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It is argued by reference to the example of quantum electrodynamics that zero-mass bosons are not
necessarily present in a theory with broken symmetries.

I. INTRODUCTION

A THEORY, described by a Lagrangian which is
invariant under a continuous group of trans-

formations, may possess nonsynunetric solutions if the
vacuum is not invariant, under the group. For example,
Nambu and Jona-Lasinio' have shown how a finite
fermion mass can arise from a formally y5 invariant
theory. For such theories there exist general proofs
that zero-mass bosons are necessarily present. 2 '
However, since these proofs involve operators whose
matrix elements are ill defined in most theories, ' it is
necessary to look at each theory in detail to see if such
zero bosons actually arise. This has been done by
Nambu and Jona-Lasinio for their model. Let us
review their argument.

They show that the homogeneous Bethe-Salpeter
(B.S.) equation for a particle-antiparticle system has a
zero-mass (q'=0) solution in an approximation which
is consistent with their equation for the fermion mass.
Their theory was highly divergent and a cutoG was
introduced in order to make the theory 6nite. This
cutoff had the eGect of making the above homogeneous
Bethe-Salpeter equation into an eigenvalue problem to
which the Fredholm theory was applicable. The exist-
ence of a solution to the homogeneous B.S. equation
then implied that the corresponding inhomogeneous y5
vertex equation had no solution for q'=0. For q~&0,
the homogeneous B.S. equation had no solution and
the inhomogeneous pseudoscalar vertex equation had a
perfectly regular solution. Thus, in this case from the
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Arguments involving formally conserved axial vector currents
are often misleading. This is discussed separately by K. Johnson,
Phys. Letters (to be published).

existence of a zero-mass solution to the homogeneous
B.S. equation, one could conclude that the pseudo-
scalar vertex I's(qs) had a pole at q'=O. e This meant
that a zero-mass pseudoscalar particle was present.

In this paper we would like to point out that the part
of Nambu's argument which shows the existence of a
zero-mass solution to the homogeneous B.S. equation
is generalizable to any arbitrary y5 invariant theory.
However, in this general situation, we cannot further
conclude (as above) that there exists a zero-mass
boson. We show this by studying the example of
quantum electrodynamics with zero bare electron mass. '
This theory is finite without a cutoff. In this case the
homogeneous B.S. equation is not of the Fredholm type.
Therefore, we are unable to carry through the above
arguments to further conclude that I' s(q') has a pole
at q'=0. Instead we 6nd the approximate equation for
I's(q') has no solution for any momentum q. Thus
(in quantum electrodynamics) the existence of a solu-
tion to the homogeneous B.S. equation is related to the
fact that the usually de6ned I'5 vertex does not exist.
It tells us nothing about whether zero-mass bosons are
actually present.

In Sec. II we present the B.S. equation in a form
convenient for our discussion. In Sec. III, we present
an argument of Goldstone which explicitly exhibits a
solution to the exact zero-momentum B.S. equation
for any &5 invariant theory with symmetry breaking
solutions. In Sec. IV we show how a certain approxi-
mation in quantum electrodynamics provides a simple
example of Goldstone's general argument. We then
study in detail the F5 vertex equation in the same
approximation.

II. THE BETHE-SALPETER EQUATION

We will 6rst write the equation for the two-body
Green's function F(xy; x'y') in a form appropriate to
our discussion of the bound states of a fermion anti-

' K. Johnson, M. Baker, and R. Willey (to be published).
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fermion system. F(xy; x'y') is defined as

F(*y; *'y') = —((ll (*)0(y')lt (y) lf (x'))+)e(xy', y,x')

+G(xy)G(y'x'), (II.1)
where

e(x,y', y,x') = e(xy') e(xy) e(xx') e(y'y) e(y'x') e(yx'),

e(xy) = (xo—yo)/I xo—yoI .

where

G(xx') =

F(xy; x'y') =

G(p)ciy (x—x'l

(2s)4

d4E dip d4q

F(p,q; E)
(2s.)4 (2s-)4 (2s.)'

