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Anomalous Behavior of the Coulomb T Matrix
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Some apparent discrepancies in the de6nition or calculation of the Coulomb T matrix are investigated
in an approach that uses shielded wave functions. It is found that the screened Coulomb T matrix behaves
anomalously in the neighborhood of the energy shell and is in fact discontinuous in the limit of zero screen-

ing. A closed-form expression for the T matrix, which has been derived previously, is shown to be essentially
correct off the energy shell.

I. INTRODUCTION

' 'N the usual application of the impulse approximation
~ ~ to a many-body scattering problem, it is common to
introduce the two-body scattering matrix or T matrix

(pl Tlk). The transition probability can then be ex-

pressed as an integral in which the T matrix is folded
into the product of the initial- and final-state mo-

mentum distributions.
Usually it is necessary to make further approxima-

tions, because experimental two-body scattering data
give information about the T matrix only on the energy
shell p'=k'. The most common approximation is to
ignore off-the-energy-shell effects completely, putting
(plTlk)=(kPITlk). However, if the two-body scat-
tering wave function is known exactly, the T matrix
can be directly calculated from the formula

The T matrix, which is related to the wave operator by
T= UQ'+&, is thereby also in error.

Finally, one can show that the integral in (1), which
has been evaluated for a Coulomb potential V(r) = Vo/r
by several authors, ' does not lead to the correct Coulomb
scattering amplitude. For if a convergence factor e ~"

is used in (1), the result is

rt =nt Vo/A'k,

c,(„)=.-- t Ir(1+i,) I,
o.o ——argi'(1+irt),

(3)

Vo Lp' —(tt:+iX)']'
(p I

T
I
k) = o(st)e'" limy o, (2)

L(y k)a+go]&+to

where

and the principal values of the powers are to be taken.
If we now set p =k and take the limit X~ 0, the scatter-
ing amplitude, which is —47r'ttt/1'' times the T matrix,
turns out to be

Here, ft, is the wave function for scattering by the po-
tential V, and 4, is a Anal-state plane wave.

Since the Coulomb wave function is known exactly
in closed form, it is natural to consider using the im-

pulse approximation for atomic scattering problems.
Such calculations have been made by Pradhan, ' for
instance, in the case of electron capture by protons, and

by Akerib and Borowitz' in the case of electron scat-
tering by atomic hydrogen.

Recently, however, there has been some doubt that
the usual formal scattering theory, which leads to (1),
is valid for a long-range force such as the Coulomb

force. Mapleton' has evaluated the Coulomb wave

operator 0&+&=ie(E+ie—K—V) ' by expanding it in

Coulomb partial waves, and has shown that the func-
tion 0&+)Cl, differs from the usual Coulomb wave func-

tion by an energy-dependent factor. Previously, Okubu
and Feldman4 had studied the integral equation satisfied

by 0&+& in momentum space, obtaining a similar result.

f (j)=f '(y)l I'(1—jrt)e to»&2&n &g

where fa'(r') is the usual expression' for the Coulomb
scattering amplitude:

~2itro —ill In (sin2-,'tt)

2k sin' —'0
f~'(&) =—

The squared modulus of the bracketed factor in Eq.
(4) is srrt/sinh(trrt), similar to the extra factor found by
Mapleton and by Okubu and Feldman. If the limit
X~ 0 is taken before setting p=k, an additional factor
of

eked/2 (p~p) (6)

appears, so that (2) predicts a discontinuity at the
energy shell as well as an incorrect scattering amplitude.

All of these difficulties seem to stem from the fact
that the Coulomb potential distorts not only the scat-
tered wave but also the incident plane wave. Thus, for

' T. Pradhan, Phys. Rev. 105, 1250 (1957);T. Pradhan and D.
N. Tripathy, ibid 130, 2317 (196.3).

R. Akerib and S. Borowitz, Phys. Rev. 122, 1177 (1961).
3 Robert A. Mapleton, J. Math. Phys. 2, 482 (1961); 3, 2

(1962).
4 Susumu Okubu and David Feldman, Phys. Rev. 117, 2

(1960).

