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Degenerate Systems and Mass Singularities*
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For a system with degenerate energies, the power series expansions of the 5-matrix elements may become
singular. An elementary theorem in quantum mechanics is proved which shows that under certain general
conditions such singularities do not appear in the power series expansions of the transition probabilities,
provided these are averaged over an appropriate ensemble of degenerate states. Application of this theorem
leads to the cancellations of mass singularities and infrared divergences in quantum electrodynamics. The
question of whether a charged particle can have zero mass is studied.

I. INTRODUCTION
' "N many cases it has been observed that the perturba-
~ - tion series expansion of the transition probabilities
for a degenerate system often exhibits infinities which,
however, can be cancelled by averaging over an appro-
priate ensemble of states. The well-known problem of
infrared divergence" in electromagnetic theory is one
such example. Another example is given by Kinoshita
and Sirlin' in their calculation of the lowest order
radiative correction to muon decay (or other decays
through weak interactions). If the mass of the electron
m, is set mathematically to be zero, the partial decay
rates of the muon contain (/n m, ) singularities, but the
total decay rate remains finite. By using the detailed
properties of Feynman graphs, Kinoshita has also
investigated the cancellations of such "mass singulari-
ties" for higher order diagrams.

As we shall show, the occurrence of such singularities
and their cancellations are consequences of an ele-
mentary theorem in quantum mechanics which can be
established without any explicit use of Feynman
graphs, nor even the explicit form of the Hamiltonian.

Let us consider an arbitrary Hamiltonian (&o+g&r)
which can be diagonalized by a unitary matrix U.

Ut(Hs+gHr) U= E,

state b is given by

Z ((U—)'*(U—)' X(U )'.(U )

For clarity, we assume the problem contains a certain
parameter p and the degeneracy occurs in the total
Hamiltonian only when ts —+0. For tt&0, the (s,j)th
matrix element of U~ can be expanded in the familiar
power series in g.

(U+)' =4+g(E—E*+ '
) '(~ —3')(& )'+o(g') (4)

where 8;; is the matrix element of a unit matrix, n is a
positive in6nitesimal quantity, and E, is the ith
diagonal element of the matrix K Furthermore, we
assume that each term in the power series expansion is
finite if there is no degeneracy. As the parameter
p —+ 0, the state of energy E; becomes degenerate with
other states which lie within a certain subset D(E~).
Therefore, if some of the states s, j, a (or b) in (3) are in
the same degenerate set, the power series expansion of
the corresponding transition probability would contain
infinites in the limit p=0. On the other hand, such
infinities can be completely cancelled if we consider the
power series expansion of the sum

U;,U; *—=T;,(E.),
&(&u)

where IID and 8 are both diagonal matrices and g is
the interaction coupling constant. If the problem con-
tains a continuum then U= U or U+ depending on
whether incoming or outgoing scattered waves are used.
The S matrix is given by

S=U tU+,

where t indicates Hermitian conjugation. The cor-
responding transition probability from a state u to a
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where the summation extends over all states a in the
same degenerate subset D(E,) and U can be either
U+ or U . This can be easily verified by using (4) and
neglecting second or higher order terms in g. In an
equally elementary way, we shall establish in the fol-
lowing section a theorem which gives the general
condition under which such cancellations can occur
for every term in the power series expansion.

By applying this theorem to electrodynamics, we
can derive the elimination of the "mass singularities"
in the mathematical limit m. —+ 0 and the cancellations
of the well-known infrared divergences. This will be
done in Sec. III. The question of whether a spin--,'
zero-mass particle can have an electric charge is dis-
cussed in the same section. It is shown that by altering
the usual renormalization program and by limiting
measurements only to the ensemble averages over the
appropriate degenerate sets of both the initial and the
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lnal states, 6nite results for any physical transition
probabilities can be obtained in the power series
expansion. An unusual feature is the necessity of
including interference terms between certain graphs,
some of which may contain disconnected parts. Another
interesting result is that the limit m, —+0 does not
correspond to a theory with two . NmcoNP/ed two-
component particles.

For clarity of presentation, a number of other related
theorems are given in Appendices A, 8, and C. The
details of the cancellation of mass singularity for the
bremsstrahlung process are given in Appendix D. In
Appendix E, we include some further illustrations of
the theorem for the case of a soluble model in field
theory.

Throughout this paper the question of convergence
of the power series is not discussed.

II. AN ELEMENTARY THEOREM

The general perturbation series of the U matrix can
be derived by using the unitarity condition

(6)

and Eq. (1), which may be written as

[U,Ej= (gHi+6) U,
where

A=Hp —E
and U stands for either U+ or U . The diagonal matrix
6 represents the negative of the energy shift introduced
by the interaction gH&. For example, in a field theory
with no bound state, E is the free-particle Hamiltonian
with physical masses, and Hp is the same free-particle
Hamiltonian but with bare masses. '

Let the formal power series expansions of 6, U, T be

Q gal

Theorem: If lim„pk„exists for all e~N, then
lim& p[T (E )$;; exists for all e~ (1V+1) and for
arbitrary states i and j.

Proof: We shall prove the theorem by induction.
Assume that lim„ph„exists for all e~E and that

lim [T„(E,)j,; exists for alii, j and I~M((X+1) .
pmp

[T„(E,)) is related to U by

LT.(E.)j' = 2 2 (U-)'. (U---) .*, (13)
m=p D(E~)

where the first summation Q extends over the subset
& (&e)

D(E,) of all states a that are degenerate with E, in the
limit p —+0. As discussed in the previous. section,
lim„p[Tt(E, )$,; always exists. Therefore, (12) holds
for 3f=1.To show that limp p[Tsr+i(E )j &' exists, we
consider the following three cases:

(i) The state i lies outside the subset D(E,), and the
state jmay or may not lie outside D(E,). From (7), it
follows that (since E,WE ):

(U-)'.=(E.—E') ' 2 (H); (U ) .
k

Substituting (14) into (13) and taiting the limit p, ~ p,
we find for n= M+1

[T~+t(E,)j;,= (E. E,) 'P (H—i),s[T—~(E.)jo;

(15)

and

Q gmU
p

T(E.)= E g"T-(E.),
0

where [T(E )J,; is defined by (5).
When the parameter p, /0, the eigenvalues E, of the

total Hamiltonian (Hp+gHi) contain no degeneracy
other than the usual continuum due to the infinite
volume. The power series expansions of U+ can be
obtained by using (6) and (7). As p —o 0, degeneracy
occurs, and these expansions may contain singular
terms. The following theorem can be proved:

' Strictly speaking, there may also be a shift h, „in the vacuum
energy which, however, can be removed by considering, instead of
(Ho+gHi), the Hannltonian (Ho+gH& o„„I) where I is the-
@nit matrix.

