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The connection between the partial-wave S matrix on different Riemann sheets is obtained from unitarity
and analyticity. Under the assumption that coupling between channels can be varied analytically, it is
shown that a resonance pole or bound-state pole may lead also to "shadow poles" on other Riemann sheets.
The existence of shadow poles is illustrated by a unitary resonance model based on a sum of Feynman
diagrams. In general, the number of shadow poles that can be deduced from an observed resonance depends
on the number of channels that still have a particular resonance pole in the absence of coupling between
channels. If the pole still appears in all channels, then shadow poles occur on every Riemann sheet; if it
appears in only one channel, then shadow poles appear on half the sheets. If the resonance disappears in the
absence of channel coupling, our method leads to no conclusions. In connection with the unitary symmetry
scheme we note that the existence of shadow poles would permit a simple changeover from the separated
poles of a resonance multiplet with broken symmetry to the coincident poles of the multiplet that must occur
when the symmetry breaking interaction is switched o6'.

I. INTRODUCTION from generalized unitarity and analyticity. Our assump-
tions include analyticity in the coupling between
channels which we represent by g, a variable param-
eter. If we assume that a resonance pole of the S matrix
occurs in each (diagonal) matrix element when the
channel coupling is switched off we can deduce the exis-
tence of (2~—1) poles on the Riemann sheets of energy
for the X-channel problem. Alternatively, if the reso-
nance pole remains in fewer than X-diagonal elements of
S when the channel coupling is switched off there is a
corresponding reduction in the number of sheets in
which shadow poles occur.

In Sec. V we discuss the relation of our work to the
resonance multiplets of SU3. If, as we suggest, each
resonance pole is associated with a set of shadow poles,
then the distribution of poles between Riemann sheets
can be symmetric even when the symmetry is broken.
If the symmetry breaking interaction is switched off,
each pole and its associated shadows can move into
coincidence without crossing the real axis in energy,
except possibly at the lowest threshold to form a bound
state. We note 6nally that the procedure of switching
off the channel coupling strongly breaks the symmetry
of SU3, so that our method does not work within the
SU3 framework although we have no reason to suggest
that it will not give the correct analytic properties of
the S-matrix resonance poles.

A brief account of this work has been reported else-

where, ' with particular reference to the SU3 problem
discussed by Oakes and Yang. ' An analogous solution
to the Oakes-Yang problem has also been suggested by
Dalitz and Rajasekharan. '

A N experimentally observed resonance usually in-
dicates that there is a pole in an element of the

partial-wave S matrix. This "resonance pole" will

occur in the unphysical sheet of the energy plane that
lies nearest to the energy of the observed resonance.
The object of this paper is to show that there may also
be other poles associated with each resonance. Under
certain general assumptions about analyticity we estab-
lish from generalized unitarity that the existence of a
resonance pole implies the existence of shadow poles on
different Riemann sheets in the energy variable. We do
not know whether these general assumptions are always
satisfied by known resonances of elementary particles;
but we are able to show that the existence of shadow

poles would greatly simplify the problem of achieving
symmetry of resonance multiplets in SU3 when the
symmetry breaking interaction is switched off.

In Sec. II we obtain from unitarity, the connection be-
tween the values of the partial-wave 5 matrix (or a sub-

matrix) on different Riemann sheets of the energy
variable in the E-channel problem. Our results are
illustrated in Sec. III by a simple unitary S matrix
based on a resonance model obtained by iterating
Feynman diagrams. This model also shows that with
each resonance pole there may be associated "shadow
poles" on other Riemann sheets. Thus in the 2-channel

problem it has one resonance pole and two shadow poles;
one of the latter is far from the physical region and in
the energy plane for this model also serves as one of the
usual conjugate poles. The other shadow pole may be
close to the physical region and could then lead to inter-
ference giving a "false" resonance at the threshold for
the second channel.

