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Perturbation-Theoretical Integral Representation and the High-Energy
Behavior of the Scattering Amplitude*
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The high-energy behavior of the scattering amplitude is investigated in detail in the ladder approximation

by means of the perturbation-theoretical integral representation. It is shown that this representation without

subtraction is very useful and can describe the Regge behavior. The main results of the "multiperipheral
model" are reproduced in this approach, and its connection with the Regge pole is clarified in an elegant

way. It is also pointed out that we can by no means exclude the possibility of non-Regge behavior in the
ladder approximation, at least within the present technique.

I. INTRODUCTION

T is an open question whether or not the scattering
~ ~ amplitude exhibits the Regge behavior in the high-
energy limit. Since it is extremely difficult to discuss
the exact amplitude without introducing hypotheses,
it will be very important and suggestive to investigate
the simplest approximation, i.e., the ladder approxima-
tion, in detail. It seems to be generally believed that
the scattering amplitude exhibits the Regge behavior
in the ladder approximation at least for spinless par-
ticles, but we shall see that this is not conclusive. Lee
and Sawyer' have shown that the partial-wave ampli-
tude is meromorphic in Ret) ——,', where l stands for
the complex angular momentum. Their result is doubt-
ful, however, because as previously shown, ' a mathe-
matically unjustifiable manipulation (term-by-term
simultaneous rotation ot energy variables) is made in
their proof. Polkinghorne, ' and Federbush and Grisaru4
have shown that the sum of the leading terms gives the
Regge-type high-energy behavior, but of course such a
heuristic method does not provide any proof for the
high-energy behavior of the scattering amplitude itself.

On the other hand, an interesting approach has been
developed by Bertocchi, Fubini, and Tonin, ' who call
the ladder approximation the "multiperipheral model. "
They have started from an integral equation for the o6-
the-mass-shell absorptive part' and shown that it indeed
exhibits the Regge behavior in the asymptotic region.
The Regge trajectory is determined by a homogeneous
equation, which is equivalent to the Bethe-Salpeter
equation that is decomposed, into partial waves. ' 7 We

*Work was performed under the auspices of the U. S. Atomic
Energy Commission.
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must notice, however, that the Regge behavior has been
introduced as an "ansatz, " and they have verified it
only in a self-consistent way. Thus non-Regge behaviors
are not excluded also in their analysis.

Now, the purpose of the present paper is to investigate
the properties of the Feynman amplitude for the scat-
tering of two scalar particles in the ladder approxima-
tion. We shall make use of the perturbation-theoretical
integral representation' because this approach will be
the most standard method. We have seen that the per-
turbation-theoretical integral representation is very use-
ful for discussing the Bethe-Salpeter equation in the
ladder approximation. ' '

In Sec. II the integral equation for the Feynman
amplitude is converted into an integral equation for the
weight function. In Sec. II'I we consider the asymptotic
equation of the latter, which has the Regge-type solu-
tion. The equation then reduces exactly to the same
equation as that for the weight function in the Bethe-
Salpeter equation as is expected. The connection be-
tween the high-energy behavior and the analyticity in
the t plane is clarified in an elegant way. In Sec. IV
we point out that the asymptotic equation admits also
non-Regge-type solutions. At the present stage we can-
not exclude the possibility of these solutions at all. In
Sec. V we consider the iterative solution of our inhomo-
geneous integral equation. We find that it is meaningful
except for a certain region which determines the high-
energy behavior of the Feynman amplitude. A special
discussion is made for the case in which the exchanged-
meson mass is zero. The final section is devoted to dis-
cussions on our results.

II. INTEGRAL REPRESENTATION

We consider the Feynman amplitude for the elastic
scattering of two scalar particles having masses m~ and
m2. They exchange a scalar meson having mass p. Let
2k, g, and p be the total momentum, the relative mo-

s N. Nakanishi, Progr. Theoret. Phys. (Kyoto) 26, 337 (1961);
ibid Errata 28, .406 (1962). See also N. Nakanishi, Institute for
Advanced Study, Princeton, 1963 (unpublished lecture note).

