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The method of constructing a local field operator for a composite particle, developed by Haag, Nishijima,
and Zimmermann, is applied to an elementary particle field. It is shown that the HNZ construction as
applied to a simple Lagrangian theory reproduces the original field operator.

I. INTRODUCTION

" 'N connection with the problem of bound states a
~ - method has been introduced of constructing a local
Geld operator for a composite particle by Haag, '
Nishijima, ' and Zimmermann. ' We shall Grst describe
properties of the field operator constructed by this
method.

Let us assume that c is a scalar composite particle
consisting of scalar particles a and b, then a field oper-
ator for the particle c is given by the following
expression:
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the Ward-Takahashi (W-T) relations given by
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or more precisely by
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BED

where colons denote the normal product and lc,P)
stands for a one c-particle state with energy-momentum
P.

In Refs. (1), (2), and (3), it has been shown that the
operator q, (x) satisfies all the conditions required in
the axiomatic field theory such as the local commuta-
tivity and the asymptotic condition. Therefore, in a
non-Lagrangian approach, e.g., in dispersion theory,
elementary and composite particles can be treated on
an equal footing. This result has many applications to
problems involving composite particles. ' The independ-
ence of p, (x) on the choice of the direction of P, i.e.,
the right-transformation property of &p, (x), has been
proved by Nishijima. ' It has also been proved that the
distinction between elementary and composite particles
through observation of electromagnetic interactions is
not feasible. ' The proof is based on the observation that
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then the HNZ construction can be applied to deGning
a 6eld operator io, '(x). Both the original field operator
y, and the new operator p, ' satisfy exactly the same
set of W-T relations as mentioned above, so that p,
and p, ' should share various common properties.

In fact, we can prove that
I

ipc = |pc

in many simple cases, i.e., the original Geld operator is
reproduced by the HNZ construction indicating that
this construction is a very natural one. In the axiomatic
theory, on the other hand, the equality is known only
on the mass shell, or more precisely

(p
in

(p
~out &oue (6)

are valid not only for elementary particle Gelds p, and
q~ but also for the composite particle Geld q. provided
that e,=e,+as. This consequence is characteristic of
the HNZ construction (1).

The observation mentioned above poses aninteresting
problem: Suppose that c is an elementary particle for
which.
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In the next section the proof of this theorem will be ator by means of Eq. (8). Let us put
given, and in the last section the physical interpretation
of this theorm will be given.

&lnc=g+ +y~ (7)

II. PROOF OF THE THEOREM

The theorem expressed by Eq. (5) will be proved for a
simple model described by the interaction

and define its Pourier transform g(p, P) by

f(4P) = d'Pe'"'g(P, P).
(22r)4

(12)

where @ is a scalar nucleon field and p a neutral scalar The function f(),P) is assumed to be singular at the

meson 6eld. The theorem in this model is given by origin )=0, and in order to study the nature of the
singularity at the origin we shall appeal to an integral
representation of the function g(p, P),r "i.e.,
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where 0' and q are renormalized Heisenberg operators,
and IP) denotes a one-meson state with energy-
momentum P. In order to prove Eq. (8), we shall as-
sume the asymptotic condition of Lehmann, Symanzik,
and Zimmermann (LSZ)'; then what we have to prove
reduces to
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for an arbitrary pair of states n and p, and hence equiva-
lent to (8).

Next we shall prove Eq. (9) for the model described
by the interaction (7). The technique utilized in this
proof is described at length in the appendix of Ref. (5),
but for the sake of completeness we shall briefly re-
capitulate the procedure of constructing the field oper-

6H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento I, 205 (1955).

since application of the LSZ reduction formula to (9)
leads us to the desired relation

at the origin I(l =0, i.e.,
Ci
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In the first and second cases, the ratio (7) is given by
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where E is a certain positive integer. By integration by
part one can reduce the power E to unity, but it is not
possible to increase the power X beyond a certain
maximum value. In what follows we shall assume that
E always stands for its maximum value.

With the help of integral representation one can study
the singularity of the function

lim f($,P)
$ -+p
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In what follows a prescription will be given for carry-
ing out the double limiting procedure in momentum
space: Introduce a function F($) and its Fourier trans-
form G(p) by

F(&)=
(2m)4

d4pe" I'G(p);
Fic. 2. An example

of the one-meson ir-
reducible diagram.

then its double limiting value is given by

lim lim F($)=
& ' 4 ' (2~)'

d'p ~PoG(p) (17)

Therefore, if G(p) has a representation of the type (13)
or generally of a Feynman type denominator, the prob-
lem reduces to evaluation of a Feynman integral. (a)
IV= 1. Instead of multiplying P by F ($) on.e can apply
a differential operator —(8/Bp„)' on G(p) and utilize

t9 2

d4p

ap [(p+a)'+m' ss]—~
for X=1, (18a)

=0, for X&1.