In Sec. IV we establish the existence of shadow pol
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II. UNITARITY AND THE CONNECTION BETWEEN
PHYSICAL AND UNPHYSICAL SHEETS

A. Physical Unitarity and Directly Accessible
Unphysical Sheets

Let Pdenote the physical sheet of the energy Riemann
surface. Let T&, T2, T3, ~ denote the thresholds in a
many-channel scattering problem as shown in Fig.
1(a). Let U denote the unphysical sheet reached di-

rectly from P by crossing the branch cut in the energy
range (T &E&T +1) from the upper-half plane.

Physical unitarity in (T (E&T~1) applies to the
S matrix for the m channels that are open, i.e., that are
allowed by energy conservation. Let S denote this
(222X222) open-channel submatrix. The physical unitarity
equation, S (E)=1/S +(E) for (T &E&T) can be
continued away from the real axis to give

S„(E*on V„)=1/S +(E on I'), (2.1)

where S + denotes the Hermitian conjugate of S
denotes the complex conjugate of E, and E* on U is
reached by the path indicated in Fig. 1(a). Each sub-
matrix of 5, as well as the full S matrix, continued to
E&T1 (on I') is Hermitian. Hence, the reflection princi-
ple gives

S„+(Eon I') =S (E* on E), (2 2)

where E* on P is reached by the path indicated in Fig.
1(a). Combining (2.1) and (2.2),

S„(Eon U„)=1/S (Eon I').
Denoting by E the point E on U, this becomes

-x E(i,J , "&I )'

P one

Fro. 1. Diagrams (a) to (d) show the continuation paths in the
complex energy plane which are discussed in Sec. II.

The path by which E is reached from E is shown in
Fig. 1(b); the numerical values of E and E are the
same.

E=k12+ T1——k22+ Ts. (2.10)

Since the matrix S, as well as the elements S» and S22

are Hermitian for E&T1 (i.e., k1, ks both positive
imaginary), we can relate their values on the three
unphysical sheets Preached by paths (1,2), (1), and (2),
respectively7 to their values at the same point on the
physical sheet. Writing E~&,2~, E~&~, and E(2) for these

B. Generalized Unitarity for the
Two-Channel Problem

Equation (2.3) can be extended to unphysical sheets
that are not directly accessible from P. The X-channel
case is mainly a problem of notation and will be de-
scribed in the next part of this section. The essential
features are given by the two-channel problem which we
consider here.

In potential theory the analytic properties of the
partial-wave S matrix and the generalized unitarity
equations arise naturally by releasing the constraint of
energy conservation and considering the channel mo-
menta k& and k2 as independent variables. 4 The physical
sheet of energy corresponds to those points in the pro-
duct of the upper-half k planes that satisfy the energy
constraint. But generalized unitarity can best be ob-
tained by omitting this constraint. There are then three
unitarity equations.

S(ki,k2)S+(ki, k2) = 1, (2.4)

when k1 and ks are positive real (corresponding to
T,&E);

S11(k11)k2)S11 (kl)k2) (2 3)

when k1 is positive real, and ks positive imaginary (cor-
responding to T1&E(T2); and

S22(kl)k2)S22 (kl)k2) (2.6)

when k1 is positive imaginary and ks positive real. (No
such points are allowed by the energy constraint, but
the equation can be continued, as we shall see, to points
allowed by this constraint. )

The usual continuations of these equations give

S(ki*,k2*) =1/S+(ki, k2) ) (2.&)

S11(kl p k2 ) 1/Sll (k1)k2) & ( g)

S22(—kr*) k2*) =1/S22*(ki, k2) . (2.9)

These equations give us the result of continuing from

(ki, k2) on the physical sheet to the points (k,*,k,*),
(k1*, —k2*), and (—k1*, ks*). When the energy con-
straint is applied the appropriate paths of continuation,
denoted (1,2), (1), and (2), respectively, are shown in

Fig. 1(c) in the energy plane where

S-(E-)= 1/S-(E) (2.3) ' See for example, R. G. Newton, J. Math. Phys. 2, 188 (1961).
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points,
S(E(,,») =1/S(E),
S,(E„,) =1/S„(E),
Sss(E(») = I/S»(E) .

