

(AS)

This series converges meiformty, in the sense that

IIR,p]ll ~ 0 for p ~~,
where R~ is the remainder of the series (AS), i.e.,

(A9)

~ (x—zp)"
R,[X]=—QP.]—P Q&-&[Xp]. (A1O)

n=p g!

Its convergence is absolute, in the sense that

(A11)

Proof. At any point X=l&,p where QP.] is analytic, the
right-hand side of (A7) will exist and define a bilinear
functional of C and 0' (i.e., linear in 4 and antilinea, r
in C). To show that it is also a bounded functional, we
note by Cauchy's theorem that

dN &c IQ[]1~&
&c'I QP pll +&=

dy n 2n.z a (s—X)" '

where C is any circle ls—Apl =r whose interior and
circumference lie entirely in S. The matrix element

(4 I
Q[s]I%'& is an analytic and hence bounded function

of s on C which satis6es the Schwarz inequality

l&~IQ[) l~&l = ll~ll ll~ll IIQ[]ll

It follows" then that this matrix element is uniformly
bounded, i.e., that there is a number IIQ(C) II such that

1&@I Q[s] I
e&

I

~ IIC'll Ilail IIQ(C& II (A13)

for all s on C. Hence, by applying (A13) to (A12) we get

(C I Q[l p] I +) ~—IIQ(c) fl IIC'll II+II
dip" rn

and we repeat that r is any positive number such that
s+$ for ls—Apl ~r. Now that weknow that (A12) is a
bounded bilinear functional, we may make use of a
corollary" of the Riesz representation theorem to con-
clude that there must actually exist an operator Q'"&P.]
satisfying (A7), and having a bound

IIQ'"&P]ll ~—IIQ(c&ll. (AN)

for any 6xed state vectors C and C. Furthermore, if the
circle Il&,

—Apl gr lies entirely within K), then QP] is
That Q&"&[l&.] is analytic for ) QS follows trivially
from (A7).

' See, e.g., H. W. Turnbull and A. C. Aitken, An Introduction
to the Theory of Canonical Matrices {Dover Publications, Inc. ,
New York, 1961), p. 160.

'9 See, e.g. , E. Hille, Ref. 17, Theorems 2.12.3 and 2.12.2 {in that
order)."See, e.g. , N. I. Akhiezer and I. M. Glazman, Ref. 17, p. 42.
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To prove the validity of Taylor's expansion, we again
make use of Cauchy's theorem, which gives

.II~.L&jll~ (-)IIQ(&)ll (A15)

Since r was chosen to be greater than IX—Xol, result
(A9) follows nnmediately. The absolute convergence
statement (A11) follows immediately from (A14) .
Q.E.D.

It should perhaps be emphasized that the uniform
convergence result (A9) implies" both strorlg con-
vergence, i.e.,

ll&nP)+II ~ o (P ~",any +) (A16)

and leuk convergence, i.e.,

where E„P.) is the Taylor series' remainder defined by
(A10), and C is again any circle Is—Xol =r whose in-
terior and circumference lie entirely in S, but chosen so
that X is inside it, i.e., IX—),ol (r.Applying (A13) again
we get

X—Xo ~'t rq
I(c I~.[li)I+&I ~ —

I

—IIIQ(c)ll II+II II+II,
&di

where d is the minimum distance from X to C. This
implies" that R~P) is bounded, with

and so F,P,]=FbP,). (For the case X=O see below. )
Therefore, to prove that FP ]is analytic in the resolvent
set we need only construct a power series that satisfies
(A1). This is done in the next theorem.

Theorem Z. If a point ) p is in the resolvent set, then so
are at least all points in the circle

Il —l ol &IIF[l o)II
' (A18)

We must show that the sum converges, and that it
actually is equal to FP ].Define the partial sums as

g [X]=P (X—X)-F[Z]-+' (A20)

and note that for p)(l

I(c'IE. P)l+&—(c Z. [l ]I+&I

=
I P (x—z,)-(c IF[a,]-+'Ie&l

Throughout the resolvent set FP.) is analytic as well as
bounded, with derivatives given by

F(-&[X]=~!F"P] (A19)

Proof. The formal power series expansion of FP)
about X=Xo canbe obtained in the usual way from (A1'):

Weak convergence would follow from the analyticity of
QP,] in S alone, but the boundedness assumption is
necessary to ensure uniform or strong convergence.