Xexp(E [-', (x+y) ——,
' (x'+y')]

G(xy) is the one-particle Green's function defined as

G(*y) = ((4(*)W(y))+) ( y)

G(xy) satisfies the equation

(y p+M[G]}G=1,

(II.2)

(II.3)

F(xy; x'y') =G(xx') G(yy')+ d'gir)d'('dit/'G (xg)

where the mass operator M[G] is a functional of G
which is determined by the Lagrangian for the system
under consideration. 3f is originally given explicitly in
terms of not only G but also of higher order Green's
functions which in turn are related to G by further
equations. The solutions of these equations in terms of
G then allows us to express 3f as a functional of G
alone. G is then determined by solving Eq. (II.3).
Usually we can only construct the perturbation expan-
sion of M[G]. In this case M[G] can be represented by
the sum of all proper self-energy diagrams containing
no fermion self-energy insertions. In each diagram an
internal fermion line represents the full Green's function
G, while all vertices and other internal lines represent
bare vertices and propagators.

In the Appendix we show that F satisfies the
Schwinger, ' Bethe-Salpeter~ integral equation

+P (x—.y) —q(x'-y')) (II 7)

and likewise for I.
If there exists a bound state of a fermion-antifermion

system of mass E'= —M~', it can be shown that'

F(p, q; E)
4 (p,E)4'(q, E)

E'+Ms'

P(p,E)=G(p+ ', E) I-(p, s; E)
(2s-)4

X4(s E')G(P sE—) (II 8)

with E'= —M~'. Whether or not the existence of a
solution to Eq. (II.8) implies that the theory contains
a bound state depends upon the detailed nature of Eq.
(II.8).' This will be discussed in Sec. IV with reference
to the case of quantum electrodynamics.

III. SOLUTION OF THE B.S. EQUATION IN A
SYMMETRY BREAKING THEORY"

We assume our theory is described a Lagrangian 2
which is invariant under the y5 gauge transformation

where P(p,E) satisfies the homogeneous Bethe-Salpeter
equation

XI(gr); Fr/')F(A': x'y')G(r/y), (II 4)

where the interaction operator I is given as a functional
of G by the equation' We write

f~ rivi&/Q

f~ fsi yi///2

G(P) =Gi(P')+7 PGs(Ps)

(III.1)

(III.2)

Equation (II.4) then becomes an explicit equation for
F when use if made of Eq. (II.3) to determine G. Of
course G must be left arbitrary until after the func-
tional differentiation of (II.S) to determine I is carried
out. In momentum space, Eq. (II.4) becomes

G (p) = sinai///~G (p) sits///s

from which we conclude

(III.3)

Now if the vacuum is invariant under the unitary
operator which induces the transformation of Eq.
(III.1), then it follows that

F(p, q; E)= (2')47'/4(p q)G(p+ ,'E)G(p —rsE)-—
d4s

Gi(p') =0. (III.4a)

+G(P+ ,'E) I(p,s;E)-
(2s.)4

XF(P,s; E)G(p—-',E), (II.6)

s J. Schwinger, Proc. Natl. Acad. Sci. 37, 452, 456 (1951).
7 E. E. Salpeter and H. A. Bethe, Phys. Rev. 87, 1232 (1951).

This result has also been noted by G. Baym, Phys. Letters 1,
241 (1962) in the context of many-body problems.

s See, for instance, S. Mandelstam, Proc. Roy. Soc. (London)
237, 496 (1956).

'0 For example, when the Fredholm theory is applicable to Eq.
(II.6), the existence of a solution to Eq. (II.8) implies a bound
state. Nambu's model (Ref. 1) is of this type due to the cutoff
procedure used."In this section, we make use of an argument originally due to
J. Goldstone (private communication to M. Baker). We wish to
thank Dr. J. Goldstone for communicating the argument of this
section to one of us.
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Gi(P') Wo.

If the vacuum is not invariant then Eq. (II.3) may that the theory contained a zero-mass pseudoscalar
have a solution G for which boson. In the next section we shall show that this is not

the case for quantum electrodynamics.

{ys,M}= —(bM/8G){ys, G},
where {A,B}=AB+BA.

Noting that
{ys,M}=G '{ys,G}G '

we write Eq. (III.6) in coordinate space

m (z'y )
{ps,G (xy) }= — d'x'd'y'd'pd'i)G (xx')

fGR~)

X{&.,G(&,)}G(y'y) .

