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Quantum Mechanics and the Relativistic Hamilton-Jacobi Equation*
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In this paper, we show that the Klein-Gordon quantum-mechanical operator, operating on the function
e'~1", where S is the relativistic action of a free particle or of a particle in a Geld defined by a four vector, is
completely equivalent to the relativistic Hamilton-Jacobi equation, provided one takes into account the
vanishing of the divergence of the energy-momentum four vector. From this we see that classical relativistic
mechanics can be formulated in terms of operators which are identical with those used in quantum mechanics.

INTRODUCTION
'

N a previous paper, ' it was shown that one can obtain
the Schrodinger wave operator from the classical

Hamilton-Jacobi equation by simple algebraic trans-
formations. From this derivation it appears that even
in classical mechanics we can assign a "wave function"
to a particle moving in a definite, well-defined orbit.
This "wave function" is just e' ~", where 5 is the classi-
cal action taken along the path and is defined by the
time integral of the classical Lagrangian

SL&(t)3= I-L&(t),X(t)j«

is in Geld-free space, there can be only one classical
path associated with it and the classical and quantum-
mechanical descriptions are equivalent. However,
when a particle interacts with a force Geld, its classical
action will change from moment to moment in an un-

predictable way because of the Planck quantum of
action; we must then assign to it an ensemble of orbits.

In the previous paper, the results were not expressed
in a relativistically covariant form. We shall consider
the relativistic case in this paper and give a more
detailed analysis of a particle in a force Geld.

The Relativistic Case of a Free Particle

We start with the energy-momentum four vector

(y, iE/c) that defines a particle with momentum p
and total energy E moving in field-free space. If mo

is the rest mass of the particle, then the length of this
four vector is given by

The significance of this classical "wave function"
interpreted as a classical "probability amplitude, " is
that the probability of finding a particle somewhere
in its classical orbit is exactly one. This, of course, is
what is to be expected in the classical picture since
according to this picture, a particle can be in only one
well defined and experimentally observable state at
any time and therefore can have associated with it
only one probability amplitude. One now passes over
to the quantum mechanical picture by assigning to the
particle an ensemble of possible classical orbits, each
with its own classical action and its own probability
amplitude which is again of the form Ae' "'", where
e refers to the eth classical orbit and 2 is a normaliza-
tion constant. Since according to the quantum picture
there is no way of knowing exactly in which of these
classical orbits the particle is, we must superimpose all
of these states and assign to the particle a probability
amplitude that is the sum of the individual classical
"probability amplitudes. " Since the probability for
finding the particle in any volume element is just the
square of the absolute value of the probability ampli-
tude, we obtain the well-known interference effects that
are characteristic of quantum mechanics.

It is clear from this analysis that as long as a particle
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' L. Motz, Phys. Rev. 126, 378 (1962).

ps —Es/cs = —moses

Moreover, since this four vector satisfies the conserva-
tion equation, its four-dimensional divergence must
vanish and we have

divp+ (1/c')E=0

or

Bpr, itpv Bpe 1 itE
+ + +-

Br By Bs c2 Bt

Equations (1) and (2) are the basic equations of our

analysis.
We now introduce the invariant space-time function

S(oo,y,s,t) which we de6ne as the action of the particle,
which is obtained from the relativistic Lagrangian in
the usual way. We may then define the energy and the
momentum in terms of this action as follows:

p, = BS/Bx, etc.E= itS/itt, —

If we substitute these expressions into Eqs. (1) and
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(2), we obtain

(aS 2 aS)2 (aS 2 (aS)2
+c'

i i i i
+2/2o'c'=0

& at ax& (ay k as)

1 B'S B'S B'S B'S
+ + +

c' BP Bx' By' Bs'

(4)

S= «+p—~+p2y+p»

satisfies these two equations in virtue of (1) and (2).
From (3) we see that we may write

and

Hence

BS AB
~
—iS/A ~IS/A

Bt i Bt

as ha
p

— e i SIII ciS/2—

ax z ax

(6)

The first of these equations is just the relativistic
Hamilton-Jacobi equation of a particle and the second
describes the propagation of the action. It is obvious
that the action function,

cepts. In other words, from a purely formal point of
view, we may say that a free particle in classical
mechanics is described by the same wave equation as
in quantum mechanics. Indeed, the wave equation (7)
is equivalent to the two classical equations (4). We can
go from one to the other by simple algebra.

Again we may consider e'~/" as the classical wave
function or probability amplitude of a free particle.
This means, of course, that the probability of 6nding
the particle in its classical path is just one. This, of
course, has meaning only if a particle is moving in a
single well-dehned classical orbit which is described

by a single well-defined classical action. But herein
lies the difference between classical and quantum
mechanics. The latter takes into account the quantum
character of action and hence denies the possibility of
assigning a well-defined classical path or a single classi-
cal action to a particle. Indeed, we could never verify
that a particle is moving along a single classical path
since our very act of observing it would change its
action by an amount that cannot be smaller than h.
Our description of the particle would then require an
ensemble of classical paths and S values, and, as Feyn-
man' has pointed out, this requires a quantum mechani-
cal analysis.