C. The N-Channel Problem

(2.11)

(2.12)

(2.13)

X

C)

S+=S when E(Ti, (E on I'),

Eq. (2.16) can be written

(2.17)

S(;; ... „)(E(;,;,... )) =1/S(;,;,..., )(E), (2.18)

where E denotes a point on the physical sheet I', and
E(;; ... ) denotes the corresponding point on the un-
physical sheet U~;; ... &

reached by a path that starts
from the physical sheet at E and encircles each of the
thresholds T;, T;, ., T once only; this path is shown
in Fig. 1(d).

The (2~—1) unphysical sheets U(;,;,..., ) are reached
from I' by moving the momenta k;, k;, ~ ~, k, to their

We can generalize these results to the N-channel
S matrix. We need not assume that there are only N
thresholds in the problem, but rather that we pick out
the N lowest two-particle thresholds and refrain from
encircling any others. We then examine the (XX/V)
S matrix for these N channels.

In this case, there are Ã unphysical sheets U~,
U& that can be reached directly from the physical sheet.
However, by following also the indirect paths of con-
tinuation of the type (2) in Fig. 1(c) it can readily be
seen that there are (2N —1) unphysical sheets in the
N-channel problem. To label these we require a new
notation that specifies the relevant paths of continua-
tion from the physical sheet.

Let S(;,;,..., ) be the submatrix obtained from the
i, j, - ., m rows and columns of S. By generalized uni-
tarity this submatrix is unitary when (k;,k;, ~ ~,k ) are
positive real and all other k's are positive imaginary.
This unitarity equation for S(;,;,..., ) can be continued
to arbitrary (ki, ,k~) and it tells us the result of con-
tinuing from a point (ki, . ,k)i) on P on a path such
that

(2.14a)
all other

k, -+ ,k*( Ps—i, j, ~ ~, m). (2.14b)

Writing E for the momentum matrix, we denote the
continuation shown in (2.14a,b) by

(2.15)

Under this continuation generalized unitarity gives

S(', ,-,-) (&*('. ,"~ .-))= 1/S+(', .~ ~ ~ .-) (&) (2 16)

This is the generalization of Eqs. (2.7), (2.8), and (2.9).
When the energy constraint is applied, the continuation
(2.14a,b) or (2.15) implies a definite choice of path in
the energy plane. Using the fact that

FIG. 2. The k1 plane for the resonance model used in Sec. III.
The half-plane Imk»0 corresponds to the physical sheet I', and
k2 ——(kP —m')'('. The resonance pole is c~ and cs is a shadow pole;
c3 is both a shadow pole and one of the conjugate poles, c4 is the
usual conjugate resonance pole.

III. A RESONANCE MODEL

Before continuing with the application of generalized
unitarity to our problem we consider a specific unitary
resonance model. The resonance character is obtained
by adding a series of self-energy Feynman diagrams as
discussed elsewhere by one of us. 5 With scalar particles
and subtraction of the usual self-energy divergence the
corresponding part of the scattering amplitude becomes

Zgi
(3.1)

s—3P+Q (a„+ib,)
where s is the square of the invariant energy, g„ is a
coupling constant, and

ar+ibr =gr'(1 —4m/'/s)'"

)1+(1—4nz„'/s)'('y
X»i i+is . (3.2)

k1—(1—4m„'/s) '~')

The essential resonance feature of this model that we
wish to use is given by the denominator in nonrelativistic
approximation. With two channels only, this denomina-
tor is

where
d= ki —c'+zgiki+zgsks, (3.3)

(3.4)

From this denominator in S» we can construct a unitary
S matrix for the two channel problem. This is