+ Z (~i);,[T~+t i(E.)$,;

where in the summation over / we have used the simple
fact that [Tp(E )j;;=0 for the present case. Thus,
»ms~p[TM~1(E, )],, exists.

(ii) If the state j lies outside the degenerate set
D(E,), but the state i may lie inside D(E,), the exist-
ence of lim„p[T~yt(E )],, follows from the hermiticity
relation

(16)
and (i).

(iii) If both i and j are within D(E,), then by using
the unitarity of the U+ matrix, we have (for ltf) p)

[Ter+i(E.)];;=—Q P (U„),o(Usr+, „);,*, (17)
m=p b

where p p extends over all the states b not in D(E.).The



DEGENERATE SYSTEMS AN D MASS SI NGULARITIES B1551

right-hand side can be written as a sum of [T~+r (E,)];&,
where the states i and j are not degenerate with 8&.
Case (iii) is then reduced to (i); therefore, lim„q
$T3r+&(E,)];; exists. The theorem is then proved by
induction on M.

It is important to note that since U+ is unitary, its
matrix element cannot have a magnitude bigger than 1.
Therefore, lim„q(U~);; and lim„~at T(E,)j;, cannot be
infinite. However, as p, ~ 0, inhnities may occur in the
power series expansion of U+. The theorem states that
such infinities do not occur in the power series of

t T(E.)j*.
Remarks

1. For a system that contains a continuum, the sum-
mation Pn~a. ~

in (13) represents the integration over
all states that lie within the energy interval between
E, eand E—+e, where e/0 but can be chosen to be
arbitrarily small.

2. Since (ho);;='0 an'd (4r);;= —(Hr);;, it follows
that lim„q(T„(E,)j~j exists for I&2 provided (Hr), ,
remains hnite.

3. As stated above, the degenerate set D(E ) should
contain all states whose energy is degenerate with E,.
In almost all problems, the theorem remains true if
the subset D(E,) is substantially reduced. This can
be most easily seen by considering a di6erent problem
in which Hq is changed into Hq' where (H'&)g, = (Hq);q
ifj and k lie in an arbitrarily chosen set S, and otherwise
(H&');I,——0. Applying the theorem to this new problem
we 6nd the relevant degenerate set becomes the inter-,
sections DAS of the original D(E,) and S. For any
given statesi, j, and u, one can always choose the set S
such t'hat (U ); and (U ),, remain unchanged for all
m&m. Therefore, for the original problem we can re-
place, B(E,) by DAS in (13) and the resulting sum

remains, s 6nite in the limit p, —+ 0.
4. 1n the above proof we need only the expansion

formulas (14) for those elements (U ); where E,NE, .
The'co'mpIete recurrence formulas for all elements
(U ),; 'arid (6 ),; are given in Appendix A. These
formulas will be: useful for many explicit calculations.

5. In the above power series expansions, the energy
denominators such as (E, E;) in (15) refer—to the total
energy 8 and E;. An alternative series can be de-
veloped in which the energy denominator is replaced by
(E,' E,') where E ' —and E,' are the eigenvalues of
Hp. A theorem can also be established for the existence
of LT„(E ')$,; when Ho becomes degenerate. (See
Appendix 3.)

6. For problems in 6eld theory, each Feynman graph
represents a part of the S matrix which is the product
U tU+. To obtain U+ or U one may imagine that
each of the Feynman graphs is cut into two by an
arbitrarily drawn line. Rules can be derived to repre-

' Cf. , W. R. Frazer and L. Van Hove, Physica 24, 137 (1958).

sent U+ and U as sums of the respective halves of all
these cut graphs. Our theorem on LT„(E )j;; refers to
the existence of the corresponding sum of products of
these cut graphs when degeneracy occurs.

III. APPLICATIONS TO ELECTRODYNAMICS

We consider the pure electromagnetic interaction
between electrons and photons. The matrix 6 is

3,=5m, f,g,dsr,

where bm, is the difference between the mechanical
mass mp and the physical mass m, of the electron, and
f, is the wave function operator of the electron. We
assume there exists an ultraviolet cuto6 in the theory.
Problems related to the renormalization of the ultra-
violet divergence will be discussed later. (See point 6
below. )

1. Electrodynamics contains degeneracy because
photons have zero mass. This is the well-known infra-
red divergence. '' For calculation purposes we can
assign the parameter p to be the 6ctitious mass of a
neutral vector particle; in the limit p=0 this vector
particle becomes the photon. It is well known that bm,
does not contain the infrared divergence. Therefore,
llm& pA exists for all n. For each given state a, the
subset D(E,) consists of all other states which differ
from u only in the number of infrared photons. The
theorem proved in the previous section states that the
power series expansion of (U= U+ or U )

U;,Ug,*
D (EQ)

does not contain infrared divergence.
2. Another application is one in which the parameter

p, in theorem 2 is the physical mass m, of the electron.
For example, the state of an electron with a three-
momentum y is degenerate with the state which consists
of an electron with momentum p —k and a photon with
momentum k provided both m, and the angle 8 between
p and k are zero. However, because of helicity conserva-
tion the matrix element between these two states for
m, =0 and small 0 is proportional to 8, being zero if
8=0. The transition amplitude for an electron to emit
such a photon is proportional to the product of the
matrix element divided by the energy denominator
L(p —k)'+m']~ZcoL8'+(m, /E)'j, where E and (e are
the magnitudes of the three vectors p and k. The prob-
ability of such an emission with small 0 is proportional
to 1'O'L8'+ (m, /E) $ 'd(cos8) which contains a ln
&((m,/E) singularity as m, ~ 0. Similar considerations
can be applied to states which consist of combinations
of e, e+, and y moving in the same direction. The
resulting singularities are called mass singularities.

It follows from either dimensional arguments or
pz invariance that as m, —+ 0 every order of the pertur-
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bation series for (8m,) approaches zero. (A formal
proof is given in Appendix C.) Therefore, lim„
=0 for all n. Our theorem states that summing over
these degenerate states, there is no (inm, ) singularity
in t T„(E,)j;; or in the corresponding products of the
cut graphs.