(b) xV=2. The operator $„(8/8$„) on F(f) can be re-
placed by (8/Bp„)p„on G(p), and one can utilize

Bp [(p+a)'+ m' —s s]
=2'', for /=2,
=0, for X)2, (18b)

for X=1.

In the present paper the denominator function f(),P)
is assumed to be singular at the origin )=0 correspond-
ing to either lV= 1 or l'lt = 2. One important point worth
mentioning is that in both cases considered above the
result no longer depends on any parameter involved
in the original Feynman denominator. This is important
in proving the relation (5). This is no longer the case,
however, for E)2, and the relation (5) fails to be true
in such a case, so that the divergent character of the
theory is one of the necessary conditions for the theorem
to be true.

In proving Eq. (9) it is sufhcient to consider only the
connected part of the time-ordered Green function, and

we shall prove

(Oi T[&(x)AaC" .]j 0),.„.

=lim lim

(OiT:0' x+—4' x——:ABC. i0),.„„
2 2
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(Ot T'[:+'(x+6/2)+(x P/2): A&G" —][0)....
= —ig d'x&d'x2d'ySp' x——,x& I' x&x2, y2'

XSz' x2, x — 0 T q y ~BC"- 0,.„„
2

+ (contributions from irreducible diagrams), (20)

where all the quantities are renormalized ones. S&' is
the renormalized nucleon propagator defined by

For this purpose it is convenient to decompose the
numerator into one-meson reducible and irreducible
parts according to the structure of the corresponding
Feynman diagrams. When the pair of nucleon lines
originating from x+($/2) and x—($/2) are connected
to other external lines via a single meson line with self-

energy parts and can be disconnected from them by
removing that meson line, such a Feynman diagram is
called one-meson reducible. When this is not the case
we have a one-meson irreducible Feynman diagram.
This classification refers only to the two nucleon lines
originating from the two points x+($/2) and x—($/2).
Examples of the one-meson reducible and irreducible
diagrams are given in Figs. 1 and 2, respectively.

The contributions of the reducible diagrams to the
numerator of (19) can be given explicitly by

X- Sp'(x, y) = (0~ T[O(x), et(y)] ~0), (21)

FIG. 1.An example
of the one-meson re-
ducible diagram.

and F is the renormalized meson-nucleon vertex
function.

When the limit $~0 is taken, the open polygon with
two ends at x+ ($/2) and x—(]/2) is closed, and conse-
quently a divergence, called a primitive divergence, "
occurs owing to the singularity at the origin. The nature

"F.J. Dyson, Phys. Rev. 75, 1736 (1949).
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:+-I x+ &-»s+.
I

x—I:

(2P.)'"(0t~. —IsP»»,~„I -- II,P)

energy of the photon is zero and hence convergent. There operator dined by
is also the problem of gauge in this case and we shall
not discuss it in this paper.

Perhaps one interesting application of the theorem
will be found in the theory of renormalization. If we p p $ p

take the diRerence

this expresion is less divergent than f(f,P) at the origin
)=0, so that there might be an expansion of the form

g —Q s—— '= Ppx g P
2i 2)

X ( y') q (x)—+h(x, &,P) (29)

lim lim h(x, P,P) =h(x)
$-+p $ -+p

(30)

is independent of the choice of the direction of E.
Eq. (29) is given in terms of finite expressions alone
insofar as $ is infinite. The function g will be related to
the matrix element of 0't(g/2)VI —($/2)] between the
vacuum and a nucleon pair state. The operator h(x)
is the finite renormalized part of the normal product
:%t(x)%(x):.

Finally, we shall emphasize again the importance of
the divergent character of field theory for the validity
of the theorem. Consider, for instance, the pion Geld

such that the last term h(x, (,P) is no longer singular at
the origin and its limiting value

(34)
The denominator expresses the strong interaction part,
of the x—p decay amplitude in the V-A theory. If the
denominator is finite, C (x) is generally different from
the original field operator q (x). The strong interaction
of the pion is described by y(x), whereas C (x) describes
its weak interaction, and their high-energy behaviors
are generally difierent. " For instance, the Lehmann
weight function for the mixed propagator

(o I
I'CC'(x), v'(y)) I o) (35)

is more convergent than that for the pion propagator

(o I &Le (*) ~'(x) jl o) (36)

However, if the denominator is divergent, the m —p
decay amplitude obeys a once-subtracted dispersion
relation as opposed to the original assumption made by
Goldberger and Trieman, " and C (x) behaves in many
respects in a similar way to q (x) as postulated by Gell-
Mann and others. "This subject is discussed at length
in a separate paper by the present author. "

"K.Nishijima, Phys. Rev. (to be published)."M. L. GoMberger and S. 3. Treiman, Phys. Rev. 110, I178
(1958)."M. Gell-Mann, Phys. Rev. 125, 1067 (1962), and other earlier
papers quoted there. In connection with the present theorem, a
particularly interesting model proposed in earlier papers is charac-
terized by the equation

C'(*) ~ s (*)