1 (ki —c —zgiki+zgsks )

d E 2i(gigskiks)'I',
(3.4)

As g2 —+0 the two channels become uncoupled and

sR. J. Eden, Proc. Roy. Soc. (London) A210, 388 (1952);
ibid. 217, 390 (1953).

lower half-planes,

(k, ,k;, ,k )~(—k;, —k;, , —k )

while leaving the remaining k's unaltered. On each sheet
U(;;... ), the appropriate submatrix S~;,;,..., ~ is re-
lated to its value on the physical sheet by Eq. (2.18).
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S» —+1. The poles of S are given by the zeros of d
$Eq. (3.3)j. Typical locations of these zeros in the kt
complex plane are shown in Fig. 2, where the sheets on
which they lie are indicated by the paths of continuation
from a point on the physical sheet. The appearance of
shadow poles t, ~ and c3 of the resonance pole c& illustrates
the characteristic multisheeted character of resonances
which we reported earlier. This is because the S matrix
of this model is diagonalized as either gj or g2 tends to
zero; and in either case a resonance pole remains in just
one element, S» or S~~. The nondiagonal S-matrix ele-
ments of our model involve the well-known square root
terms coming from the momentum matrix for coupled
channels; their effect on generalized unitarity is dis-
cussed in the Appendix.

It is of some interest to trace the pole c~ and its sha-
dow poles as either gJ or g2 tends to zero. In general,
when neither g& nor g2 is zero we may regard c2 as the
shadow of ci and cs and c4 as their conjugate poles (in the
energy plane they are of course at complex conjugate
positions). We could equally regard cs as the shadow of
c~ with c2, c4 as conjugate poles. If now g2 ~ 0, the poles
at ci and cs (which remain in Sii) coalesce, leaving Sii
at g=0 with one pole at c~=c2 and its conjugate at
ca=c4. If we increase g2 and simultaneously decrease

g~, the pole at c2 moves up from ci, crosses the real axis
above m and when gi= 0 becomes the complex conjugate
of c&. At this point cs= —c~ which, viewed in the energy
plane, means that c3 has coalesced with c~, leaving S22
with one Pole at c& (or cs) and its conjugate at cs (or c4).

As we shall discuss brieQy in the Appendix, unitarity
does not prevent a pole from crossing the real axis as
described above. This is because the point at which it
crosses has k&&0 but k~(0 and at such a point S is not
unitary.

The resonance model that we have used is based on an
S-state interaction. However, we believe that the
Riemann sheet distribution of poles and shadow poles
that it suggests is not confined to S states. In the next
section we establish the existence of shadow poles from
analyticity and unitarity which confirms their generality
for any partial waves to which our analyticity assump-
tions apply. We note further that our assumptions hold
for a wide class of multichannel scattering problems in
potential theory. '

IV. SHADOW POLES AND UNITARITY

We now examine the resonance and bound state poles
of an X-channel Smatrix with a view to finding on which
sheets shadow poles will occur.

A. Shadow Poles in a Two-Channel Model

We consider a two-channel S matrix which we assume
is analytic (except for poles) in the coupling between the

' Since this paper was completed a Letter by M. Ross has been
published LPhys. Rev. Letters 11, 450 (1963)j, which obtains
similar results for poles in any partial wave but uses a different
method and di6'erent assumptions from ours.

two channels. This assumption can certainly be built
into potential theory by writing the potential matrix as

( V11 gV12)
(4.1)

kgV12 V22 )
in which case S(g,E) is analytic in g. In S-matrix theory
the assumption can only be justified as a convenient tool
for producing results. We now consider the behavior of
poles of S as g is varied and vanishes. If the pole
(either resonance or bound state) is produced by the
off-diagonal element Vis, then it must vanish (either by
going to infiinity or by its residue vanishing) as g tends
to zero.