3. By using Eq. (2), the theorem can be readily ap-
plied to the 5 matrix. We consider 6rst the case of
mass singularity. It follows from the above discussions
that the power series expansion of

D (Ey) D (E~)

contains no mass singularities, provided we sum over
both subsets D(E,) and D(Es) which consist of the
states that are degenerate (in the limit m, ~ 0) with

the initial state u and the 6nal state 6, respectively.
To illustrate the use of (19) we consider the collision

between an electron with a fixed external potential.
The differential cross section dg. I which includes the
lowest order radiative correction for such a collision
without the emission of any hard photon (i.e., oi~ e

where eWO but can be chosen to be arbitrarily small)
is given by

e' ( q' ) e 3 q'
do-r ——dos 1+—

2~ ln —1 ~ln—+—ln +0(1)
(m, ' ) E 2m, s

(20)

where e'=6ne structure constant, 8 is the initial

energy of the electron, q' is the square of the momentum
transfer and do-0 is the differential cross-section without
radiative correction and without the emission of soft
photons. In (20) the infrared divergence has already
been eliminated by including the contributions due to
emissions of soft photons (i.e., co= ~e). The 0(1) term
remains finite as m, —+ 0 and (e/E) ~ 0. The contribu-
tion of vacuum polarization is not included in (20),
but will be discussed in point 6 together with the
problem of charge renormalization.

Let y and p' be, respectively, the initial and the 6nal
momentum of the electron, with (y( = (y'~ =E. We
define the set D (or D') to consist of all states in which

an electron with momentum y —k (or y' —k') and a
hard photon with momentum k (or k'), where hard
photons means ~= ~k~&s or (~k'~ &e). In addition
the angle between k and y (or k' and y') is less than or
equal to 5 which can be chosen to be arbitrarily small.
In Fig. 1, the diagram (i) represents the collision

process without the presence of any hard photons.
Diagram (ii) represetits the bremsstrahlung process
where the initial state is an electron with momentum

p and the final state is one in the degenerate set D'.
Diagram (iii) represents the absorption process in which

the initial state is one in the degenerate set D but the
6nal state consists of a single electron with momentum
p'.

(iv)

FIG. 1.Diagram (i) shows the elastic scattering of an electron in
an external potential including radiative corrections. Diagrams
(ii) and (iv) correspond to inelastic scattering with the emission of
a single photon, while diagram (iii) illustrates the absorption of a
photon in the initial state of the electron.

It can be readily veri6ed that, after summing over
their respective 6nal and initial sets of states D' and D,
neglecting terms which remain 6nite as m, —+0, the
differential cross sections mrs and dos for diagrams (ii)
and (iii) are given by

e' Eb
d&2= d03= dao—2 ln—

E 3
ln— (21)

or
D(EN)

(22)

Therefore, the sum dot+dos+dos contains no (ln
m, ) singularity.

For practical calculations, (19) can be used to obtain
the important radiative correction terms from the
corresponding real emission and absorption processes,
provided m, is much smaller than all other values of
energy and momentum transfer in the problem.

It is interesting to notice that for hard photon@ the
mass singularity in the transition probability is remoyei
only if the initial degenerate set D(E ) as well @s the
final degenerate set D(Es) are summed over in (19),

4. Another example is the decay of the muon. In this
case, the initial state has no degeneracy (apart from the
infrared photons) as m, —+0. Therefore, in (19) we
need only to sum over the degenerate set of the Gnal
states. In particular, the power series expansion of the
total decay rate of the muon does not contain any
(ln m, ) singularity. '

For p, decays in which the momenta of v„and ~, are
fixed, the partial decay rate remains free from (ln m, )
singularity provided the appropriate degenerate states
of y, e and e+ are summed over. This can be seen by
applying remark 3 of Sec. II, where the set S contains
only I „and I, with the given momenta.

5. For infrared photons, it can be shown that the
power series of either
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already contains no infrared divergence. Since the
problem of infrared divergence has been extensively
studied in the literature'~, we will restrict ourselves
only to a few remarks concerning the difference between
the infrared divergence and the mass singularity in the
limit m, —+ 0. For clarity, let us use the Bloch-Nordsieck
approximation so that the electron currents e j„can be
regarded as a static classical distribution. Let A„
represent the electromagnetic field which consists of
only soft photons (&o(s). The interaction Hamiltonian
is given by

e j„A„d'r. (23)

For each given static classical distribution j„, the
entire Hamiltonian for the soft photons can be diagon-
alized by a unitary matrix U(j). Consider a problem in
which the electron has an initial current distribution
j„which becomes j„after the collision with an external
potential. Let q be the momentum transfer given to the
external potential and V(q) the corresponding matrix
element. The S matrix (to first order in V) is then
given by

S= U t(j') V(q) U(j) . (24)

That the power series of (22) contains no infrared
divergence can be easily established by using the uni-
tarity relation (for arbitrary j„)

U (j)U t(j)= 1

and the fact that our Hilbert space consists of only soft
photons which in turn form the complete degenerate
set.

It is essential that in (24) the momentum transfer q
and therefore the matrix element V(q) are the same,
irrespective of the number of soft photons that are
emitted or absorbed by the electric current. In the case
of hard photons, emissions and absorptions of different
photons maydrastically change the values of momentum
transfer. For example, in Fig. 1 the momentum transfer
given to the external potential in diagram (iv) is

p —k—p', which differs from the momentum transfer
q= p—p' in diagrams (i), (ii), and (iii). The final state
of (iv) is not degenerate with the final states of the
other three diagrams in Fig. 1. The mass singularity of
(iv) is cancelled only if one includes diagrams listed in
Fig. 3 which contain disconnected parts. (See Appendix
D for the details. )

This situation is to be contrasted with the infrared
problem. Let us suppose in Fig. 1, that diagram (i)
represents the collision of an electron without any
emission of photons (hard or soft) and the photons
k, k' in all other diagrams are soft photons (~k~,

i
k'~ (e). Then, according to (22), the contributions of

(i) and (ii)+(iv) contains no infrared divergence.
6. In the above section we assume the existence of an

ultraviolet cutoff X in the theory. For electrodynamics,
the ultraviolet divergences can be removed by a re-

normalization process. All above statements concerning
the absence of singularities due to degeneracies are
correct, provided the relations between the renormalized
charge and the unrenormalized charge do not contain
terms which become singular in the limit that de-
generacy occurs. For the infrared divergence, this is the
case. Therefore, all above statements about the removal
of infrared divergence are also correct in terms of the
renormalized charge.