5A. Nordsieck, Phys. Rev. 93, 785 (1954); T. Pradhan, ibid.
105, 1250 (1957).

92 '1.. I. Schiif, QNagtttrn 3Iechanccs (McGraw-Hill Book Com-
pany, Inc. , New Vork, 1955), 2nd ed. , pp. 114-120.
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instance the integral equation

ft.=C a+ (E+i e E—) 'V-gt„ (7)

write

(pl &I&)= —(k'/4+~) Z(2t+1)Pt9 k)(pl 2'tlk) (13)
L=p

which is fundamental to formal scattering theory, is
not strictly valid for Coulomb scattering. The same
remark applies to the integral equation for the T matrix,
which is derived from (7). Recognizing this, Okubu and
Feldman suggested either a renormalization or a cutoff
procedure, designed to make the T matrix continuous
at P=k with the proper magnitude. Unfortunately, the
functions so constructed do not then satisfy the integral
equation, so that these procedures must be viewed with
some caution.

One way to settle the question is to Gnd the T matrix
for a screened Coulomb potential and study its behavior
as the screening is turned off. In general this is a very,
di%cult problem, although in principle it can be solved
by an expansion of the T matrix in spherical harmonics.
If a discontinuity at the energy shell exists, however, the
coeKcient of each spherical harmonic will be affected;
consequently, this point can be checked easily if one
knows only the 1=0 component of the T matrix.

There are two well-known potentials for which the
k= 0 radial wave functions are known exactly, the cutoff
Coulomb potential and the Hulthen potential. Both
potentials can be made to resemble the ordinary
Coulomb potential except at very large distances from
the origin. In the following sections these radial wave
functions are used to compute the l,=0 part of the T
matrix. In the limit of zero screening the results are
identical, and show that there is indeed a discontinuity
at the energy shell. They also indicate that Eq. (2) is
essentially correct except when p'=k'.

II. EXPANSION IN SPHERICAL HARMONICS

where
2x'nz

(Pl Ttlk) =-
A2

(plr'l&)Pt(t)d (t =P k) (14)

2'
ets' j t(pr) V(r)Fr(kr)rdr.

A2k

eo Ft'(kr)
|t'rt, '(r) = (2sr) 't P i'(21+1)Pt(k r)e"t (17)

l=p

Fte(kr) sin(kr —-', sr' —g 1n2kr+o t),

a r =argI'(t+ 1+is)) .

(1g)

(19)

The charge parameter rt is def'tned as in Eq. (3). The
Coulomb radial wave functions Ft'(kr) may be expressed
in terms of conQuent hypergeometric functions:

Ft'(kr)/kr =Ct(rt) (2kr) 'e""

XrFr(l+1+irt; 21+2; —2ikr), (20)

I In Eq. (13) the factor —trt'/4z'ttt has been separated
from (Pl Ttlk) to simplify many of the equations in
later sections. ) From the asymptotic form of fs(r) one
can show that

(k I
Tt

I k) = (e'*'t—1)/2ik, (16)

and of course the integral in Eq. (15) must yield the
same result.

For later reference we also give the usual expansion
of the Coulomb wave function:

We shall adopt delta-function normalization, so that
for large r the wave function for a 6nite range potential is

fa(r) (2z-) 'tsl ett"+ fa(r) (e'sr//r) j,

e-.""Ir (t+1+ig) I

«(n) =
(2t+1)!

It is customary' to write

(21)

with

fs(r) =—(4n'rtt/0') (kr"
I
T

I
ir) (kl Z, lk) = (es' t—1)/2ik (22)

and

(pl Tlk) =(2rr) st' e '&'V(r)ft, (r)dr. (10)

The expansion of fa(r) in spherical harmonics may then
be written in the familiar form

Pt, (r) = (2sr) t' P i'(21+1)Pt(k r)e's'(Fr(kr)/kr), (11)
l=p

for the pure Coulomb Geld, even though the series in
Eq. (13) does not converge.