(aS12 ~ /2 a' a'S
s—iS/2 ciS/ 5 ciS/ 5

(at) i i ap Bt2

, etc.
Bx'

(ap, ' Ah a' a'S
c
—is/2 cis/2 cis/2

&ax i i ax'

(6a)

The Action and the Phase

In the case of a force-free particle, the action is given

by the simple expression (6) which may also be con-
sidered the phase of the classical wave. We can rewrite
it in the form

If we substitute these expressions into the erst of
Eqs. (4), we obtain

E( n r) (E n r)

E/pi kr r/p&

C
iS/O gZ2

—
C2Pg2~ + +

~

CiS/2+2/2 2C2

aP kax2 ay' as')

A a's a's a's a2s)
+— —c' + + i

=0.
i aP ax' ay' as'&

where p is the magnitude of the momentum and n is

a unit vector in the direction of the momentum.

From this we conclude that the frequency, the wave-

length, and the phase velocity are given by

E/h, h/p, and E/p=c2/2/,

Since the expression in the second bracket vanishes
because of the second Eq. (4), we have

A B
ci s/5 — $2V2cis/2+222 2c2ci s/5

c~ Bt2
(7)

We see that this is just the Klein-Gordon equation
for a free particle, and again just as in the nonrelativ-
istic case we have derived it without first introducing

p and E explicitly as operators. Of course, we obtain the
operator equivalents of the momentum and the energy,
but these are derived from the classical expressions by
straightforward algebraic transformations and without
introducing any specifically quantum-mechanical con-

respectively, where v is the velocity of the particle.
Thus, in the classical relativistic case we may formally
assign to a free particle a frequency, a wavelength, and

a phase velocity.
We can also obtain the commutation rules that our

classical operators must obey, again without introducing
any quantum-mechanical assumption. Since the order
in which the momentum and the position of a particle
are measured is immaterial in classical mechanics, we

have

p,x—xp, =0, etc.

2 R. Feynman, Rev. Mod. Phyh 20, M7 (1948).
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Hence

e
—i S/k ei S/5 e

—iS/A& ei S/h. P
z Bx z Bx

by using (6) and (6a)

(BS ' O' Aa Aa—e
—is/2 A2 eis/ A+ &it! eels/2+ &

(at at' i at i at

AB A AB
e
—is/5 ( xeis /)2e—is//ix ebs//e 0

7

z 8$ z z 8$

from which we obtain

A(B25 By)
X (it/e's/")+ e2it/2eis/2 . I

+.—
I

i (at' at)

( a ) a
=e '@e~ iie—ee!

~

ii—ei)e'@e
at ) at

or

ei S/5 ei S/A

zs z Bx- z

(p.).px x(p—.).p A/i ——etc. . (9)

These are just the quantum-mechanical commutation
rules.

Particle in a Field

To analyze the motion of a particle in a field we intro-
duce the 4 vector (A, iit) and choose the gauge so that
the Lorentz condition is satisfied

divA+ (1/c)$=0. (10)

If we form the 4 vector

If we multiply through by c/c and subtract from
Eq. (2), we obtain

1 8 (ap; e BA;——(~—e&)+ 2 I

c2 Bt 1,2, 3 aX iCeBXi

In the same way, we have

Aa BS
+&it

i at at )

(
BS E). a A e a—e is/2 A2 —ebs//! g, eis/2

ax, c ) ax,2 i c ax,

6A 8
(g .eis//e)+ +2ei S//e,

CZ BX; C

h(a'S e BA,) (A a e
s/2I

i& ax2 cax) Lax, c )
Aa e ha(BS e

X — ——A, e''"——
I

——A, I.
i ax; c i ax;&ax, c )

If we substitute this and the previous equation into
(14) and take account of (13), we obtain

1( a ' (A a—
I

iA——ey
. /es2P

I

g.
I

e's/2
c'4 at 1,2, 2 k2 ax' C

+2/2 C2e2is//1 (jii)

p —-A, iI —~ I

c kc c)
and place its length equal to —2/22C as in (1), we have

( e )' 1
p I p,—-A;

I (E &p)'= —2/2—0'c'—
1,2, 2 4 c ) c'

(12)

Equation (14) is just the classical Hamilton-Jacobi
equation of a charged particle in a field. We now obtain

Again we introduce the invariant action S in terms of
which we define the energy and moments as in (3).
Equations (11) and (12) then become

1 a(as ) a (as
+ey I+ Z I

—-~* I=0 (13)
c2 atE at ) 1,2, 2 ax, Lax, c

and

(BS e )' 1 (BS
+ee I

= —~o2C2 (14)
1, , 2 (ax.; c ) C2&at

This is just the Klein-Gordon operator for a charged
particle in a field applied to the classical "wave
function" ei '". Again we see that as far as the operator
goes, we can speak of it either as the classical operator
applied to a single well-defined wave amplitude of unit
absolute value, or as the quantum-mechanical operator
applied to a sum of amplitudes, each one of which is
derived from a different classical action function.

What appears to us to be important in all of this is
that quantum mechanics does not differ from classical
mechanics because one deals with operators in the
former and not in the latter. We see that classical
mechanics can be formulated in terms of the same
operators as are used in quantum mechanics. Further-
more, the classical operators obey the same commuta-
tion rules and 'the same equations as do the quantum-
mechanical ones. The difference, then, between the
quantum-mechanical description and the classical
description lies in the ensemble of classical orbits that
one must assign to a particle in the quantum-mechanical
case as against the single well-defined orbit that one
has in the classical case.