(III.6)

Transforming Eq. (III.7) into momentum space and
using (II.5) we obtain.

d4q

{&,,G(P) }=G(P) I(P,q; 0){q„G(q)}G(P) (III.8a)
(2ir)'

01
d4q

{ys,M(P) }= I(P,q; 0)G(q)
(2x)4

X {ys,M (q) }G(q) . (III.8b)

Since {ys,G(P)}=2ysGi(p'), Eqs. (III.S) are nontrivial
only if Gi(P') WO. In that case we conclude that

4'(P 0) = G (P') (III.9)

is solution of the homogeneous Bethe-Salpeter Eq.
(II.S) for E=0. '

In all cases that we are interested in Eq. (II.S) can
be transformed into an equation in the Euclidean
space." This transformation will be carried out in
Sec. IV in the case of quantum electrodynamics. If we
assume this can be done, then it follows that Eq.
(III.9) is also a solution of Eq. (II.S) when E'=0"

However, this is all that can be concluded from the
p& invariance of our theory on the basis of general
arguments. In Nambu's model, from the existence of a
solution of Eq. (II.S) for Ps=0, one could conclude

"While a pseudoscalar solution to Eq. (II.S) for X'=0 satisfies
Eq. (II.S) for E'=0, the converse is not necessarily true, unless,
for example, Wick's rotation of the 0-contour is possible LG. C.
Wick, Phys. Rev. 96, 1124 (1954) . A solution which satiates
Eq. (II 8) for A=0, but not for K'=0, ~K( =2I'080 would
represent a "spurion" wave function, transforming like the
vacuum under the Lorentz transformations. We are grateful to
Professor O. W. Greenberg and Professor A. Wightman for point-
ing out this possibility.

In the following discussion we allow for either
possibility to occur. However, we assume that MLGj
is given by its usual functional expansion in terms of G
(or by any other approximation which preserves the
ps symmetry of the perturbation expansion). It then
follows

Mge'»'"Ge'»'" j=e '»'"M/G]e '»"'. (III.5)

The differential version of Eq. (III.5) yields;

IV. QUANTUM ELECTRODYNAMICS

We now study the example of quantum electro-
dynamics with zero-bare electron mass' in the approxi-
mation where M is given by"

d4q

M[P; Gj=iess $„,(P q)y"G—(q)y" (IV.1)
(2~)4

with

&,.(q) = (g"—q.q./q') (q' —ie) '.
Inserting Eq. (IV.1) into Eq. (II.3) we get an approxi-
mate integral equation for G:

G(P)
—'=y P+iee' n„„(P q)~ G(q—)~". (IV.2)

(2ir)4

It is argued in Ref. 5 that Eq. (IV.2) gives the asymp-
totic behavior of G(P) for large P of the full theory.
Now as most of the discussion of this section depends
only upon the asymptotic properties of G(P), some of the
resulting conclusions may be valid independent of the
particular approximation of Eq. (IV.1).

In order to avoid an infrared divergence in Eq.
(IV.2), we must give the photon a small mass. This will
not effect any of the asymptotic properties of Eq.
(IV.2), but will only modify it in the small P region
where Eq. (IV.2) is not expected to be a good approxi-
mation to the full theory.

We now can break up Eq. (IV.2) into two coupled
equations for Gi(P') and Gs(P')

Gs(P')v P

G 2(P2)+P2G 2(P2)

d4q
=y p+ies' X)„„(p—q)p&Gs(q')y qy", (IV.3a)

(2ir) 4

Gi(P')

G 2(ps)+psG s(ps)

d4q
= ieo' 'I)„„(P q)p&Gi(q')p" . —(IV.3b)

(2m)4

The condition that electron has finite mass m requires
that

G(P) 'I (IV.4)

In Ref. 5, finite solutions of Eq. (IV.2) subject to
condition (IV.4) have been found for any value of

"In addition to Eq. (IV.1) there is a second contribution to 3E
which is linear in G. This is the diagram where a photon is emitted
from the electron and gets absorbed in a closed loop ("tadpole"
diagram). Such a term of course vanished in electrodynamics
(cf., Ref. 1). However, when diGerentiated according to Eq.
(II.5) it produces the annihilation graph contribution to I. We
have omitted this term in I since it does not contribute anything
to the pseudoscalar wave function or vertex.
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m&0. The value of m just serves as a scale for the
solution. Asymptotically the solution behaves like

lim G(p) 1—+ .p+ 8LP
—1+(1—2ap/w)4 1 (IV.5)