In the following sections we shall be concerned pri-
marily with the calculation of Tp. For this purpose we
introduce a related quantity I(P), which is defined by

2ns
I(P) = e '"'V(r)Fs(kr)dr, (23)

fi'k p

Ft(kr) sin(kr —-', sri+bt). (12) (Pl 2'oIk) = . Cl(P) —I(P)*j.
2i

(24)

For the corresponding expansion of the T matrix, vie

r L. Hulthen, Ark. Mat. Astron. Fysik 28A, No. 5 (1942);
29B, No. 1 (1942).

e L. D. Landau and F. M. Lifshitz, Qttartturn Mechanics, Nort
Retatieistic Theory (Addison-Wesley Publishing Company, Read-
ing, Massachusetts, 1958), pp. 400-401, 419; Albert Messiah,
Qguntlrn Mechanics (North-Holland Publishing Company, Am-
sterdam, 1961), Vol. 1, p. 497.
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and interchanging the order of integration as follows:

k&Co(g)PLANE

I(p) = dt (32)Fxo. 1. Contour
for evaluation of Eq.
(32).

k —p —2ktgran

For convenience, the contour is taken to be that shown
in Fig. 1, with principal values of t'o and (('—1) 'o to
be used.

In the f(rst term of Eq. (32), the contour is deformed
and enlarged until it becomes a circle whose radius
tends to infinity; here we must be careful to add a term
canceling the contribution that comes from including
the pole at t'= (k—p)/—2k. The integral around the large
circle is then easily evaluated by expanding the integrand
in powers of 1/t. The second term in Eq. (32) is generally
quite small and may be estimated by deforming the
contour into straight lines in the lower half plane along
Re(t)=0 and Re(t) =1, plus small circles about /=0
and 1=1.All this leads to

III. CUTOFF COULOMB POTENTIAL

Perhaps the simplest way to screen the Coulomb field
is to cut it off at r=E, so that the potential is

V(r)=V,/r, r&R,
=0, r&Z.

(25)

Within this Geld the l= 0 wave function must be propor-
tional to Fo (kr), and outside it a sinusoid of unit ampli-
tude; hence,

) 'Io

I(p) =1(ICo(g) ! !
—1 +0

Et' 1j — (p —k)R
Fo(kr) =ÃFo'(kr), r&R,

= sin(kr+I)o), r)R,
(33)

(26)

From Fig. 1 and the stipulation about principal values
it is clear that

where E and bo are to be determined. The correct pro-
cedure is to equate logarithmic derivatives at r =R, but
to first order in 1/kR this is equivalent to matching
amplitudes and phases. From Eq. (18) it follows that »g!, =o Ip I

»
(34)

%-1, ()o (ro—g ln(2kR) . (27) !p!&k;
The next step is to calculate I(p), which may be

written
(~)eiop p k io p+k io

XI(p) =2gk&Co(il) e'(' »'iFi(1+i';2; 2ikr)dr. (28—) (p! T()!k) =
2ip p+k

When p=k, the integral can be performed directly,
yielding (35)+0 for

(p —k)R
I(k) =SCo(q) iFi(ig; 1; —2ikr)! P The most remarkable feature of Eq. (35) is that, in

the limit R —+ ~, it displays precisely the sort of dis-
continuity at the energy shell predicted by Eq. (2). Of
course, the value of X'0 right on the energy shell is given
correctly by Eq. (29) and cannot be obtained from Eq.
(35). In fact, it is clear from Eq. (35) that these pro-
nounced changes in magnitude take place within a
narrow region about p =k, whose width is of the order of
one over the range of the force. The significance of this
result will be discussed in a later section.

