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The quasiparticle method is used to find binding energies, scattering lengths, and cross sections for one
particle in a strong Yukawa, Hulthen, or exponential potential. The results are excellent in the lowest
approximation.

I. INTRODUCTION

'HE quasiparticle method' ' allows any nonrela-
tivistic scattering problem to be solved, in prin-

ciple, by perturbation theory. The purpose of this
article is to determine by actual calculation whether
this method gives rapid convergence in practice.

Our test problem is that of ending cross sections,
scattering lengths, and binding energies for one particle
in a strong short-range potential. 4 The quasiparticle
method is 6rst reviewed in Sec. II, and then applied to
the Yukawa potential in Secs. III—VI, and to the
Hulthen and exponential potentials in Sec. VII. In most
of the cases considered, the ordinary Born approxima-
tion either does badly or fails entirely. The "quasi-
Born" approximation gives excellent agreement with
exact results (to a few percent, and often much better)
for reasons discussed in Sec. VIII. A particularly eo-
couraging calculation is performed in Sec. V, where we
knowingly introduce the quasiparticle in a very crude
way, but nevertheless And that our error drops from
19'%%uo to S%%u~ in going from the first to the second order in
the modi6ed potential.

The authors are not skilled in the use of electronic
computers, so all integrals were done in closed form in
terms of tabulated functions. This has the advantage of
providing analytic approximation formulas, but it pre-
vents our being able to say whether the quasiparticle
method is more or less convenient than well-established
variational or direct-integration techniques. However,
our chief purpose here is not to establish another ap-
proximation scheme for potential scattering, but rather
to encourage use of the quasiparticle method in multi-
particle problems (and, we hope, relativistic problems)
by showing that it gives a rapidly converging sequence
of approximations in the simpler case of potential
scattering.

*Research supported in part by the U. S. Atomic Energy Com-
mission and in part by the U. S. Air Force Once of Scientific
Research, Grant No. AF-AFOSR-232-63.

t Alfred P. Sloan Foundation Fellow.
i S. Weinberg, Phys. Rev. 130, 776 (1963).
' S. Weinberg, Phys. Rev. 131, 440 (1963).
s S. Weinberg, Phys. Rev. 133, B232 (1964).
4 We will be mostly concerned with attractive potentials, be-

cause the Born series for a repulsive interaction can always be
made to converge rapidly by merely rearranging its terms. See M.
Rotenberg, Ann. Phys. (N. V.) 21, 579 (1963) and S. Weinberg
(to be published).
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We will attack the scattering and bound state prob-
lems by calculating the operator T(W), defined by

T(W) = V+ VGo(W) T(W), (3)
where

Go(W)—= I
W+V'] '.

In coordinate space Eq. (3) is an integral equation, with
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The bound-state energies are the locations of the poles
of T(W) for W&0.

Solution of Eq. (3) by iteration gives the Born series

T(W) = V{1+K(W)+E'(W)+ ), (8)

~ Much of the material in this section is to be found in greater
detail in Sec. II and Sec. X of Ref. 2.

II. THE QUASI-BORN APPROXIMATIONS

We shall first review the quasiparticle method' and
use it to derive approximate formulas for scattering
amplitudes and binding energies. The Hamiltonian is
taken as

H= V+V(r). —

(We use units withttt=2m=1. ) The potentials V(r) used
in actual calculation will be the Yukawa, Hulthen, and
exponential potentials, but the general discussion in this
section applies to any V(r) which is short range in the
sense that
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Ti(W) = Vi+ ViGp(W) Ti(W)

and 6(w) is the "propagator"

(12)

~(w)=L —J(w)j '

J(w) =(rj vG, (w) vjr)
+(F I

VGo(w) &i(w)Go(w) vlr) (14)

The reduced T-operator is then calculated from (12) by
iteration:

Ti(W) = Vi{1+Ei(w)+EiP(W)+ ~ ), (15)

where Ei(W) is the "reduced kernel"

Ei(W) =Gp(W) Vi. (16)

If E(W) has at most one eigenvalue outside the unit
circle, then

l F) and (I'
l

can always be chosen so that the
eigenvalues of E'i(W) are all drawn into the unit circle,
and therefore so that the series (15) converges. The
condition (2) ensures that E(w) can have at most a
finite number of eigenvalues outside the unit circle, so

(15) can always be made to converge by a finite number
of subtractions of the form (10). j Equation (11) can be
interpreted as resulting from the introduction of a
fictitious elementary particle, but this aspect need not
concern. us here. )

If (15) converges, then a bound-state pole can arise

only in the propagator 6(w), and therefore the binding

energy 8 is to be calculated as the root of

J(—~)=1. (17)

The first "quasi-Born" approximation to J(W) is given

' Reference 1. In this connection, see aIso S. Tani, Phys. Rev.
121, 346 (1961).

where E(W) is the scattering kernel

E(W) =Gp(W) V.