We now return to the operator FP,] defined by (A1).
Theorem 1 has shown that the radius of convergence
for the expansion of any operator function in powers of
X—Xp is governed by the shape of the region in which it
is both analytic and bounded. For the particular opera-
tor FP,], we will be able to show that boundedness
implies analyticity; hence it is given priority in the next
definition.

Deglitiort3. A point X is said to belong to the resolzelt
set of E if there exists a bounded operator FP,) which
satisfies (A1). (We require FP.] to be defined every-
where in the Hilbert space K; this is slightly diferent
from the conventional definition of the resolvent set.)
The spectrlm of E is the complement of the resolvent
set, a,nd consists of all points at which FP.) either does
not exist or is not bounded.

We can see immediately that the operator F[X] is
unique if it exists at all. If there were two operators
F,P.) and FoP,) satisfying (A1'), we should then have

(1+XF [)))(1—XK)(1+XFoP))
= 1+ELF,[X]= 1+ELFoP.],

' See, e.g. , N. I. Akhiezer and I. M. Glazman, Ref. 17, p. 61.

~ 2 I&—l ol "IIFPo)ll""IIC'll II+II (A»)
n= q+1

and which has the bound

II& [~]II~
IIF[l~o) II

1—Il~ —&ol IIF[l~o)ll
(A23)

Since (A22) and (A23) show that Q P) is bounded and

When X satisfies (A18), this will become arbitrarily
small for sufficiently large p and (l, so by the Cauchy
convergence criterion the quantities (C I P„P.) I 4) con-
verge for P ~oo to a value+(C, V; ),) which is obviously
a bilinear functional of C and %. To see that it is a
bounded bilinear functional we need only set q=o in
(A21) and et

IIFP o)II
I(c'IZ. [l~) I+&I =

1—ll~ —l IIIF[~]ll

Using the Riesz representation theorem" again, we now
see that there exists an operator P [X) whose matrix
elements are given by
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Pt.& P.,]=~!FP.,]-+&
Is—xl &p(x)

and when (A18) holds: belong to the resolvent set. We may have p()) infinite
(as for Volterra kernels) but according to Theorem 2 it

(A23) can never vanish, and in fact.(l ) ~IIF[l]II-' (A28)

P P.]=P (X—Xo) "F[Xo]"+',
n=o

the convergence being uniform and absolute.
Next we must show that P [X]=F[X].We note first

that the partial sums satisfy
Theorems 1 and 2 may now be combined, and we

immediately get our first main result:
Theorem 3. If Xo is in the resolvent set then FP,] is

given by the absolutely and uniformly convergent
series

P„P.]—FP.,]—(X—l,)FP.,]P, [~]
= (X—X ) i 'FP. ]'+'

so that

analytic within any circle IX—Apl &p(IIFP.o]ll—,we from X to the nearest point of the spectrum; in other
can conclude from Theorem 1 that words it is the largest radius such that all points s in the

open circle

II+„P.]—F[~,]—(x—x,)FP,,]P„P,]ll
&

I
~—l pl ~'IIFP o]II

and, therefore, by the triangle inequality,
for all P within the circle of convergence:

(A29)

IIX [~]—F[~.]—(l —l.)FP.]2 [l ]II
=

I
&—&ol ""IIF[&o]II""

+ lli —(&—&o)FP o] I IIX [&]—Z. C&]II.

Now let p —+~. The first term on the right-hand side
becomes zero by (A18) and the second vanishes because
(A25) converges uniformly. Hence, the left-hand side is
zero, and so

P [X]=Fop]+(X—'Ap)F[ko] g P]. (A26)

In exactly the same way we can show that

P P,]=FP.,]+(X—X,)P P.]FP.,]. (A27)

By hypothesis, FPp] satisfies (A1) at X=)p. Mul-
tiplying the first of Eqs. (A1) on the right by
1+(X—Xp)P P] and then using (A26), we get

0= {FPo]—E—XoEFP.o]){1+() —Xo)P P])
=Z C~]-E{1+(~-~.)Z C~]&-~~ Z C~]
=P [~]—E—~E g P].