' M. Ida and K. Maki, Progr. Theoret. Phys. (Kyoto) 26, 470
(1961);I. Sato, J. Math. Phys. 4, 24 (1963).
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by means of analytic continuation with respect to m.
Thus f(z,w, t) exhibits the Regge behavior because l is
determined as a function of s by the eigenvalue problem
(3.7). This result exactly corresponds to that of
Bertocchi, Fubini, and Tonin. '

lt is interesting to see how this high-energy behavior
is related to the analyticity in the l plane without re-
course to the Regge analysis. According to Khuri, "the with

f(z,w, ~) =Z (~ u—')'fi(z, w),
l~O

(3.12)

analyticity of the partial-wave amplitude for Rel) —p~

is essentially the same as that of the coefficient of a
power series expansion with respect to a linear function
of f. We expand (2.4) as
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leads to (4.5)g=r=. =0 )

F(y) reduces to the solution given in the previous sec-

tion, but there is no reason why (4.5) gives the correct
solution. As is seen from (4.2), the homogeneous equation

for q (z,y) depends only oe rN bit not oe e, r, etc.

For simplicity, we consider the case"
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IV. POSSIBLE NON-REGGE BEHAVIOR

Thus f~(z,n) has a simple pole at l= l'. This is a Regge
pole, and its position is determined by the Bethe-
Salpeter Eq. (3.7). Thus the connection between the
high-energy behavior and the Regge Pole is understood Then the behavior of f in the l plane is determined by
in an elegant way in terms of the perturbation-theoreti-
cal integral representation. I

The reasoning of the previous section is based. on the
presumption (3.4) or (3.6). In general, we should write

z (y,s,p)=F (y) z (z,p), (4.1)

Thus f~ has a multiple pole or a branch point at f= —m.

The corresponding high-energy behavior will be pro-
portional to

(—~) "tin( —~)j" (4.8)

where F(y) should be self-reproducing, apart from less where rN is a function of s."¹
¹ Khuri, Phys. Rev. Letters 10, 420 (1963);Phys. Rev.

132, 914 (1963). "We have suppressed the symbol Pf for simplicity.
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with

(
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a result which is consistent with (3.9).
Now, the kernel (5.1) is very singular so that we can-

not apply the Fredholm theory as in the Bethe-Salpeter
equation. Instead, we have an inequality

V. PARTIAL SOLUTION

We could not decide whether or not f(v, to, t) exhibits
t.he Regge behavior from the self-consistency of (2.12)
at a neighborhood of y=0. Of course, if we knew the
exact solution of (2.12), such a problem would no longer
occur. Hence, it is desirable to investigate the properties
of the solution of (2.12) in detail.

The integration over x in (2.10) can be easily carried
out, and the result is

&b,s,v; y', s',v')

This equation was also given by Nishijima" in different
notations. He converted it into a diRerential equation
by employing somewhat complicated transformations.
Instead, in (5.11) we put

r=(1+v) ', r'=(1+v') '

Then (5.11) becomes

(5.12)

where

1b(rt, s) = 1+-',X
zB (z, z') P (~I S~)

ds' dr)', (5.13
0 n'p(s')

4 (n, s) —=X(y,s) (5.14)

Now, assume that P(rt, s) vanishes at r)=0 in such a
way that the rt' integral in (5.13) converges at rt'=0.
Then f(rt, s) is continuous at s= &1, and moreover the
inhomogeneous term gives

it (rt, +1)=1. (5.15)

Therefore P(rt, s) differs from zero independently of rt

at neighborhoods of s=~1. This is inconsistent with
our assumption. We thus see that (5.13) has no solution
regular at &=0.' This situation physically corresponds
to the fact that the initial state cannot be a plane-wave
state in the presence of Coulomb force. We cannot,
however, exclude the possibility that (5.13) might have
a solution singular at g=0 in the sense of (3.5), in
contrast with the case of p, &0 in which such a singular
solution is excluded by the iterative solution well
defined at rt =0 (i.e., y= 1).