From the discussion of Sec. III we should expect that
Gi(P2)yp should be the solution of the E=O B.S.
equation with the interaction operator I calculated
from (IV.1) according to Eq. (II.S). In this approxi-
mation Eq. (II.S) becomes

p(p, K)= ie—p2G(p+ 2K)-

d4s

X n„„(p—s)yg(s, K)y "G(p—-,'E) . (IV.6)
(22r)4

If we now put E=O in Eq. (IV.6) and set |P(P,O)

=»Gi(pp) we get back precisely Eq. (IV.3b).
This example should give us a clear picture of what is

happening in the general situation described by Eq.
(III.Sa). There, by virtue of the 74, invariance Eq.
(III.Sa) reduces to an equation for Gi(p') which is
automatically satisfied if G is a solution of Eq. (II.3).
Thus, Eq. (III.8a) can be understood as being just
an alternate way of writing the homogeneous part of
Eq. (II.3) in a yp invariant theory. This is all that we can
conclude on grounds of the 75 invariances alone.

Ke shall now show that the existence of a solution
to the homogeneous Eq. (IV.6) for K=O has nothing
to do with possible presence of massless pseudoscalar
mesons. Such mesons would produce poles not only
in F, but also in the F5 vertex operator which in the
approximation (IV.1), satisfies the inhomogeneous
equation

n..(p p')v"G(p'+q—)
(22r)4

Xr, (p'+q, p')G(p')v". (IV.7)

The homogeneous version of Eq. (IV.7) with a possible
solution I'p(p+q, p) is identical to (IV.6) with the
identification

G(p+q)I'2 (p+q, P)G(P) =4(P+q/2 q) (IV 8)

d4s

n„,(p —sh~G(s)
(22r)4

Xl'2(s+q, s)G(s)y", (IV.Sa)

I', (p+q, p) =I (p+q, p) ieo'—

Therefore, the existence of a solution to the homoge-
neous B.S. Eq. (IV.6) can equivalently be considered
as a necessary condition for the existence of a pole in
I"4(p+q, p). Since we have explicitly constructed a
solution to Eq. (IV.6) for K=O or q=0, there is a
possibility that I'2(p+q, p) has a pole at q'=0. We will
show below that this does not happen. Instead we shall
show without recourse to perturbation theory that
the F5 vertex does not exist for any q in the approxi-
mation (IV.7). To do this we rewrite Eq. (IV.7) in the
following way:

where

Ip(P+q P)=74—2ep n"(p —s)q"
(22r)4

XLG(+q) —G())1' (+q, )G()y" (IVSb)

Let us suppose that a solution of Eq. (IV.7) for
I'p(p+q, q) exists for a particular value of q. Then
I'2(p'+q, p') must fall off rapidly enough for large p'
to ensure the convergence of the integral in Eq. (IV.7).
But if this is so, then the integral on the right-
hand side of Eq. (IV.Sb) converges so rapidly that
Ip(p+q, p) ~ yp as p -+ ap. We will show below that if

Ip(p+q, p) ~ y, as p ~~, (IV.9)

then Eq. (IV.Sa) has no solutions. Thus, the original
assumption that Eq. (IV.7) has a solution leads to a
contradiction.

In order to show that Eq. (IV.Sa), has no solutions
if Ip behaves according to (IV.9), it will be sufficient to
study the high p limit of Eq. (IV.Sa). We can then
neglect the photon mass which is present in n„„(p—p').
Ke write

Ip(p+q P) =»I(p' q' P q) (IV.10)

~ (P+q P)=& ~(p q P'q). (IV.12)

Equation (IV.8a) then becomes

I'(P' q' P q)
d4s I'(s' q' s q)=I(p', q', p q) 3iep'—

(22r)4 (P s)' i—p—
XLGi'(s')+s'G2'(s')$. (IV.13)

We can analytically continue (IV.13) to the Euclidean
region p')0, q')0, —1&cosg=—(p q/~ p(~q))&1. We
then expand I'(p', q', p q) in terms of the Tschebyscheff
polynormals'4 C„(cosg):

C„(cosg)= Lsin(22+1)%in8]. (IV.14)

I'(p', q', p q) = g C.(cos8)I'„(pp, q2). (IV.15)
n~p

Equation (IU.13) then becomes

38p 1
(p2 q2) I (p2 q2) + dPP

82r2(22+1) pe+i p

X&Gi'(P")+P"G2'(P")Ip'"+'I'-(P" q')