We shall consider only those poles which do not van-
ish when g goes to zero; that is, poles caused by V» or
V22 or, if they are related, by both. As we shall discuss
later, the resonance multiplets in the symmetry scheme
SU3 are probably poles of this type. Let us suppose then
that, when g= 0 and the S matrix is diagonal, there is a
resonance pole, at A=A, in the element S~i. We now
prove that when g&0 this resonance gives rise to two
poles in S on two different unphysical sheets, fUt» and
Uti s& in the notation discussed abovej. We give first
a suggestive but unrigorous argument. We then indi-
cate how this argument can be made rigorous and finally
we give an alternative argument based on the general-
ized unitarity equations (2.18) or (2.11—2.13).

When the coupling g is zero the element S&~ does not
have a branch point at T2 and the resonance pole can be
reached from the physical sheet either above or below
T, Lsee Fig. 3(a)g.

We now claim that when g is small but nonzero the
effect of the branch point T~ must be small and hence a
pole must still be found on either path, though no longer
in exactly the same place on each sheet.

This simple argument can easily be made rigorous.
Let us suppose that the pole of S~i when g=0 occurs at
A=A. Then if we confine ourselves to some neighbor-
hood of A, the analytic function S&i(g,E) taken on the
two unphysical sheets concerned LU&r& and U&i, s&j de-
fines two different analytic functions a(g,E) and b(g,E)
of g and K These two distinct functions (which happen
to coincide when g=0) both have poles at g=0, E=A.
Now it is well known that poles of analytic functions of
two variables lie on analytic surfaces. Thus, when g is
small but nonzero, each of the functions has a pole dis-
placed from A by an amount proportional to g; these
two poles are likewise displaced from one another by an
amount proportional to g. Finally, when g&0, a pole in
one element of S must appear in all elements of S. So
we see that when g/0 the whole Smatrix has two poles,
one on the sheet reached through Ti&E&Ts fi.e.,
Uti&$ and one on that reached through Ts&E Pi.e.,
Utt, »j.Each of these poles is accompanied by the usual
complex conjugate pole near to A* on the appropriate
sheet.

If, when g=0, Sii has a bound-state pole (at E=B,
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say), an exactly similar argument shows that when g is
small and nonzero S has two poles, this time on the
physical sheet P and the unphysical sheet U&». )See
Fig. 3(b).j

Similarly if, as g goes to zero, a pole of the Smatrix re-
mains in the element S22 we can show that for g&0 this
implies two poles in S. If the pole in S22 is a resonance
pole, then the resulting two poles of S lie on the sheets

U(2~ and U(~, 2) while, if the pole of S22 is a bound state,
the two poles lie on P and Ut t& t see Figs. 3 (c) and 3 (d) $.

An alternative proof of these results is obtained by
using the unitarity Eqs. (2.18) or (2.11-2.13). Suppose,
for example, that S~~ has a resonance pole at E=A when
g= 0, the pole being of course on the sheet U(&). Then by
(2.18),

S„(g=0,A) =1/Sgg(g=0, A(g)) =0 (4.2)

Fzo. 3. (a) A de-
notes a resonance
pole of S11 when
g=0. (b) J3 denotes
a bound state pole
of SI~ when g =0.
(c) C denotes a reso-
nance pole of S22
when g =0. (d) D
denotes a bound state
pole of S22 when
g =0. xG

(i.e., Szq has a zero at A on the physical sheet when

g=O). But when g=0, S is diagonal

detS(g =0, A) =0. (4.3)

S(En,))= 1/S(E) (4.5)

have poles in the neighborhoods of E=A on the sheets

U(~~ and U(~, 2), respectively.