The same, however, is not true for the limit m, =0.
This can be easily seen by recalling that the value of the
observed electric charge e is usually determined by the
well-known Thompson limit of electron-photon scatter-
ing which clearly does not exist if m, =0. This difficulty
can be overcome by defining the renormalized charge in
a diferent way. Let Di '(k) be the complete propagator
(including all radiative terms) of the photon. Instead of
the usual Z3, we may introduce~ a Z3' by requiring
Lks= (4-momentum)']

OsD p'(k') =Zs' (25)
at k'= —M'/0.

Sy applying our basic theorem, the power series
expansion of Ds'( —Ms) can be shown to be free of mass
singularity. To see this, let us introduce a hypothetical
neutral vector particle of mass M which has the same
form of interaction with the electric field as that of the
photon except the coupling constant is f instead of the
bare charge ep. The total interaction Hamiltonian now
consists of this new interaction plus the usual electro-
magnetic interactions between the electrons and the
photons. Consider the diagonal matrix element of the
S matrix for the state which consists of only one such
particle of mass M. The function Di'( M') can be-
simply derived from the expansion of this matrix
element to the first order in f but arbitrary orders in
ep'. Since both the initial and the final states have no
further degeneracy as et, ~ 0 (M remains finite),
Ds'( —Ms) can be regarded as a special case of (19)
which, therefore, contains no mass singularity.

We now define the renormalized charge e' by

e'= Z3"~'ep. (26)

In terms of e', Eq. (19) contains neither ultraviolet
divergence nor infrared divergence nor (ln m, ) singu-
larity in the limit m, =0.

7. The question whether a charged particle can have
zero mass has been discussed in the literature. ~' Our
results show that if we regard a spin-~~ zero-mass particle
as the limiting case of a nonzero mass particle as the
mass m —+ 0 and if we restrict ourselves only to measure-
ments which consist of ensemble averages over the
degenerate sets, then to each, order of the perturbation
series in terms of a new renormalized charge e', finite

' V. G. Vsks, 7h. Eksperim i Teor. Fiz. 40, 792 (1961) /English
trsnsl. : Soviet Phys. —JETP D, 556 (1961)7.

8K. M. Case and S. G. Gasiorowici, Phys. Rev. 125, 1055
(1962).
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results can be:obtained. for these ensemble' averages.
This, of coursedoes not mean that the entire sum of
such power series exists. (Indeed, the fact that no. such
zero mass charged particle has been observed in nature
leads us to suspect that perhaps the sum does not
exist. ) Nevertheless, in the limited sense of ensemble
averages (over both initial and 6nal states) and power
series calcmlutioes, a theory with a zero mass charged
particle can have a meaning. For problems in which all
such zero mass particles are completely produced by
massive particles, the initial state has no degeneracy.
The single sum over the final set of degenerate states
gives a finite result for the power series calculation.

The absence of any static limit makes the electro-
dynamics of a zero mass charged particle different
from that of a finite mass charged particle even in the
classical theory; e.g. , there is no Coulomb's law. In the
present form of quantum theory, several additional
interesting features may be emphasized:

(i) Although there is no mass in the theory, a length
M—' is nevertheless introduced through the renormaliza-
tion process.

(ii) For a spin--, particle, the limiting process of
starting with a 6nite mass m (therefore, a four-
component theory) and then setting m~0 does not
lead to two Nmcoup/ed two-component particles. This
can be seen by considering the transition between such a
charged particle with momentum p and, say, left-hand
helicity to a right-hand helicity state with momentum

p—lr through the emission of a photon with momentum
k which makes a very small angle 8 with p. The matrix
element for such a transition is proportional to (m/E)
where E= (m'+

~ p ~

') &. The transition probability for
small values of 8 and m is proportional to (rn/E)' times
the square of the energy denominator which is
~ (8'+ (m/E)'7. The integrated transition probability
is, therefore, proportional to J'(m/E)'t8'+(m/E)'1 '
d(cos8) which remains nonzero in the limit m~0.
This seems to indicate that a two-component theory of a
zero mass spin--', charged particle does not exist.

(iii) Another interesting feature is the necessity of
averaging over the degenerate set for the initial states.
Such averages require an ensemble in which states
with different numbers of zero mass charged particles
are populated with equal probability, provided they
belong to the same degenerate set. However, the avail-
able phase space for states with E (unbound) particles
is proportional to Q~ where 0 is the volume of the
entire system. It would appear that such an ensemble
can never be realized. This dilemma can be resolved
by considering the cases when these (initial) degenerate
sets of states are themselves produced from certain
finite numbers of nondegenerate states; e.g., these
degenerate states are the decay products of some mas-
sive particles. These decay products can be regarded as

' It can be shown that the same conclusions hold for a spin-0
charged particle.

wave packets extending over a finite volume V de-
termined by the size of the experimental apparatus.
The appropriate spatial part of the phase-space volume
for the initial distribution of these degenerate states
is, therefore, given by V and not 0 which is infinite.

Mathematically, this necessitates a certain change in
carrying out the limit of in6nite volume. We recall
that Q enters into all our formulas Pe.g. , Eqs. (13) and
(14)j in two different ways. One is through the energy
denominators such as (E,—E;)n which should be set
to its limiting value (E,—E;)g „.The other is the
trivial Q dependence of the matrix elements (H~),;, and
in passing from a discrete momentum sum P~ to the
integration (Ss') 'QJ'd'k. These latter ones can be
combined to give factors Q J's.d'k,', which, apart
from a three-dimensional 5 function for over-all mornen-
tum conservation, should be replaced by V~J's d'k,"
where V is to be regarded as an additional characteristic
parameter of the initial ensemble.