But this series is useless in the presence of composite
particles, because it starts to diverge when any eigen-
value of E(W) leaves the unit circle. In particular, the
truncation of the series (8) at any finite order can never

yield bound states, because none of its terms have poles
in O'. Any such approximation is also grossly inaccurate
for low energies and low angular momentum, if V is

strong enough to have bound states, virtual states, or
resonances, because the scattering is then controlled by
the pole or the near-pole.

The quasiparticle method rests on the replacement of
V by a reduced potential

v,—=v —vjr)(rj v. (10)

It is easy to show that

&(w) = Tl(w)+{1+&1(w)Gp(w)) v jr)
xh(w)(r

l
v{1+Gp(w)Ti(w)), (11)

where Ti(w) is that T(W) would be if the potential
wele Vy.'

and

r (r k) ~ ~ fir (r ~pp )

F(r,k) ~r (r —+ 0)

k=—(W)'I' Imk&0

(26)

(27)

Note that —k* also has positive imaginary part, so both
(24) and (25) are normalizable wave functions. The

by neglecting Ti in (14):

J(w) J„,(w)=(rj vG, (w) vlr). (1g)

In the second approximation we approximate T~—V~,
so (14) gives

J(W)=(rl VG, (W) Vlr)+(r j VG, (W) V,G, (W) Vlr)
=J&n(W) —J&u'(W)+ J&»(W) ~ (19)

where
J&»(w) =(F

l vGp(w) vGp(w) v j F).
The first quasi-Born approximation to the T-operator
(11) is

T(w)=Ti(w)+vjr)h(w)(Fj v
= v+ vlr)j J(w)/1 —J(w) j(r I v (2o)

It only remains to describe how we choose the state
vectors lI') and (Fj. We have considerable freedom
here, because the only requirement that must be met is
that Ei(W) have no eigenvalues outside the unit circle.
But there is one choice that may be called ideal. Let
~ti(w) be the largest eigenvalue of E(W), and assume
that all the other eigenvalues lie within the unit circle.
Then choose lF) and (I'l as the energy-dependent
normalizable eigenvectors

E(W)jr)=pi(w) lr), (21)

(FlEt(w*) =(I'l i1 (W), (22)

normalized so that
(Fl vlr) =1 (23)

With this choice, the reduced kernel Ei(W) will have
precisely the same eigenvalues as E(W), except that
gi(w) is replaced by the eigenvalue zero. If the original
Born series diverged (because

l gi l

~ 1), then this cures
the divergence. If it converged then this accelerates the
rate of convergence.

We cannot usually hope to find exact solutions to
(21) and (22), but this need not worry us. As long as our
guess at

l F) and (1'
l

is not too bad, we can still carry our
calculations to unlimited accuracy by using more and
more terms in (15).In practice, we guess

l F) and (1'l by
requiring that they match the properties of the ideal
choice defined by (21)—(23). These properties can be
determined by noting that (21) is just Schrodinger's
equation for a fictitious energy eigenvalue 5' and a
fictitious potential V/qi(w). The largest eigenvalue i1i

will usually correspond to an s state, so

(rlF) =C(k)r(r, k)/r(4ir)'t', (24)

(F l r) = C(k)I'*(r, k~)/r(4m—)'~' . (25)
where
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where f We)( th' constants asn cond]. tl
~ ~
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0

~r(.,O)
~

V(r)dr

(37)

so we must take k in (36) asion 8" is negative, so we mus aInt eh bound-state region

k=i~; ~= (—W)'I')0. (38)
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III. YUKAWA POTENTIAL: BOUND STATES

The next four sections will apply the results of Sec. II to the Yukawa potential

V(r) = —Xe '/r. (39)