-e ~'(2kB)—' ( l. )-= NCo(q) —1+0!
I'(1 —i~) kkR

=e'" 1)ICo(g) . —

!In this derivation the asymptotic form of the iFi
function has been used, so that the result is apparently
accurate only to order 1/kR. It can be shown, however,
that if logarithmic derivatives are equated, to determine
1V and l)o, Eq. (29) is exact.) Thus, we fmd that

IV. HULTHEN POTENTIAL
(k! To!k) = (e"'o—1)/2ik, (30) To make sure that the results just obtained are not

unique to the cutoff Coulomb potential, let us perform
a similar calculation for a potential with exponential
screening. We shall use the Hulthen potential

as expected.
When p&k, I(p) may be evaluated by using the in-

tegral representation

(
e "'"'di (31)

2~g e kt —1
iFi(1+i'; 2; —2ikr) =— V(r) = (Vo/R) (e"1~—1) '~ Vo/r r((R

(36)~ (V,/R)e "(' r»R-



ANOMALOUS BEHA VIOR OF COULOMB I' MATRIX 81619

for which the l=0 radial wave function may be written where
in closed form: y= (p —k)R. (4S)

Fo(kr)-%Co (r1)kR
r(ip —~)

~i kr

r (1—~)r (1+ip)

I'(in —ip)
e
—ikt' (4p)r (1+~)r (1.—ip)

Equation (4p) may be written Fo(kr) sin(kr+Bo) if
we take

Fo(kr) = iVCo(i1) kR«&Fr(1+io, , 1 —iP; 2; s)e'"', (37)

(38)

n= kR(L1+ (2'/kR) j'~' —1}, P =n+2kR. (39)

We assume R large enough that le/kRl«1; conse-
quently, 0. is real.

The normalization constant S and the phase shift
are determined as usual by the asymptotic form of
Fo(kr). This may be obtained by expanding the hyper-
geometric function about s= j., with the result that for
r&&R

This integral can be expressed' in terms of a generalized
hypergeometric function:

2iIkRXCo (r1)
I(p) = oFo(1+io., 1—iP, 1;2,2+i'; I). (49)

We may simplify Eq. (49) considerably by invoking
the series definitions of the oF& and oF i functions and by
using the fact that (1+a)„=(a)„+i/u.

2qkRXCo(it) ~ (1+in) (1—iP) „
I(p) =

1+i' ~=o (2+i') (ran+1)!

2i1kRlVCo (r1)
foFi(in, —iP; 1+i'; 1)—1$

-I' (1+i')I'(1—in+ iP+iy)
=Xco(~) —1 . (5P)

I'(1—in+ i') I' (1+iP+iy)

alld

p r (1+in)r (ip)

2kRCo(i1) r (iP in)—

r(1+i )r(ip —~)
ho= arg

r(ip)
(42)

I'(1—iu+ ip)
I(k) =XCo (r1)

r(1—o~)r(1+iP)
=e'"—iVCo(i1) (51)

This expression is valid for all p. When p= k, y= p

(41) and we get

The case of interest is E—+~, so that e~g and
p —+~.We may therefore estimate the gamma functions
by their asymptotic values, obtaining

just as in Eq. (29); thus,

(k l To
l k) = (e"'o—1)/2ik. (52)

r (ip —io.)

r(ip)

I'(2ikR)
=(2ikR) '" 1+0 l; (43)r (2ikR+in) kR)

When peak, both p and y are large compared to n.
Again using the asymptotic form of the gamma function,
we obtain

the normalization constant and the phase shift then
take on the familiar values

1, 5o oo—
g ln(2kR). (44)

It is also interesting to find the form of Fo(kr) when
r&&E. Using the relationship

2Fi(ii, &) e, «) = iFi(~i) e)»)l 1+0(1/b)j (45)

between ordinary and conQuent hypergeometric func-
tions, we may write

F o(kr) =Fo'(kr) LI+0(r/R)+0 (rl/kR) j,
a not unexpected result.