Using the second of Eqs. (A1) at X=ho and (A27) in the
same way, we can also show that

o=g [X]—E—Z P P,]E.
Hence, Q [X]satisfies (Ai), and therefore equals FP,].

What we have proven then is that FP] exists and is
bounded and analytic in the circle (A18) centered at ) p,

and has derivatives given at Xp by (A19). The final and
crucial step is just to realize that Xo could have been
taken anywhere in the resolvent set; hence F[X] is
analytic as well as bounded, with derivatives given by
(A19), throughout the whole resolvent set. Q.E.D.

The first part of Theorem 2 shows that the resolvent
set is open, and that we may therefore make the next
definition:

Definitioip 4. The radius of convergence p(X) at any
point X in the resolvent set is defined as the distance

I
x—x,

l
(p(l,). (A30)

Until now we have considered expansions of FP.]
about an arbitrary point ) 0. This was an indispensable
part of our method of proof, but in practice we will
usually be expanding about Xp= 0. In this case, we need
only note that (A1) gives

F[0]=E, (A31)

and hence Theorem 3 immediately specializes to:
Theorem O'. If E is bounded, then ) =0 is in the re-

solvent set and has radius of convergence

p(0) ~ IIEII-', (A32)

p(0)&IIE-II-it- (~=1, 2, ). (A33)

Proof. If X" belongs to the resolvent set of E", then
the operator [1—X"E"] ' exists and is bounded. It also
commutes with E since [1—'A"E"] does, Hence, if E is

defined as the distance from the origin to the closest
point of the spectrum. (The quantity p '(0) is some-
times given the name ",spectral radius. ") For all

I
X

I (p(0) the operator FP.]is given by the series (A3),
which converges uniformly and absolutely, and satis-
fies (A1).

It must be emphasized tha.' the radius of convergence
p P) is not usually equal to IIF[X]ll ' [except for E(W)
self-adjoint], but is generally larger. [In particular p(0)
is generally larger than IIEII '.]Our method of proof has
essentially used Cauchy's theorem to piece together the
little circles IX—)ol hllFPo]ll

—' into the big circles

la —x,
l
&p(l,).

In fact, the inequality (A32) can be sharpened con-
siderably by the following little theorem:

Theorem 4. If E is bounded and if X"(I=2, 3, )
belongs to the resolvent set of E", then ) belongs to the
resolvent set of E. In particular, this shows that
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bounded we may form a bounded operator

1+liFP)—=[1—X"E") ' g X~E"'
m-p

gmEm[1 ) nEa]—1

a point ) can qualify for membership in the spectrum
of E:

(i) The operator F[l~] is not well defined at all, be-
cause (A34) does not define a unique C. In this case the
difference of the C's must be a vector Y which is anni-
hilated by 1—)E, i.e.,

tn-Q EY=X 'Y. (A38)
If we multiply on the left or right by [1—liE) and use
the identity I

L1.—XE) 2 X"E =ZX—E"[1—XE)—=1—X"E",
tn P

e= (1—XE)C. (A34)

In other words, R(li) is that part of X obtained from
(A34) by letting C sweep over X. Obviously 6t(X) is a
linear manifold, and it is nontrivial unless E is the
operator —X '1, a case we can safely exclude. (However,
it may not be a space; that is, it may not contain all its
limit points. ) The result of operating with 1+ELF[X7 on
any vector O'PS, (X) may be defined as

we see that

[1—XE][1+ELF[X]]= [1+ELF[X]][1—XE],
and that, therefore, FP,] is a bounded operator satis-
fymg (A1'). The inequality (A33) follows because all
points li" such that

I

&"
I

& IIE"II
—' are in the resolvent

set of E", and hence in the resolvent set of E. Q.E.D.
It may even be proven" that the right-hand side of

(A33) increases to the limit p(0) as n —+~. But this is
not a very convenient way of determining p(0). Instead
we now turn to an exploration of the spectrum.