It seems also possible that some of these 0 could have
been replaced by different finite volumes, V&, V&, V3,

~ . The ensemble is then characterized by these
parameters which, in turn, determine the relative
populations of various degenerate systems containing
different number of particles. However, we have not
investigated these possibilities. Several additional in-
teresting questions arise which have not been an-
swered: Can the results of the limiting case m —+ 0 be
formulated by setting m=0 at the outset) Does the
restriction to ensemble averages which seems to be
necessary in the present case have a more fundamental
bearing in the quantum theory of measurements?
Is it possible to investigate the entire sum of the expan-
sions, and thereby throw some light on the important
question whether a zero mass charged particle can
really exist or not?
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APPENDIX A

In this Appendix we will derive the complete recur-
rence formulas for the power series expansions of
(U~);; and 6;;.As mentioned in Sec. II, these formulas
can be derived by using Eq. (1). However, in order to
make our discussion on Feynman graphs appear in a
more transparent. way, we will derive the power series
expansion by using the time-dependent Schrodinger
equation. This has an added advantage of deriving, in a
natural way, the generalizations. of the U matrices
which approach U~ in the limit n=0+Lwhere u is
introduced in Eq. (4)j and remain unitary for any
nonzero 0,.
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Ke choose an interaction representation in which
the equation for an arbitrary dynamical variable A(t)
is given by

8A (t)
i— = [E,,A (t)], (A1)

It (t)= U(t, tp)f(tp), (A2)

where E is the diagonal matrix defined in (1). The
solution of the Schrodinger equation for the state vector
f in this representation is

The diagonal matrices d are independent of n and t.
Their values can be uniquely determined by studying
the above equations in the limit n= 0+.

Theorem A: If there is no degeneracy in the total
energy 8,

t9

lim U„(t,—~), lim U„—(t, ~)—,
0.~0+ ~On

lim U„(t,—~)
n ~0+

where

and

8
i U(—t, tp) = (gHi+A) U(t, tp),

Bt

U (tp, tp) = 1, (A4)

exist for all m and e.
Proof: By using (A13) and the time dependence of

Hi(t),

[Hi(t)]t p= [Hi(0)]5p exp[i(E~—E~)t], (A14)

A—= (Hp —E) . (As) the matrix elements of U„are found to be

For the 8 matrix we need the limit of U(t, tp) over an
in6nite time interval. To establish the existence of such
limits, it is useful to multiply the coupling constant g by
a slowly varying function in time, say, exp( —nItI),
where n is a small real positive number. The limit n
=0+ corresponds to the physical situation. The
interaction Hamiltonian gHi(t)+d is then replaced by

H;„(t)=gHi(t) exp[ o'I t
I 7+A (t) (A6)

where 6 (t) is related to the power series expansion of
6)

[U„(t,—~ )];p= [U„(0,—~ )]pl,

&&exp[i(E,—Ep)t+nnt] (A15)
and

[U„(0,—oo)7;i= [Eg—E,+iwo.] '

X[U--- (0,— )7 (A16)

by

Q gnQ

6 (t)= P g"d exp( —ruxItI) .
n=1

(A7)
For m=1, the oG-diagonal matrix element of U~ is
given by (jNk)

.[Ui (0,—oo )]g——[Ep
—E+io]—'[Hi(0)]g, (A17)

U~( —oo, —oo)=1

which clearly satis6es the theorem. In order that theLet us dedne a unitary matrix U jt,—~j which
theorem holds also for the diagonal element of U~,

satisfies

the matrix d i is determined to be

i(8/Bt)U (t, —oo)=H;„(t)U (t,—oo) . (A10)

For clarity, we consider 6 st the case t~0. Expanding Correspondingly

U (t, po) in a pow—er series

( A)i~
=tLH. i(o—)7 ~

[Ui (0,—~)7;;=0.

(A18)

(A19)

U~(t —oo)= P g~U ~(t —oo)
nm

the successive terms U„(t,—oo) satisfy

Up (t,—oo)=1,
and for e& 1

Next, we assume that the theorem holds for all I
~ (X—1) and m= i. By considering the diagonal ele-
ment j=k in (A16), the matrix 6& is determined to be

(A12) (A ) = —ZLH (o)] LU -(0,—")]

iU„(t,—~)= H (t') exp(o. t') U i (t', —oo)dt'
—P (A );;(U~ „(0,— )];;, (A20)

where U (0,—oo)=lim p+U (0,—oo). It is easy to
see that the theorem holds for all the off-diagonal
matrix elements of U~ (0,—oo). The diagonal matrix
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element is given by (A10), (A15), and (A23), we find

[U (o,— ));, ('x)-' p[H(o)); and
U&(t, —~)[Hp+gH, (t))U(t, —~)=Z

U(~, t)[Hp+gHi(t))U t(~,t) =E.
(A27)

X[Uir, (0,—~)—U&, (0—~))»+ P (6„);; 3. For problems containing a continuum, it is con-
venient to introduce first a finite volume 0 for the
system and then to take the limit Q~ pp before the

X[Uir ~ (0,—~)—Uir (0,—ap));, , (A21) limitn~0+. The U+ and U discussed in theprevious
sections [cf., Eq. (1)) are related to U(t, tp) by

which becomes, in the limit o,=0,

[U (o,— ));,=(ix)-'

8 N—1

P [H (0)),r [U&, (0,— ))»+ P (6„),;
BcL tn=l

8
X—[Uir (0 —~ ));; p+. (A22)

BA

Similarly, one can obtain the limiting expressions for
all the derivatives of UN with respect to n. Theorem A
is therefore proved by induction.

Remarks

—i(a/at) U.(~,t) = U.(~,t)H, :(t)
and

1. In an entirely similar way, one can investigate the
properties of the unitary matrix U (~,t) which satis-
Ges

(A23)

and
U+= U(o —")
U t= U(c0,0) .

APPENDIX 3
We review the Raleigh-Schrodinger perturbation

series expansion of the U matrix [Eq. (1)) in which
the energy denominators refer to the eigenvalues E; of
Hp. It is well known in the case that these eigenvalues
are degenerate. There exists a special orthogonal set
of degenerate eigenstates of Hp for which the expansion
of U remains valid. We will show, however, that the
corresponding series expansion of T(E,P), Eq. (5),
exists in all representations.