Ke are using units in which the range a of the potential is taken as the unit of length, so that the unit of energy is
A'/2ttttt'. The vertex function will be chosen as the simplest function satisfying (26) and (27), i.e.,

I'(r, k) =e'~"L1—e "] (40)

LSeveral advantages of this I'(r, k) are listed in Sec. X of Ref. 2.jWith this choice the normalization integral (29) is

I C(k)C(k) j—'=

The function J(W) is given by (36) as'

(1 2i—k) (3—2ik)
I'(r, k)I'*(r, —k*)V(r) =), ln

(2—2ik)'
(41)

J(w) =

2 —2ik) —2 ) ( —1 l ( —1

2 ln' I+Lit . I+Lisl
k 1 2ik—) 1 2ik—) K2 2ik—) (1—2ik) 1 ik)—

(1—2ik) (3—2ik)
ln

(2—2ik)'

(42)

where Li2 is the dilogarithm

Lis( —z) —=— x ' ln(1+x)dx. (43)

Thus, the coupling constant X required for a state with binding energy 8 is given by (17) as

(1+2x)(3+2x)
I~ ln

(2+2x)'

(2+2tc ( —2 ) ( —1 ( —1 ( —1

s In'/ +LisI I+LtsI Lisl-
\1+2m El+2m) (2+2m (1+2 kl+ )

(44)

where ~=8'". These dilogarithms have been tabulated

by Lewin. The best "exact" numerical results in the
literature to compare with (44) seem to be given by the
interpolation formula of Blatt and Jackson':

A particularly interesting object for comparison is

X(0), the coupling required to just barely bind a state
with zero energy. The exact result is known" to be

Ex(0)=1 683

),(x) = 1.683I 1.000+1.349tc—0.153tc'

+0.064x'+0.281xs g. (45)
We And from (44) I

or directly from (37)) that

ln4/3
= 1.693The comparison is made in Table I. The X-values di6er

at most by 3%, and generally by much less. There is no

column in Table I for the Born aPProximation, since it so the ag~~~~~~t here is to ab~~t 0 6%
can never yield a bound state.

7 This was derived by using the identity

r r '{e '"—e '"){Ei(—nr) —Ei(—Pr))dr
0

L$2 ( rln) +Les ( o'/P) Lzs ( 0'In) —Les ( TIP)

valid for n, tt, r, a with positive real parts. Here Ei(—s) is the
exponential integral

Ei(—s)= — r 'e "dr; Res&0.

L. Lewin, Dstogart'tttrrts and Associated FNrtctsorts (Macdonald,
London, 1958).

e J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

0
0.2
0.4
0.6

yEX

1.683
2.129
2.570
3.036

1.693
2.154
2.611
3.009

'OR. G. Sachs and M. Goeppert-Mayer, Phys. Rev. SB, 991
(1938).

TABLE I. The coupling X required to give a bound state with
binding energy It'. Here "KX" means the Blatt-Jackson "exact"
result (43), and "QB"means the quasi-Born approximation (44).
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TABLE II. The coupling X required to give a scattering length u, .
Here "EX"means the Blatt-) ackson result (50), "QB"means the
quasi-Born approximation (49), and "B"means the ordinary Born
approximation (46).

V. YUKAWA POTENTIAL: CROSS SECTIONS

The Born approximation (31) to the scattering ampli-
tude is

3.0
5.0

10.0

—10.0
—5.0

gEX

2.793
2.220
1.932
1.683
1.478
1.300

2.988
2.342
1.977
1.693
1.473
1.298

—3.0
—5.0

—10.0

10.0
5.0

fa (E 8) =X/(I+4k' sin'8/2) . (51)

The quasi-Born approximation adds a correction term

f"(E,8)=f'(E,8)+g(E),
where g(E) is given by (32) as

J(E+ie)
g(E) =

4k' 1 J(E—+is)
contrasted with an E/D calculation" using the Born
approximation to give the discontinuity in T across the
left-hand cut. The lowest order solution of the coupled
equations for E and D gives X(0)= 1, the second-order
solution gives X(0)= ~, and the exact solution gives
X(0)=2.80. A computer solution" of the coupled X/D
equations using second Born approximation for the left-
hand cut gives X(0)= 1.70.j
IV. YUKAWA POTENTIAL: SCATTERING LENGTHS

ln'((1 —ik)/(1 —2ik) )
X (53)

ln((2 —2ikf'/$1 —2ik j(3—2ik))

and k= (E)"')0. The quasi-Born result for J(E+ie)
was presented in Sec. III.