~p p
+pm LG 2(PI2)+pi2G 2(p12)$

~ n+1

XI' (p",q'), (IV 16)

14 See, for exaDIple, M. Baker and I. Muzinich, Phys. Rev. 132,
2291 (1963).

where
I(p', q', p q) ~1, as p~ ~. (IV.11)

Other invariants occur in I5, but they do not eGect the
high p limit of Eq. (IV.Sa). We set
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where
2I (p'&q ) =— d8 sin'8C„(cos8)I(p' q~ pq cos8) . (IV.17)
7l p

Now according to Eq. (IV.4)

p'I Gi'(p')+ p'G2'(p') 3» as p (IV 1g)

Also, from Eqs. (IV.11) and (IV.17), we find

particles but rather of the nonexistence of the usually
defined vertex operator. We conclude that in order to
determine whether zero-mass particles are actually
present in any theory with a broken symmetry, one
must investigate that theory in detail. In particular,
the distinction between theories which are 6nite without
cutoG and those which are cutoff dependent is essential.
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lim I„(p',q') =8„0. (IV.19)

Hence, (IV.17) becomes in the limit of large p

38p
P-(p', e)=8-,.+

87r'(m+1) p"+'
dp&p&n+11i (pi2 q2)

+pe /fpipi ii 1P (p&2 2—)—
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Equation (IV.20) is readily converted into a second-
order homogeneous equation with the general solution

ljm P (p2 ~2) —Q p
—1+[in+1 )ii—3ao/ ii] & &&

+C p
—i—[[ii+1) sap/ ] (IV 21)

where ao= eo'/4s.
The 8„,0 term in Eq. (IV.20) did not contribute to

the derived differential equation. It does impose a
boundary condition upon the solution (IV.21) which is
clearly not satisfied for the m=0 equation. For when
(IV.21) is substituted into (IV.20), the left-hand side
vanishes for large p for all g' while the left-hand side
approaches 5„,o. Hence, Eq. (IV.16) has no solution for
m=0. For m~0 there is a solution of the asymptotic
Eq. (IV.20) for all q'.

Using Eq. (IV.14) we then conclude that Eq. (IV.13)
has no solution if I~ 1 as p —+~. Hence, there are no
solution to our original Eq. (IV.7) for any q. One might
have argued that this result is obvious since the
perturbation expansion of Eq. (IV.7) leads to divergent
integrals. However, if one had restricted himself to
using perturbation theory, one would also conclude that
there were no solutions to (IV.3b), i.e., Gi(p')=0.
It is therefore essential to carry out arguments without
recourse to perturbation theory. To repeat: We have
obtained a synunetry breaking solution Gi(p') WO
without necessarily having a zero-mass pseudoscalar
boson in the same approximation.

8'G(xy)
F(xy,x'y') =i

8~(y')8. (*') ==.
(A3)

Now we define the mass operator M in the presence of
external source by the equation

G= (y p+M) '+i(y p+M) ')])](y p+M) '. (A4)— .

[The second term in (A4) represents the disconnected
diagrams. ) From Eqs. (A3) and (A4) we get

F=GG iG(0'M/8)]fq) ~„=OG—. (AS)

If now M is expressed in terms of G as discussed in II,
the dependence of 3f on g and q can be expressed
completely by its dependence upon G. Thus,

APPENDIX

In order to derive Eq. (II.S), it is convenient to
introduce external sources g and g which anticonimute
with themselves and all fermion operators. In the
presence of such sources the Lagrangian is

~[*,~,el=~(*)+l[.-(*),~( )j+![~(),.(*)3, (A1)

where Z(x) is the Lagrangian in the absence of sources.
If we dehne the one-particle Green's function in the

presence of sources as

G(»') =i((4 (*)0(*'))+).-"(»')/(0I o&.-' (A2)

Then F (xy; x'y') of Eq. (II.1) can be expressed as

V. CONCLUSION
(8M O'G]

ilrjilq = o (IIG)iiiillg, =, D

(A6)

We have explicitly exhibited a solution to the zero-
momentum homogeneous Bethe-Salpeter equation for whence (AS) becomes
a theory with a broken invariance. In the case of F=GG G(5M/hG)FG, — (A7)
quantum electrodynamics the existence of this solution
is symptomatic not of the presence of zero-mass which is the desired results Eqs. (II.4) and (II.S).