B. Shadow Poles in the N-Channel 8 Matrix

The results of the previous section generalize easily
to an (1VX1tr) S matrix. Just as before, a resonance or
bound state may be due entirely to the off-diagonal
parts of the potential and in this case the corresponding
pole must vanish as the coupling between the channels
goes to zero. If the pole does persist when the coupling
matrix g;;=0(i&j), it will, in the absence of any sym-
metry among the channels, appear in one matrixelement
only. Exactly similar arguments show that if there is a
pole in S;; when g;;=0 there must be 2~ ' poles in S
when g,,/0 on 2~—' different sheets. H the pole in S;;
is a resonance then the 2~ ' poles occur on the sheets

U(;), U(;,), etc. , that is all those sheets with Imk;(O.
If the original pole is a bound state, then the 2~ ' poles
are on all those sheets with Imk;)0 (including the
physical sheet P).

V. THE SUg MODEL AND SHADOW POLES

When the symmetry breaking interaction is switched
off (G=O, say) the poles that correspond to a resonance
multiplet in SU3 should be at the same point and on the
same Riemann sheet in energy. The problem of how the
poles in a multiplet move to the same place as G —+ 0
has been discussed by Oakes and Yang, ' and by Dalitz

Thus the two analytic functions Sn(g,E) and detS(g, E)
both have zeros at g=0, X=A on the physical sheet.
It follows that for any small, nonzero g, both functions
have a zero in the neighborhood of E=A. Thus, both

S»(&&») = 1/S»(&) (4 4)
and

and Rajasekharan. ' The former consider the problem
on the assumption that each resonance is associated
with only a single pole. The poles associated with difer-
ent resonances in a multiplet when there is broken
symmetry, will in general lie on different sheets, but
when the symmetry is restored (G=O) they must be
on the same sheet. If the mass formula holds the reso-
nance multiplet (1ttsp*, Yt, t~s*, Qs), for example, be-
comes a degenerate bound-state multiplet. We will
discuss briefly the problem of how the Yt* (1385)
resonance pole can move on to the physical sheet with-
out contradicting unitarity.

The Yt* (1385) pole occurs in the (5X5) S matrix
connecting the systems ~A., m-Z, EÃ, gZ, E . We label
the corresponding thresholds T& to T5, respectively. The
experimental observation of the I"~ implies the exis-
tence of a pole on the unphysical sheet which we have
called U(~, 2~,

. that is the sheet reached between mZ and
EE. As G ~ 0, I'~* cannot emerge directly on to the
physical sheet since this would contradict physical uni-
tarity on the real axis between mA. and X1V. Oakes and
Yang point out that by going clockwise round the mZ

threshold the pole can reach the physical sheet. In fact
one circuit round T2 takes I'g* from U(g, 2) to U(g),
whence it can emerge through T& in the usual way as a
bound state. This explanation, as they point out, is
subject to at least two objections. In the 6rst place no
simple mass formula, based on the idea that the
symmetry-breaking interaction can be treated as a
perturbation, would allow the pole to follow such an
elaborate path as G tends monotonically to zero.
Secondly, if the Pq* pole were to move on such a path,
the other members of the multiplet would presumably
be dragged along similar paths, moving in some cases
into the physical sheet.

We suggest that these dif5culties may be easily
avoided if we assume that the resonances correspond,
not to a single pole, but to a dominant pole with a
series of shadow poles on diferent sheets. The dominant
pole of the experimentally observed V&* would be the
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pole on the sheet U(& 2). As G was decreased, the shadow
pole on U~l) would take over the role of dominant pole;
and it is this pole which would emerge as a bound state
when G ~ 0. According to this explanation, the experi-
mentally observed poles of a resonance multiplet in
broken symmetry would not normally be the same poles
as those which appear on the physical sheet and repre-
sent the degenerate bound state when symmetry is
restored.