First let us recall what precisely is meant by Eqs.
(A1) or (A1'). We may define the rmsge of 1—liE as the
set 8.(li) of vectors%' in the Hilbert space X which may
be expressed in the form

We then say tha, t X is in the point spectrum of E.
(ii) There are no eigenvectors Y satisfying (A38),

but the range (R(X) on which (A1) holds is not every-
where dense in X. (A set is said to be eiierywhere dense
in K if K is equal to the closl~e of the set, obtained by
adding to the set all of its limit points. ) In this case, the
closure of (R(li) is a linear subspace R'(li)QX which is
not equal to X,. The projection theorem" tells us then
that there must exist a vector Y which is orthogonal to
(R'(X), and hence to all vectors 4 which can be written
in the form (A34). But then for all C, (YI 1—XEIC)=0,
and hence

YtE=Z 'Yt. (A39)

(1+liF[l~))C „
II (1+xFP])c.II

so that Y„ is normalized,

We then say that 'A is in the residuat spectrum of E.
[Time reversal invariance excludes the possibility of a
residual spectrum in scattering theory, since it can be
used to show that (A39) implies (A38).)

(iii) There are no vectors Y satisfying either (A38) or
(A39), so that F[X) is defined and satisfies (A1) on a
range (R(li) everywhere dense in X;however F[l~) is not
bounded. This implies that 1+XF[k) is not bounded, so
that for any integer e however large, there exists a state
vector C' such that II(1+)FP))C'„II~ nIIC. II. We may
then define a vector Y as

(1+XF[X])%=—C (A35) (A40)

if, and only if, the correspondence 0' —+4 defjLned by
(A34) is unique. In this case, we have for all C QX

and, using (A1'),

II(1 &E)Y„II&1/n (A41)

(1+XFP,])(1—&,E)C =C (A36)

a,nd for all 4+5t(X)

(1—XE) (1+l~FP.))4=4, (A37)

so that (A1') will hold within the range (R(X). Hence a
point X belongs to the resolvent set ) if, and only if:

(a) The correspondence %' —+C defined by (A34) is
unique.

(b) The range R(li) of 1—XE is the whole Hilbert
space K.

(c) The operator F[X) defined by (A35) is bounded.
Thus there are just three mutually exclusive ways that

"F.Riesz and B. Sz-Nagy, Ref. 17, p. 425.

Thus, although there is no vector Y which satisfies
either (A38) or (A39), we can find a sequence of nor-
malized vectors which approximately satisfy (A38) to
any desired accuracy. In this case ) is said to belong to
the continuous spectrum of E. (The continuous spectrum
is very much present in the theory of scattering for 3 or
more particles, and it is what makes perturbation theory
so tricky there. )

Strictly speaking, there is still one other possibility.
It may happen that there are no vectors Y which satisfy
(A38) or (A39) either exactly, or approximately in the
sense of (A40) and (A41), so that FP.] is defined,
bounded, and satisfies (A1) on a range (R('A) which is
everywhere dense in X, but that nevertheless (R(li) &X.

2' See, e.g. , 3. Friedman, Ref. 17, p. 51.
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But then any vector N which cannot be written in the
form (A34) can still be expressed as the limit of a
sequence%'; of vectors which can be written

where

4;= (1—'AE)C;, (A42)

"F.Riesz and B. Sz-Nagy, Ref. 17, p. 306,

C;= (1+)F[)])e;. (A43)

Since FP.]is bounded, the C, must converge to a vector
C, and we can defiee F[X]%by (1+XF[X])4=—C. In this
way, FP] can be extended to a bounded operator
defined and satisfying (A36) everywhere, but still
satisfying (A37) only for O'Q (R(X).

In order to eliminate this awkward last possibility, it
is usual to restrict the discussion to kernels E which are
closed, i.e., such that the sequence EC; converges
(strongly) to EC if it converges, and &f the sequence C;
converges to C. In this case (A42) gives%'= (1—XE)C',
contradicting our supposition that %Q(R(X). Any
bounded kernel is obviously closed, by virtue of its
continuity, and any closed kernel which is everywhere
defined is bounded, '4 so the division of the spectrum into
the point, residual, and continuous spectra is really only
applicable for bounded kernels.