We write (1) in the form

[U,Hp) =gHiU+ Uh, (81)

where 6=Hp —E. Substituting the formal power series
expansion of U and lL, Eqs. (9) and (10), in (81) we
obtain the recurrence relation

U~(oo, po)= 1. [U„,Hp)=HiU„ i+ Q U„„h„.
tn=l

(82)

Except for some minor changes, explicit power series
solutions similar to (A16) can be obtained for U (pp, t)
for t~0. Furthermore,

lim U„(~,t), lim U„(ap, t)
a-+0+ ex~0+ g&tn

The solution of (82) is subject to the unitarity condi-
tion

Up= &,

and for n&1,

g U„tU„= Q U U t=o. (83)
exist for all e and rN, where U„(po,tp) is given by the
power series expansion

U ( t)= E g"U (" t)
tt=p n

[U„,Hp)+irinU„=HiU„ i + Q U„A, (84)
tn=l

2. Define

A convenient procedure to solve these equations is to
introduce the slightly modified recurrence relation

(A24)

and

U(t, ~)= g lim—g"U„(t, ~)—
p=p 0.'-+0+

(A25)

U(~, t)= P lim g"U„(~,t) .
e=p n~p+

(A26)

Both U(t, cc) and U(p—p, t) are particular solutions of
(A3). It is clear that the previous restriction t~o or
t~0 can be extended to all t. Furthermore, by using

where n is a real parameter. The advantage of (84) is
that if a solution exists, it automatically satisfies the
unitarity condition (83), for all values of n. This can be
readily verified by substituting (84) in (83).To obtain
a solution of (82) we then take the lima -+ 0. If there is
a continuum, the limit taken from positive and from
negative values of n diAer in general. From the time-
dependent formalism, Appendix A, we Anal that
lim pUp = Up.
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From (84),

(U„);,= (EP E—,"+inn) '—P (H~);g(U„~ )»

and when E.PgE P

(h~'), ;=0. (8»)
Hence, in the case E,'= E;P

n

+ P P (U„„),(6 );, (85) (U„.)., (,En)- Q (H,) „(U~. , U~, '),

where (6„)»——(6 )g, gb».
If the eigenvalues E,' are not degenerate, the proof of

the existence of lim 0~(U„);;,lim 0+8/Bn(U„);; and
higher derivates is the same as that given in Appendix
A. We obtain

n—1

N—1

+ P P (U~ „' —U~ „');~(a ')», (812)

which becomes in the lime + 0

and
1 8

(U„),;= lim —P (H), g
—(U„p)g;"'in & 80,

N—1

+ p p —(U~ „' );g(A ')» =0 (813)
m=1

where U„stands for either (U+)„or (U )„, when
n~0+or 0 .

For degenerate eigenvalues E;, it is clear that the
limn~ 0 of (85) in general does not exist. Suppose,
however, that we allow 6„to have nondiagonal elements
among degenerate states. To avoid confusion, we call
this matrix 8,„' and the corresponding solution of (85),
U„'. Note that U' does not diagonalize the total
Hamiltonian (Ho+gH&). We can then prove the
following theorem.

Theorem 8: There exists a matrix 6„' which has
nondiagonal elements only among degenerate states,
for which

S~A'5= ~, (814)

where 5 is diagonal. We note that S commutes with
Hp. Hence U= U'5 is the unitary matrix which diago-
nalizes the total Hamiltonian.

Finally, since S&,=0 when E&'/E, ', we have

When E,'gE,' the lim pUN' is obtained by setting
n=0 in (85). Similar expressions hold for the deriva-
tive of UN' with respect to n. Theorem 8 is then
proved by induction.

From the unitarity of U' it can be readily established
that 6N' is Hermitian. Let 5 be the unitary matrix
which diagonalizes 6', i.e.,

8 8
lim U„' ) lim —(U„'~) lim (U '~)
a~p+ a~p+ g+ a~p+ g~m

= P (U');g(S) g.(St)„(U't)„.

(U )'.(U ').' (815)
exists for all m and n.

Proof: For n= 1

for thosei, j that satisfy E =E; . Then

lim (U~' );,= (H~);, provided EP/EP,
a ~0 (E,o E,O)

=0 otherwise.

(89)

(810)

D (Eg0)

Substituting the expansion of U' in (815), we obtain
the power series expansion of T(E 0).

Similarly to the treatment given in the text, we may
consider the degeneracy in the eigenvalues E of the
unperturbed Hamiltonian Hp as the limiting case when
a parameter p~0. For p/0, degeneracy does not
occur, and the power series of T(E,o,p) is obtained
directly from the expansion of U, Eq. (85). We have
shown here that

lim T(E.',p) = T(E.')
pe

Now we assume the theorem holds for all n~E —1 has a power series expansion. However, this does not
and m= 1. From ('85' we establish that when E p= E;, imply that

lim T„(E,',p)
p-+p

N—1
exists, where T (E O,p) is the nth-order term in the
expansion of T(E,',p). In general, the order of the
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summation in the power series expansion and the limit
p, —+ 0 cannot be exchanged. This is to be contrasted
with the case when the degeneracy occurs in the eigen-
values E; of the total Hamiltonian, and the energy
denominators in the expansion refer to E;.The existence
of the corresponding limit of T„(E„u) as p, —+0 is
established in Sec. II.

and

where

U tf (x)U =y@L„(x)

Utg (x)U= —P (x)75,

(C1)

(C2)

APPENDIX C

To prove (8m,)=0 in the limit m, =0, we consider the
wave function operator f (x) of the electron with a
bare mass m (physical mass m, ) in the Heisenberg
representation. At any given time t, f, f t, and

t7& obey the same anticommutation rela-
tions. Therefore, there exists a unitary matrix U which
satisfies

of m, . Therefore, in the limit m, =0, bm, must also be
zero.

APPENDIX D

We discuss in this section the cancellation of mass
singularities in bremsstrahlung in the limit that the
mass of the electron vanishes. The singularity appears
here when a photon is emitted nearly parallel to. the
direction of the incident electron, before the electron
scatters from the external potential /see Fig. 1, diagram
(iv)].

In discussing the amplitude for processes containing
nearly parallel electrons and photons, it is convenient
to use helicity states. Let uz(p) be the spin state of an
electron with momentum y and helicity X, where
7=+(—) denotes spin parallel (antiparallel) to the
momentum. Similarly, the four-vector e„(lr) denotes
the state of a photon with momentum lr and helicity

The Feynman amplitude corresponding to
diagram (iv), Fig. 1, is given by

Throughout, the five y„matnces are 4&&4 Hermitian
matrices that satisfy 7„y„+y„y„=28„„.From (C1),
(C2) and the equation of motion, it follows that U can
be chosen to be independent of t and

(SEE'a))'"((p—k)'+m'j
(D1)

where p= (p,iE) and p'= (p', iE') are the initial and
final four-momentum of the electron, k= (k, ia&) is the
four-momentum of the emitted photon, V(q) represents
the external potential which depends on the four-
momentum transfer q= p' —p+k, and (y.a)=y„a„ for
any four-vector a.