It would be tedious to compare (52) with exact results
for a large assortment of energies, angles, and couplings.
We will instead make the comparison only for the total
cross section. The Born approximation gives this as

a,~= —P . (46)

The Born approximation (34) gives the scattering
length here as o (E)=2m

~ f (E,8)~'sin8d8=
0

(54)
1+4k'

The quasi-Born approximation (33) gives instead The quasi-Born approximation (52) gives

a.~n= —)~ 1+
4 ln4/3 (1—J(0))

We have already noted that

(47) o~n(E)=2s.
~ f (E8)+g(E) ~'sin8d8

0

2xX
= o.n (E)+ ln (1+4k')

(ln32/27)
z(0) =~ ~) =0.5906)

5 ln4/3 ) (48) XReg(E)+4s. ~g(E) ~'. (55)

so (47) becomes

a,&B=—X
1—0.0774K

1—0.5906K
(49)

Blatt and Jackson' have given an interpolation formula
for P as a function of a, :

X= 1.683L1.000+1.348a '+1.275a

+0.322a,—'—3.028@,—'—1.326u,—si, (50)

which is expected to be a good approximation for X near
the critical value ) (0)=1.683, where a zero-energy
resonance makes a, in6nite. The comparison between
(46), (49), and (50) is made in Table II. We see that the
quasi-Born approximation agrees very well with Blatt
and Jackson, and that the Born approximation does
very badly. For ~)t~ (1.3 the exact and quasi-Born
results will, of course, both approach the Born approxi-
mation. For

~
a,

~
(3 the Blatt-Jackson formula can no

longer be relied upon.

n Y. T. Fung (private communication).

The comparison of (55) with exact results will test not
only the validity of the quasi-Born approximation for
the s wave (as was the case in Secs. III and IV) but will

also check that the other partial waves are given by the
Born approximation alone, as implied by Eq. (52).

The calculation of o@s(E) from (55) is quite messy,
but it was not necessary to use a computer. Unfortu-
nately, we have not been able to find exact results in the
literature to compare with a.&s (E), so we were forced to
sum up partial-wave cross sections calculated from s-,
p-, and d-wave phase shifts. "The comparison of these
"exact" cross sections with the quasi-Born approxima-
tion (55) and the Born approximation (54) is made in
Figs. 1—4, for X=0.1., 1, 1.5, 2.

The agreement between exact and quasi-Born cross
sections is generally excellent, and always very much
better than for the ordinary Born approximation. The
exact zero-energy cross sections become infinite at
X=1.683, so the comparison is not very meaningful for

"These were very kindly provided by C. Schwartz and Y. T.
Fung.
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0.01

The function J(s) (0) appearing in (19) is

1*(r,O) V( ) V( ")Vy)1 (r', 0)
d rdr (Pr

r r—r" r"—r' r'
J(s) (0)=

(4~)' v(r) ~1(r,o)
~

dr

0.005

0
0

I

0~5
I

1.0
k

I

1.5 2.0

Fro. 1. Scattering cross section versus k = (E)'" for the Vukawa
potential V(r) = —) r 'e " at a coupling value X=0.1. The curves
"KX","QB"and "B"are, respectively, exact, lowest order quasi-
Born approximation, and lowest order ordinary Born approxi-
mation.

A straightforward calculation using (57) gives here

J(s)(0)=X lns =0.2877)( .
Therefore, J(0) is given by the second-order formula (19)
as

J(0)=—,')(+0.0378,'. (6o)

The convergence is obviously quite rapid in the neigh-
borhood of )(=2. The critical value ) (0) defined by (56)
ls now

)((0)= 1.765 (61)
k~0.5; the scattering lengths in Table II provide a
more illuminating comparison at these low energies.