The residual and continuous spectra are much less
familiar than the point spectrum, probably because they
are absent when E is a 6nite matrix. For the continuous
spectrum, this is just because any finite matrix is neces-
sarily bounded; for the residual spectrum, it is because
(A39) would require the vanishing of the determinant of
1—XE and hence would imply the existence of some
other T satisfying (A38). The absence of any but a point
spectrum for 6nite matrices is very important, because
1t implies the result already quoted, "that the radius of
convergence p(0) for the series (A3) is IXr I, where Xr '
is the largest eigenvalue of E.

There is a very natural extension of the class of finite
matrices, which shares their property of having only a
point spectrum:

Definitio 5. An operator E is said to be comp/etety
coetiegous if for any infinite set of vectors C., which is
bounded in the sense that all IIC, II are less than some M,
the set EC, is compact, i.e., it contains a convergent
subsequence.

Any completely continuous operator E is bounded,
since otherwise there would exist a sequence of vectors
C- «r w»ch IIC'-ll = 1, IIEC-II&~, (~=1, 2, ".), w»ch
is impossible if the sequence EC contains a convergent
subsequence.

The de6nition of complete continuity is tailor-made
to guarantee the absence of a continuous spectrum. For
if X were in the continuous spectrum then there would be
a sequence Y satisfying (A40) and (A41); the complete
continuity of E would then imply that the sequence
{ET„}contains a subsequence which converges to some
vector Y. But then (A41) would imply that the corre-
sponding subsequence of {Y„}converges to XT, and,

since E is bounded and hence continuous, XEY=Y,
violating the requirement that a point in the continuous
spectrum cannot be in the point spectrum.

Furthermore, a completely continuous operator can-
not have a residual spectrum. For a bounded kernel E,
we may write (A39) as EtY=X '*Y.But for a completely
continuous kernel, it can be shown" that this would
imply that ) is an eigenvalue of E, violating the re-
quirement that a point in the residual spectrum cannot
be in the point spectrum.

Hence, for a completely continuous kernel E we have
the promised result:

Theorem 5. If E is completely continuous then the
radius of convergence p(Xe) for an expansion of FP.] in
powers of X—Xo is the distance from Xo to the nearest
point X„ for which 'A. ' is an eigenvalue of E (with a
normahzable eigenfunction) .

We will end by listing without proof some useful facts
about completely continuous kernels:

(1) If K is a separable Hilbert space (such as the
space of square-integrable functions or square-sum-
mable sequences) so that the "trace" operation is well
defined, and if E is an L' or "Hilbert-Schmidt" kernel,
i.e., Tr{EEt}( ~, then E is completely continuous. "
(This is usually the key theorem used in proving the
complete continuity of physically interesting kernels,
and it may be regarded as the implicit basis of our work
in paper B.) In particular, a 6nite matrix or a kernel of
finite rank is completely continuous.

(2) Products, linear combinations, and adjoints of
completely continuous kernels are completely con-
tinuous. '~

(3) If E is completely continuous and 8 is bounded
then BE and EB are completely continuous. '~

(4) If EtE is completely continuous and if E is
bounded then E is completely continuous. '~

(5) If for any e)0 there exists a completely continu-
ous kernel E, such that IIE—E,ll& tehen E is com-
pletely continuous. "

(6) Any completely continuous kern. el may be ap-
proximated arbitrarily closely by a kernel of finite
rank. "That is, we may 6nd a sequence of "separable
kernels"

I s)(8I such that for any e)0,

IIE—Z I ~)&sl II «
e 1

for sufhciently large p(e). [The converse follows im-
mediately from (5) and (1).]

(7) A kernel Eis completely continuous 'if, and only
if, the sequence EC „converges strongly whenever +
converges weakly 29

"N. I. Akhiezer and I. M. Glazman, Ref. 17, p. 57 (corollary)
and p. 122 (theorem 1).