If 8 is the angle between lr and p, the denominator

U~H U=H

where H and H refer to the Hamiltonians in which
the mechanical mass of the electron are, respectively,
m and —m. Since high-frequency cutoff P can be
regarded as the result of some additional neutral vector
fields which have a mass X but with a wrong metric,
all the above equations are also valid with a finite cutoff.
Let

~

vac) refer to the vacuum state for H„.We have,
from (C4),

(m' m
(p —k)'+m2 —a&E~ —+8'

~

for 8((1and —&&1.
EE' i

0-(*)=-4-'(*)v4. (C3) .'(I')b V(~)jL—(7 p)+(v k') —' ][7',(k)) (I),

satisfies
S„(x—y) = —ASS (x—y)yp. (C6)

The Fourier transform of S '(x—y) may be written
as

A +iB (y p), (C7)

where (y p)=y„p„, and A B are functions of p'.
From (C6), we have

A = —A andB =8 (C8)

The physical mass m, is given by

m, =(A /B„) (C9)

at p'= —m ' As m —+ —m, we have m, -+ —m, and
bm, ~ —bm, . In terms of m„bm, is an odd function

Ut~vac) = ~vac) (C5)

Therefore, the propagator S (x—y), which is defined
to be the T product

T(vac~f„(x)f (y)~vac) =T&vac~ UUtg (x)
(y)UUt~ vac)

u), (p')$iy V(g)fu+(p)v28 E
X

-m2
(8z~'.p ( z —+~

~

z-
E2 )

(D3)

where the upper (lower) term in the curly bracket cor-
responds to a photon with positive (negative) helicity
and 8, (m/E)&(1. In the case that the incident electron
has negative helicity, the meaning of the upper and
lower term in the bracket is interchanged.

The probability per unit frequency that the photon
is emitted in the forward cone 0~0~8, where 6(&j., is

To evaluate the numerator, we note that in the limit
m~ 0 we have

(y k)(7 ee)up= v2co8ue—
for P=+ or —and 8«1, while

(7 k)(7 e-)u+=(7 k)(7 e+)u —=0 (D2)

For an incident electron with positive helicity, we
obtain for (D1)



DEGENERATE SYSTEMS AN D MASS SI NGULARITI ES B1559

then given by

I ~'(p') [—sv. V(V) HN+(p) l'
ln —X . (D4)

(4n )sE'E'a) res (E cu)—'

Equation (D4) becomes logarithmically divergent
when m —+ 0.

To obtain the contributions which cancel this
singularity, we note that the singularity in (D4) is
due to the degeneracy of the intermediate electron-

photon state with the initial electron state [see diagram
(iv), Fig. 1j. Since our basic theorem applies to ariy'
Hermitian Hamiltonian, we may consider a truncated
electron-photon interaction which only couples these
two states (see Sec. II, remark 3). Then the only other
processes which have a degeneracy with respect to the
initial state are given by diagrams (i) and (ii) of Fig. 2.
According to (A16), the amplitude for diagram (ii) of
Fig. 2 in the case ki ——k, 8i&(1 and (m/Ei)«1, is given
by

N„.(p')[—'y V(q)]u (11 )8' (Ei+~)'
[t0zt(nP/Ets+8P)+ 2irr(Et+os) j 'X

(8E'Et(u) '"(8i+r0)2' g 2
(D5)

p-k
iI,

i p-kf

k

p-kt
k,-k

p-k,

(iv}

Fro. 2. Diagrams (i) to (iv) illustrate some of the processes in
which the initial and the final states are degenerate with diagram
(iv) in Fig. 1, provided m, =0 and p, k, and k& are parallel. By con-
sidering a truncated interaction Hamiltonian which has matrix
elements only between states of a single electron and that of a
single electron plus a photon, the mass singularity of diagram (iv)
in Fig. 1 can be shown to be completely cancelled by the corre-
sponding mass singularity in the sum of the erst two diagrams (i)
and (ii) in Fig. 2.

where 8i is the angle between ki and pi ——y —ki, E and
E& are, respectively, the initial and final energy of the
electron. The interference of the processes illustrated on
diagrams (i) and (ii) of Fig. 2 gives a second-order
contribution which equals (D4) but with opposite
sign. This result is obtained by using (D5) and integrat-
ing over the forward cone 0~8~5, where 0 is the angle
between k and y. [For 8i(&1, (m/Ei)&(1, and ki=k,
8 (Ei8r/Ei—+re).) Hence the singularity is cancelled
when adding these contributions.

We note that the usual Feynman rules for diagram
(ii) of Fig. 2 when ki ——ks lead to an amplitude different
from Eq. (D5); in particular the energy-dependent
factor in the curly bracket for the emission of photons
with positive and negative helicity is given incorrectly,
and a factor ~ is missing.

In the case of the simple truncated electron-photon
interaction discussed above, the process corresponding
to diagram (iii), Fig. 2, for example, does not occur
since it contains. either two photons or electron-positron
pairs in the intermediate state. It can be verified that
this process also contains a mass singularity. Since for
the complete Hamiltonian we must extend the inter-
action to include coupling to these states, other pro-
cesses containing mass singularity will also occur, e.g.,
diagram (iv), Fig. 2. One finds that by adding the
contributions of all of these processes the mass singu-
larity is again canceled completely.

APPENDIX E

In this section, we consider a soluble model in field
theory, which has been discussed in the literature. ' "
Throughout this section, all unexplained notation is
the same as that in Ref. 10.%e will examine in particu-
lar the matrix elements of U, Eq. (1), between the
V state and the N+8 scattering states in the limit
p=mrr+nzs mv-+0, where m~, —ms and mr are the
physical masses of the X, 8 and V particles, respectively.
We will show that in this limit; these matrix elements
cannot be expanded in a power series in the unre-
normalized coupling constant g, but that such an
expansion does exist for the corresponding elements of
the matrix T(Z,) defmed by Eq. (5). The power series
expansion in terms of the renormalized coupling con-
stant exists in the limit p, =0 only after a certain change
in the usual renormalization process. These rnodifica-
tions are similar to those used in Sec. III (point 6).
Finally, to give a further illustration where the cancel-

's T. D. Lee, Phys. Rev. 95, 1329 (1954).
"G. Kallen and W. Pauli, Kgl. Danske Videnskab. SeIske.h,

Mat. Fys. Medd. 50, No. 2 (1955).
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)Ly

e „
N

(Vl U+I V), Eq. (E1), diverges. Therefore (Vl U+I V)
cannot be expanded in a power series in g' in this limit.
This applies also to the matrix element (Vl U+IE8s),
Eq. (E2), at the threshold energy cd= zrzs. Nevertheless,
as an illustration of our basic theorem, we will prove
by explicit calculations that the diagonal element of
the matrix T+(Er ), Eq. (5), for the V state, does have a
formal power series expansion in this limit. For clarity,
we include a subscript + in Eq. (5) to indicate that U+
is being used. We have

(vl r+(z,) I
v)= I(vIU+I v) I'+ P I(vIU+Ix8, ) I',

Fro. 3. Diagram (i) shows the emission of a 8 particle by a V
particle in an external jield which transforms the 1V state into an
1P state. Diagrams (ii) and (iii) illustrate the scattering process
X+8~ X+0' to zero and second order in g~, respectively.

where D(Ez) is the set of E8s states with &d&ztzs+e, and
e is an arbitrarily small energy.