VI. YUKAWA POTENTIAL: SECOND APPROXIMATION

In order to test the speed of convergence of the series
expansion (15) in powers of the reduced kernel, we have
performed a second order calculation of the critical
coupling )((0) required to just barely give a bound state
with zero energy. This is, of course, a quantity that can-
not be calculated by any ordinary Born approximation.
We will calculate it as the root of

VII. OTHER POTENTIALS

The s-wave vertex function we have been using

I'(y P) ersr(1 e
—r) (40)

happens to be the ideal choice for the Hulthen potential

V(r) = —XLe"—1)—' (62)

as compared with the exact value' )((0)= 1.683 and the
first-order value 2.000. The error is reduced from 19%
to 5% in going to second order.

J(0)=1, (56)
in the sense of Eq. (21), i.e.,

where J (W) is given in the second quasi-Born approxi-
mation by (19).

The integrals required to calculate J(s) (0) are difficult
to do in closed form, though presumably straightforward
for a computer. To lighten our labor we will not use the
vertex function (40) employed until now, but will
instead take"

5( d'/dr')+ V(r)/r&i(W) —Wji'(r, k) =0
tfi(W) =)(/(1 —2ik); k = (W)'". (63)

The reduced kernel E'i(W) will have an eigenvalue zero
in place of rfi(W), so we can expect the series (15) to
converge quite rapidly. In particular, the function J(W)
is given in the lowest order LEq. (18)j by

I"(r,k) =e'err

or since we are at zero energy

1(,O) =r. (57)

J(W) = if i(W) =)~/(1 —2ik) (64)

This behaves correctly at r=0, but not at r= ~. Since
(57) is far from ideal, the work of this section will serve
to test a statement made in Ref. 2, that even a poor
vertex function can give very good results if calculations
are carried to sufhcient order in the reduced kernel.

The first quasi-Born approximation (37) now gives

X =1,0

J(i) (o) =)(/2 (58)

so that the critical coupling in this order is )((0)=2,
about 19% too high.

"This choice was made in Sec. X of Ref. 2, and the calculation
was carried there as far as the first approximation (58). LThis
I'(r, k) happens to be ideal for the Coulomb potential. j

0
0

I

0.5
I

1.0
', k

1.5

FIG. 2. Same as Fig. 1, with X=1.0.

2.0
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and all higher order terms vanish. Therefore, the binding
energy is given by (17) as

B1595

8= —k = L(A —1)/2]s (X)1) (65)

This is the exact answer for 8.
It is more useful here to compare solutions of the

scattering problem. The scattering length in the Born
approximation (34) is

1
a,n= —2) Q —= —2Xf(3),

v=1 pe
(66)

where i is the Riemann zeta function, l (3)= 1.202. The
quasi-Born approximation (33) is 0

0
1

0.5
l

1.0
k

I

1.5 2.0

a,on = —2X{f(3)+() /1 —) )) . (67) Fxe. 4. Same as Fig. 1, with ) =2.0. Here fr& and r x are very

These results may be contrasted with the exact value14 large at low energy in response to a shallow bound state at
8——0.04. Again, 0~ is not afFected.

a,Ex= —2X Q (vs —A)—'
v=]

J(0)= P,X, (70)

0
0

'1

0.5
I

1.0
k

I

1.5 2.0

FIG. 3. Same as Fig. 1, with ) = 1.5. Observe that 0.& and 0'~x
become very large at low energies, in response to a virtual state
which becomes bound at ) =1.68. This virtual state is not de-
tected by fr+.

"R.Jost and A. Pais, Phys. Rev. 82, 840 (1951).The scattering
length can be derived with a little work from their Eq. (36), p. 845,
or from, Eqs. (98) and (118) of Ref. 2.

=~.qn —2) ' + + . (68)
8(4—),) 27(9—X)

For instance, at the critical value A=i the Born ap-
proximation gives a, = —2.4, while u,& and a x go to
infinity, their difference being 3.5% of a,n. The ap-
proximation (67) becomes poor when X approaches 4,
where a second bound state appears.

For the record, we will give some results for the
exponential potential

V(r)= —Xe ". (69)

Using the vertex function (40), we find now that the
lowest quasi-Born approximation (37) gives

so that the critical ) for a bound state at zero energy is
X(0)=16/11=1.455, which is 0.6% higher than the
exact value" ) (0)=1.446. The scattering lengths (34)
and (33) turn out to be

a, = —2X,

a,qn = —2X( (1—0.11))/(1 —0.69) )}.