It is noteworthy that the homogemeogs equation
corresponding to (5.13) can be solved exactly. If we pu'.

v»L(v')'~+. 3, (5.7) P(rt, s) = rt"g„(s), (Ren) 0), (5.16)

on account of (5.2) with (5.3). Let yt"'(y, s,v) be the
uth-order iteration term. Then (5.7) yields

1—y"t')'
p'"&(y, s,v)=0, unless v&y

~
p', (u&1). (5.8)

yi/s j

then g„(s) should satisfy

g (s')
g„(s)=— ds'(R(s, s')$"

2nr , p(s')
(5.17)

This equation is exactly the same as Cutkosky's equa-
tion." Hence it can be converted into a differential
equation.

Thus, when p/0, the exact solution p(y, s,v) can be
obtained for v (y(1—y'~') —'p' by a finite order iteration.
The behavior at a neighborhood of y=0 cannot be
obtained.

The case of p, =0 is especially simple. In this case we
have

VI. DISCUSSION

If we put
v (y,s,v) =~(v) (1—y)x(y, s),

then (2.12) reduces to

X(r,s) =1+s)

Ke have investigated the high-energy behavior of
r)1!t)~=r3(r v rv )Lv +(1 r )'p(s )j ' (5 9) the Feynman amplitude in the t channel in terms of the

perturbation-theoretical integral representation. The
most remarkable result of our analysis will be that the
Regge behavior or more general high-energy behavior
can be consistently described by the perturbation-

1 1 theoretical integral representation (2.4) without subtrac

ds 6oe. The validity of no subtraction is due to the pres-
0 —1 ence of the parameter y.

y(1—y ) l x(r,s')
y, ei Z(s,")— i . (5.11)

r'(1 —y) & r'(1 —y') p(s')
'r K. Nishijima, Progr. Theoret. Phys. (Kyoto) 14, 203 (1955).
'z R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).
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Consider the Mandelstam representation"

ds
o (s', t')

dt'—
(s' —s —is) (t' —t—ic)

(6.1)

(6.2)

apart from two other terms. As was shown previously, "
no single dispersion terms appear for (6.2) when sub-
tractions are made. This fact exactly corresponds to the
above mentioned situation, namely, the possible singu-
larity of q (z,n) at s=0 or at s=1 can describe the high-
energy behavior concerning a single variable s or t.
Recently Khuri" has shown that one can take out the
Regge pole contributions from (6.1) under certain
assumptions. If this is the case, we see that no subtrac-
tion is needed for (6.2).

Now, our second result is a negative one. We have
seen that even in the ladder approximation we cannot
prove the Regge behavior at least within the present
technique. There may appear multiple poles or branch
points in the / plane. Of course, branch points may ap-

"S. Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741,
1752 (1959).

where we have suppressed two remaining terms for
simplicity. If o.(s', t') does not vanish at infinity, it is
necessary to make subtractions. Main subtraction
terms are single dispersion integrals of s and t. On the
other hand, the perturbation-theoretical integral repre-
sentation for the scattering amplitude' is

pear by summing specially selected Feynman graphs, "
but such a procedure seems to be very artidcial. Our
result concerns the simplest approximation, hence it is
very suggestive. In this connection it might be interest-
ing to note that recent experiments" have denied the
simple Regge pole hypothesis.

Finally, we comment on the possibility of rotating
the integration path of the relative energy Ps on, the
basis of the integral representation (2.4). If such a rota-
tion were possible, (2.1) would become a Fredholm
equation and hence we could obtain the exact solution.
In the unphysical region (m& —ms)'(s ( (m&+ms)', it is
evident that either k or q must be a complex vector, so
that we have complex singularities in the Ps plane. For
s( (m& —ms)', the amplitude can become analytic in the
first and third quadrants under certain artificial re-
strictions. "However, the important point is that the
contribution from the infinite quarter circle-s may not
vanish" if we assume a singularity of p(y, z,y) at y=0
just as in Sec. III or IV. Thus we cannot employ the
p, rotation in order to investigate the Regge behavior
of the amplitude.
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