Unfortunately, keeping within the SU3 framework we
have not been able to establish that each resonance of
the SUS multiplets actually is represented by a series of
shadow poles. The operation of restoring SU3 symmetry
(G~ 0) is not the same as the process, described in the
previous section, of switching off coupling between
channels (g —+ 0). The arguments of the previous sec-
tion cannot therefore be applied without making an
additional assumption that coupling between channels
can be switched oK Such an assumption would of
course take us outside the framework of SU3. Our reasons
for believing that shadow poles do occur in the SU3
multiplets are firstly that, only if the shadow poles do
exist, can a simple explanation of the difBculties de-
scribed by Oakes and Yang be given; and secondly,
it seems at least plausible that the coupling of the vari-
ous channels to each resonance (I'~* etc.) could be rep-
resented by parameters g,;which could be independently
varied. This would give a situation similar to that of the
resonance model described in Sec. III, and by decreas-
ing the various g;, to zero we could establish the exis-
tence of shadow poles. It is important to notice, how-

ever, that as soon as the g;; left their physical values the
SU3 symmetry would be destroyed; however, we have
no reason to suggest that this procedure fails to give cor-
rectly the analytic properties associated with the poles
and shadow poles.

APPENDIX: THE CHARACTER OF BRANCH
POINTS AT TWO-PARTICLE THRESHOLDS

In the model discussed in Sec. III it can be seen from
Eq. (3.4) that the off-diagonal elements 5;; of the 5
matrix contain factors (k;k;)'12. This means that as a
function of energy, S;, has a four-sheeted branch point
at E= T; or 1;.This feature, which clearly depends on
our definition of the partial-wave S matrix, occurs in
potential theory. If the 5 matrix is written as

(A1)

then 5 is unitary (5 S +=1, T &E&Tm+i), but it is
5' which is analytic in k; near k;= O'. Thus, while 5' has
the two-sheeted branch points at each threshold, the
off-diagonal elements of 5 itself contain factors (k,k;)'"
and are four sheeted.

Under these circumstances the most useful definition
of the amplitude A is

5= ~ —2&Xi/2~el/2.

The fact that the unitary S-matrix 5 has branch
points at each k;=0 means that the equation

5(E)5+(E)=1, (all k;)0) (A2)

(and the corresponding equations for the submatrices)
cannot be continued to arbitrary negative values of k;.
The continuation of (A2) is of course

5%)5+(&*)=1, (A3)

but if for example we consider the two-channel problem
and follow a path such that (k„k2) (both positive real)
go to (—k&, k2) this equation gives

5(kate', k2)5+(kate "',k2) =1. (A4)

But from Eq. (A1)

)—1 oq p
—1 0

S(k,.-'- k,) =
i iS(k,.'-,k,)i
E o 1)

'
I o 1)

'

so the continued unitarity equation (A4) becomes

p
—1 0 —1 0

5(z)i is+(z) = i, k, &o,k, yo. (As)
4 o 1i o 1i

'

It is a familiar result that, because of unitanty alone,
a pole of 5 can cross a region where S is unitary only if
the whole residue matrix vanishes. Since with S=X/d,
unitarity implies iVLV+= d', we see that if d =0, Eg+= 0.
But the diagonal elements of le+ have the form

(~vx+), ,=g, ix,, i;
these can be zero only if all S;;=0.The continued uni-
tarity equation (A5) however does not force the residue
matrix to vanish and it follows that a genuine pole of S
can cross the real E' axis at points with kl&0,k2&0 as
described in Sec. III.

Finally we remark that although 5 is not unitary when
both k; are real but of opposite sign, it is unitary when
both k, are negative. This is because if Eq. (A1) is
used to continue 5 once around the origin in both k;,
it is clear that S is unchanged. Thus, using Eq. (A4)
with all the k, continued from their positive to their
negative real axes, we find

5(E)5+(Z) =1, (all k,.&0) .

This is, of course, the usual result that S (or its appro-
priate submatrix) is unitary both above and below the
real axis on the physical sheet.

With this defintion A has the usual two-sheeted struc-
ture at all thresholds and its open channel submatrix
satisfies the familiar unitarity equation,

Im1/A„=E„„(r &E&T +g) .