Let us turn now to the evaluation of I(p), which in
this case can be carried out exactly. After the variable
of integration is changed to s=1—exp( —r/R), I(p)
becomes

I(P)=2i1kRXCo(r1) (1—s)'&

I(P) =&Co(~)E(1+'~)'"(1 i~+'P+'~)-—'" 1l-
+0L./(p k)R j. (53)-

Our Anal expression for (p l
Tol k) is then

C, (q)e*'o- p k iM'o ——p+ k+iXq' o

(p I
2'.

I k) =
2ip p+k iX) p k+iX)——+0, (54)

(p —k)R

where X=1/R. This agrees perfectly with the result of
the previous section in the region where both are valid,
i', Ip —kl»1/R.

V. DISCUSSION

The foregoing analysis can of course be extended to
values of l beyond l=0, although results in closed form
are possible only for the cutoff Coulomb potential. lt

oFi(1+iu, 1 iP; 2; s)d—z,

Tables of Integral Transforms, Bateman Manuscript Project,
edited by A. Erdelyi (McGraw-Hilll Book. Company, Inc. , Nevr

(47) York, 1954), Vol. II, p. 399, Eq. (5).
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is well known" that the phase shifts so obtained are
given by

5i 0.i—g ln(2kR), (55)

provided that l«kR. When /»kR, the phase shifts fall
rapidly to zero because of the angular momentum
barrier; the intermediate region l=kR is quite hard to
handle.

Under the assumption, however, that R is so large as
to make contributions from / &kR generally negligible, "
comparison of Eqs. (11) and (17) reveals that

Pg(r) e—'&'""
iP '(r) r(R. (56)

The equality does not hold for r) R because Pz'(r) has
logarithmic distortions not possessed by p&(r).

Let us now assume that (p~ T~k) is calculated as in
the Introduction, but using Eq. (56), rather than just
f&'(r), as the approximation to Pq(r). Quite obviously,
the result is identical to Eq. (2), except that e'" is
replaced by e"0:

It is not difficult to see why Eq. (1) gives incorrect
results on the energy shell when the approximation (56)
is used. In the first place the Coulomb potential is a
long-range potential, even though a convergence factor
is used. Hence, we may expect to get contributions from
the asymptotic region of P&(r), where the approximation
is not valid. However, because the rapidly oscillating
factors, e "~+~)", appear after the angular integration,
contributions from the asymptotic region are negligible
unless ~p

—
k~ 1/R This is precisely the condition

found in Secs. III and IV.
In summary, then, we have seen that the discontinuity

in the T matrix found by Okubu and Feldman and by
Mapleton is quite real, " and that oG the energy shell
Eq. (2) is essentially correct. Thus, Eq. (1), which is a
valid definition of the T matrix for finite range forces,
may also be used for the Coulomb force provided that
shielding effects are taken into account when p'=k'.
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(p~T~L)= Co(g)e'~'limi 0
27r2
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~i(x)= I'i(1 )(x u) ' *"4— (58)

and
x= (p'+k'+X')/2pk. (59)

We are primarily concerned with the coefficient Ap,
which is easily obtained:

A p
——(1/ig) [(x—1) '&—(x+1) '~j . (60)

Thus, the l,=0 component of Eq. (2') is given by

C'0(g)e"o (p k -i7 )—'&-
(pl 2'0lk) =

2ip kp+k ili)—
~p+k+Ai '~-

—
I . I

. (61)
kp —k+z~)

This agrees with the results of Secs. III and IV when
p'Wk' both in magnitude and phase (the limit lI ~ 0 is
understood). If the calculations of Sec. III are repeated
for higher values of l, one again 6nds agreement with

Eq. (57) for p &k'. We are therefore led to the conclusion

that the Coulomb T matrix does possess a discontinuity
at the energy shell, and that furthermore the T matrix
is correctly represented off the energy shell by Eq. (2),
provided e"0 is replaced by ei~&.

'0 For a discussion, see G. Breit, Rev. Mod. Phys, 34, 766 (1963),
Sec. 4.