2' See, e.g., N. I. Akhiezer and I. M. Glazman, Ref. 17, p. 58.
27 N. I. Akhiezer and I. M. Glazman, Ref. 17, p. 57.
~8 F. Riesz and B. Sz-Nagy, Ref. 17, p. 204."F.Riesz and B. Sz-Nagy, Ref. 17, p. 206.
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(813). 118, 124,d I. M. Glazman, Ref. 1/, pp.' N. I. Akhiezer an"See the discussion in Ref. 9,
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r;;(W E)~0„;(W)—(84)
where

it was shown in Appendix Ifol all E~O. For example, it was s ow
'alsof paper t a,8 h t for local potentia
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where, for example,

IIE(w)q'll»

pr'qisipps d'px ~'q12'(q12 I Eis(W —~12)

i 2-1/2

X I qi2 )f(q12'PS p~)

But then {87)gives

IIE(w)q'll»

(814)

—i/2

o12(W) d g12d ps. d'pN lip(q»PS' ' 'PÃ) I

» gen«», Il~+BII2& II~ II2+ IIBIIS, so it will be suffi-
cient to show that the c.m. H-5 norm of each of the six
terms in formula (3.12) is finite. These six terms differ
only by permutations of 123, so it will be sufFicient to
prove that

III»(W) VSSIIS& ~

It is easy to show algebraically that L»(W) obeys an
integral equation similar to (3.13),

L12(W) =E»(W)Gp(W)+L»(W) V12Gp(W)

and, therefore,

L12(W) V23 E12(W)E23(W)
+F12(W)E12 (W)E23 (W) (C5)

so (813) shows that (88) is satisfied, with

IIE(W)ll & 2 ~""(W) (816)

F12(W)=—L12(W) (W—B'P)

=E,2(W)+E12(W)F1, (W) . (C6)

For local potentials, (85), (86), and (816) give
Eq. (2.31).

There is obviously nothing in these arguments which
would prevent their extension to the more general class
of theories discussed in Sec. VI. However, it is not
possible to conclude that the kernel E(W) will be'
bounded in theories with antiparticles (or holes), since
the sum (816) is then infinite and may perhaps diverge. @

APPENDIX C: COMPLETE CONTINUITY OF THE
IRREDUCIBLE THREE —PARTICLE KERNEL

We will first show that

(C1)

under assumptions (3.27) and (3.28). We remind. the
reader that, for a general momentum-conserving opera-
tor Q, the "center-of-mass Hilbert-Schmidt norm" is
defined by

IIQII2= ~'pid'p2&'pSS(»+PS+PS)

By assumption (3.28), the first term in (C5) has a finite
c.m. L-5 norm, so all we have to show is that:

IIF»(W)E»(W)E23(W) II2& "
However, the operator F12(W) is an I.' kernel (see Sec.
III, paper 8) within the space of L' functions of q12, and
therefore by the arguments of Appendix 8 it is a
bounded operator on the three-particle c.m. Hilbert
space. It follows" that

II "»(W)E»(W)E23(W) II2

~ IIF»(W) II IIE»(W)lt»(W) II2, (C8)

where IIF12II is the bound defined in Appendix A, and is
finite. Thus (C7) is true, and hence (C4) is true, and
hence (C1) is true.

We now assume that the V;; are local potentials, i.e.,

(Pip2PSI V»l» P2 PS)
S(P3 PS )S(Pi+PS Pl P2') V12(P1 pi'), (C9)

and likewise for V23 and U13. We shall show that (3.27)
and (3.28) both hold if, and only if,

v;32= dsqI V;;(q) IS& ~, —(ij =12, 13, 23). (C10)
X d pid psd psb(pi+ps+ps)

X [(pip2pSI Qe. rn. I pi p2 p3 ) I'

where Q, is defined for pi+ p2+ pS
——0 by

(pip2pS I Q I pi P2 PS &= S(pi +P2 +p3 )
X(pip2pS I Q..-. I

pi'PS'PS'). (C3) IIE»(W)E23(W)ll & " (C11)

Equation (C10) is, of course, equivalent to the position-
(C2) space condition (3.29). We have already shown (in

paper 8, Appendix I) that (3.27) holds if, and only if,
(3.29) does, so we will only have to show here that
(C10) implies (3.28). It will again be sufficient to choose
ijk= 123, and show that

33 Arguments implying that E(W) is not bounded in Geld theory
have been presented by F. J. Dyson, Phys. Rev. SS, 631 (1952).
Whether or not Dyson's reasoning applies to any given interaction
seems to me to be a very difBcult dynamical question, of the same
sort as encountered in trying to prove the stability of nuclear
matter against collapse.