VIII. DISCUSSION

(71)

(72)

'5T-V. %'u and T. Ohmura, Quentlm Theory of Scattering
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962), p. 80.

We must confess to some surprise that our lowest
order approximation works so well. To understand the
reason, it is necessary to consider the bound-state and
scattering problems separately. The former is exactly
solved by the lowest quasi-Born approximation if the
vertex

~

I') happens to be an eigenfunction of the kernel
E(W), as it was for the Hulthen potential in Sec. VII.
Hence, our success in calculating binding energies and
the critical coupling X(0) for the Yukawa and expo-
nential potentials might perhaps mean only that the
vertex function e'""f1—e "j, which is an exact eigen-
function of the Hulthen kernel, is also close to ideal for
any potential of unit range.

But this does not explain why the scattering calcula-
tion also turns out so well. Suppose we are able to find
an ideal vertex function, as was the case in Sec. VIII.
The reduced kernel E'r (W) is then not zero, but still has
all its original eigenvalues, except the largest. The
magnitude of the second largest eigenvalue i)s(W) will

therefore govern the rate of convergence of the ex-
pansion (15) in powers of Xi(W). The correction to the
lowest quasi-Born approximation (20) will be much fess
than indicated by

~
rl&(W) ~, because the Born term ac-

counts to some extent for all the rf„(W). LHowever, the
only case for which the lowest quasi-Born approxima-
tion gives the scattering amplitude exactly is for a
separable potential, in which case K(W) has only one
nonzero eigenvalue. )
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So we can therefore account for the success of the
lowest quasi-Born approximation in scattering prob-
lems, provided that the second largest eigenvalue
r)2(E+ie) of the scattering kernel E(W) 'is appreciably
less than unity in absolute value. And conversely, the
approximation must obviously be poor if ~r)r(E+ie)

~

approaches j., since this is the condition for a second
bound or nearly bound state. In this paper we have been
interested in scattering for which the largest eigenvalue
rl&(E+ie) never gets very far outside the unit circle;
hence we can understand our success if the eigenvalues
r)r(W) and r)2(W) are not too close in magnitude.

How tightly packed are the r)„(W)? For the Hulthen
potential the question can be answered exactly; in this
case the vth eigenvalue has the magnitude'

Q„r)„(W)=—k ' V(r)e" sinkrdr
&

contributions from all eigenvalues g„, so the success of
the quasi-Born approximation should not have sur-
prised us.

For the Yukawa potential it is known" that a second
s-wave bound state appears at X=5. (The 6rst p-wave
state does not appear until X=9.) Hence at zero energy
~rf2/r)r~ =1.7/5=1/3. As above, the Born term will

partially account for r)2, rfs, etc., so when
~
r)r

~

=1 (i.e.,
) =2) we should expect the error in the lowest quasi-
Born approximation to be quite small.

In general, it is reasonable to guess that the rf„(W)
will decrease rapidly with v for any short-range po-
tential, because they satisfy a sum rule. "

l~,(E+')I =
vLv'+4EjU2

(&3)

"Reference 2, Eq. (118).

Hence,
~

r)2~ / ( r)r
~

is 4 in the interesting case E&&1 where
the eigenvalues are largest, and ~r)2j/~rjr~ (-,' at all
energies. The role of r)2(W) and higher eigenvalues can
be seen very clearly from Eq. (68), which gives the exact
scattering length for the Hulthen potential. For P = 1 the
percentage error in the quasi-Born approximation (67)
drops to zero, since the scattering length is dominated
by the shallow bound or virtual state, which is ac-
counted for exactly by the ideal vertex (40). The differ-
ence between a,Ex and a,@B remains roughly constant,
being given in (68) by a sum of terms arising respectively
from rid, r)3, . (When X=4 a second bound state
appears and this difference becomes large. ) The Born
approximation (66) accounts approximately for the

the sum running over s-wave eigenvalues only. A purely
attractive or repulsive potential will have all r)„(0) of
the same sign, so the convergence of the sum implies
that they must vanish rather rapidly for v ~~.

In summary, we can say that the quasi-Born ap-
proximation works very well in scattering problems
because ordinary potentials are effectively about 70%
separable at low energies, and because the Born term
accounts very well for the small higher ri„(W), and, of
course, dominates at high energy.
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