If we now expand Eq. (2') in Legendre polynomials
according to Eq. (14), we find that

qCO(rl) e"0 p' (k+—il~)—'- '&

(pi Tiik) = — Ai(x), (57)
2 2 k

where

2i8L

P i (2l+1) Ei (cosg),
2ik

where for kR« l

q ln2kR. (A2)

[Incidentally, we note that oi p in(l+1) for large l,
so that the phase shifts 8~ approach zero as I approaches
kR.j

At first we thought that Eq. (2) might have precisely

"It should be pointed out, however, that the T matrix obtained
by these authors does not have the correct magnitude when p'&k',
although the discontinuity is correctly given.

APPENDIX: COULOMB SCATTERING AMPLITUDE

We have deliberately ignored the problem of evaluat-
ing (p~ T~ Ir) on the energy shell, or the equivalent prob-
lem of finding the screened Coulomb scattering ampli-
tude in the limit of zero screening. The customary way
of doing this is to look at the coefficient of e""/r in
the asymptotic expansion of Eq. (56). We have seen,
however, that Eq. (56') is valid only when r(R; it can-
not be used when r is much larger than the range of the
force. On the other hand, the experimental situation,
in which measurements are made by a detector located
well outside the range of the force, clearly corresponds to
r»R.

One may argue that, as long as kr»g, it does not
matter much whether r&R or r&R; the asymptotic
form changes very little. This is probably true, but it
would be nice to have a direct verification such as we
have presented here for the T matrix o8 the energy
shell. This involves performing the sum
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the correct angular dependence on the energy shell, in
spite of the fact that its magnitude is clearly wrong.
However, upon evaluating A ( for p'=k', we And"

Ai= (1/i))) ()'/2k') '&LpF (—i 1+1;1—irl; —X'/4k')

(1+4k2/g2) —ine2i(ai —0'p)

XpF) (—l, 1+1;1+i'; —X'/4k')]

(1/;))) (y/2k ) nl
—

e '('i .p—) 1]+ P())/k R )
+O(i/k R ) (A3)

where as before R= 1/X. Thus, the expansion of Eq. (2)
on the energy shell (with e'Pp replacing e'") may be
written

g»(& t-a0)

f, (r) =1(1+i~) P(2l+1) F((cos8)+6t, (A4)
L=O 2ik

where L is very large but satisfies L((kE, 6& is given by
Eq. (A2), terms of order g/kR have been ignored, and
(R represents the rest of the series. It is evident that even
apart from the factor I'(1+i'), the series in Eq. (A4) is
different from that in (A1).

%e could argue, as do Landau and Lifshitz, ' that
the quantity

the extra factor of exp( —igln2kr) coming from step
(1).Note that this expression for f), (r) may also be ob-
tained from the asymptotic form of Eq. (S6) if r=R.
Assuming the correctness of Eq. (AS), we may then list
the behavior of limz~l (pl T

l k) l
near the energy shell

as follows:
Vp 1

hm, l(1 lrlk) I

=
27r (y —k)P

( Cp(g) ~ (p —k) —&0+

approaches 28(1—cos8) as I.~~ and so is only im-
portant when 8& p 1/L. In that case, Eqs. (A1) and
(A4) differ only by a factor of I'(1+i))) exp( —2iop)
=I'(1 i—r)) except at very small angles, provided that
(R is negligible when 8) p. l The factor I'(1—i))) has
been noted previously; cf. Eq. (4).5

The above argument is not very satisfying, but since
we have been unable to sum Eq. (A1), it will have to
do. The prescription for obtaining the T matrix on the
energy shell from Eq. (2) is then (1) replace e"p by
e'", (2) divide by I'(1—i))), This causes Eq. (4) to
become

c r ~
—2i7(lln2kR

(2l+1)Pi(cos8)

'2 See Ref. 3 for one method of performing the integral.

X. 1 & for

.e &Cp(r))-

p=k

.(p —k) ~0,
(A6)