In order to do the integrals in (C2) for Q=E12E23, it

~ This trick was suggested to me by C. A. Lovelace, who used it
in Ref. 3 to prove that the I'addeev-Lovelace kernels are I'.
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~2P1 ~1P2

ml+me
=Pl+ p»

ml+me

will be convenient to use as integration variables
p3, p3, q12, and q12, where

$12

We then have

~2P1 ™1P2

re l+ rile

=Pl + Ps.
5ll+ RES

i'm»PU)Z„(W) ii, =
—1/2IU»«» —q»")

I I U»(ps Ps) I'
d q»d q» d psd ps

I
lU —(qis'/2~») —(ps'/2~s) I'I lU —(qis'"/2~») —(ps'/21 s) I'-

(C12)

P 12 (ill 1'ill'2)/ (re'l+ res) y P 8 ill 8(~1+lll2)/ (llS1+ lrls+ ill 8) ~

The y3' integral can be done immediately, giving

ll&»(lU%»(ills=»s d'qlU»(q) I'~(q)

with

-1/2

(C13)

I (q)=
d'q'd'p

I:q—=q» —q» p=—y, ; q'=q»"j. (C14)
)
W—((q+q')'/2@is) —(y'/21l3) ['( W—(q"/2@is) —(y'/21is)

~

'

(l)

(ii)

(ill)

(iv)

S'=64; dimS'=9; n(S')= —8

q'= 0, y= 0; dimS'= 3 a (S')= —4 (C16)

q'+q=0, P=O; dimS'=3; a(S') = —4

other S'; dimS'&9; n(S') = —8.
The integral (C14) converges if

n (S')+dimS' &0 (C17)

for all subspaces S' within the plane q=0. The largest
value of n(S')+dimS' for such S' is —8+6= —2 for the

~ S. Weinberg, Phys. Rev. 118, 838 (1960), Eqs. (3.11) and
(3.12).

I am not strong enough to do the integral (C14), but
it is possible to check its convergence and find. its
asymptotic behavior, using methods'4 which were de-
veloped some years ago to study the similar integrals
arising in Feynman perturbation theory. The integrand
of (C14) can be regarded as a function f((P) of the:
nine-vector

(P= (q,q', p) .
Its asymptotic behavior as 5' —+ ~ in any typical direc-
tion within some subspace S of the full nine-dimensional
space (R9 is

f((P)-(P.(", ((P ~ ). (C15)

A complete list of the n(S') for non-null subspaces
S'( 6ts follows:

plane q=0 itself, so (C17) is satisfied and p(q) con-
verges. Its asymptotic behavior is

~(q) =O(q (lnq)~),
where

rs= max(a(S')+dimS' —3) .
gl

The maximum is now over all subspaces S'( (Rs except
those in the plane q =0. The quantity n(S')+dimS' —3
has the values (i)—2, (ii)—4, (iii) —4, (iv) & —2 for the
four cases listed in (C16), so a =—2, i.e.,

p(q) =O(q-'(lnq)s).

Hut then (C13) is obviously 6nite if l ss & ~ and P&s & ~,
and hence II~/') II2& "if »s& " »~ & ~ and»s& ~

Note added l',e Proof. Recent developments have closed
two annoying gaps in our work on scattering theory.
First, F. Coester and M. Scadron have independently
shown that the two-particle kernel Gs(E+ie)U, while
not completely continuous for B&0 in the limit c=0,
is nevertheless related by a similarity transformation to
a kernel that is L2 for ~= 0, so that all results in paper 8
can be justified with complete rigor. Presumably the
same is true in the multiparticle case. Second, we have
found a way of rearranging the Born series so that it
converges for any repulsive interaction. It is therefore
unnecessary to introduce quasiparticles to replace the
composite systems that would exist for an interaction
of opposite sign.