According to (E1), the zzth-order contribution to
I(VIU+I V)I'is

lation of singularities requires the inclusion of a discon-
nected diagram (see Fig. 3), we consider the emission of
a 8 by a V particle in an external field. In dealing with
disconnected diagrams, a great deal of care must be
taken to preserve unitarity in the expansion of the U
and the 5 matrix, while cancelling singular terms. This
requirement is satisfied by the explicit expansion
formula given in Appendix A. In these expressions
Le.g. , Eq. (A16)] the unitarity of U+ is maintained even
for finite 0., where n must be set equal to zero after the
cancellation of singularities due to @=0.

To make the model 6nite, we assume for simplicity a
sharp cuto6 in the interaction at co= A, where co is the
energy of the 8 particle. In this case, there is a bound
state G of the X+8 system which lies above the con-
tinuum, i.e., its mass zn 0)zzz~+ h. According to Ref. 10,

(E5)

which behaves as p "l' in the limit y —+0.
Now consider the second term in (E4) with D(Er )

replaced by the complete set of E8& states. From (E2)
we have

(td+zrz~ —ztzr )'
(E6)

where

g2 X

f(~)= 1+
4zrs s ((d'+zlzz —ztzp) (or' —(v)

(E7)
——1/21

(VIU+I v)= 1+g'2
2coQ (M+zzz~ —tsz )—

(~1) Using the relation

g' " d(olzf(a+irr) f(a zrr)—
»m 21(vIU+I&8,) I'=

4x'

rg
(Vl U+I X8,) = (~+zw~ —m, )I iyg'

(2' Q)'"

2ix
f(M+51')f(cd zQ) = (GJ+z—rz~ zÃz)—

g'k

X $ f(~+irr) f(td in—)], —(ES)

/Ad f(CO)

(E9)
while the matrix element (Vl U+IG) is obtained from
(Ei) by changing zN& to ztzg. Here zN& and zzzo are the
two mass eigenvalues m of the equation

)
2zl z o (6)+m~ —zzzy)

where the path of integration C is a closed curve around
the cut my~cv &X, which does not contain the poles of
the integrand. To obtain the nth-order contribution, we
now expand the right-hand side of (E7), in powers of
gs and substitute the power series in (E9). The result
for the nth-order term is

zrzv' —zrz= gs 2
2coQ(M+ts~ —sz)

(E3)

In Eqs. (E1)-(E3), the sum is carried over momenta
k such that co~h. For an infinite volume Q,

(E6) is equal to
&' 2''Q(co'+zzz~ zip) ((o' o) —ia)i——

p ——+
~ 0 2~'

dGOk07 .

It is then clear that in the limit p —+0, the integral in

2zrz o (a&+zzz~ —ztzr )

g2 X da)'k'
(E10)

4zrs
S (cd'+ZZZ~ —ZtZy) ((o' —td)
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In the limit p, —+ 0, the pole in the integrand at co= my—m~ approaches the branch point at co=my for x~1.
The integral is therefore singular in this limit. We can
readily separate out the singular part by deforming the
contour; it corresponds precisely to the nth-order
contribution to I(VIU~IV)l', Eq. (E5), but with
opposite sign. To complete the proof we note that

l(vlU+I». ) I'= & I (vlU+l»~) I'
D(E )

—r, ' l(vlU+I». ) I', (E»)

for all co, and (Vl U+I EH/, ) would vanish identically in
this limit.

The way out of this difhculty is to define a new
renormalized coupling constant g,

'
by a subtraction in

the integral in (E2) at &op&my —m/v. We then have

(vl U+I».)
(Zi)1/2g i-

g
2'

(~+m~ —m, )I 1+ (~—~p)
(2p/Q)'" 4~2

X
~

——I

v) (~'—~p) (~' —1P—i )&—

(E15)

g2 X do)k
Z' 1+ (E16)

42r2 „, ((p+m/v —my) (/d —p/p)

It is easy to see that a power series expansion of
T(E), Eq. (5), exists also in (g,')', since Z' is analytic
in g'in the limit p~0.

As a last example, we consider a process which re-
quires the inclusion of a disconnected diagram to
cancel the mass singularity. For this purpose, we
introduce a new field P/v in the model corresponding to
a particle E' which interacts only with the X particle.
The interaction Hamiltonian H is time-dependent,

I (vl U+I v) I'+ 2 1(vl U+I».) I'

+ I (VI U, IG) I'=1. (E12)

In this connection it is interesting to note that for
small g')

I (vl U+IG) I
~g (y m//2) —1/242r exp

X
where on the right-hand side the sum gi. extends over

//
(pp +m/v m

all ir and the sum pi' extends only over those states
F82 which are not in D(Ev). The sum Q/,

' has a non-
where g

I (Z~)1/2g
singular power series in g' in the limit p —+ 0.

As we have pointed out, this cancellation of singu-
larities is essentially implied by the unitarity of U+.
In fact if we evaluate the integral in (E9) we obtain
simply the normalization condition on the state U+I V)

42r (X+m/v —my)-

g2() 2 m 2)1/2
(E13)

Z 1/2g

(VI U+I», ) = '
(~+m~ mv)-'—

(2p/0) '/'

g
2

X 1.+ (~+mar mv)—
4~'

Hence, the second term in (E12) does not have a strict
power series expansion in g'. Nevertheless, the differ-
ence between 1—

I (V I U~ V) I

' and the series expansion
generated by (E10) approaches zero as g' —& 0.

In order to eliminate the explicit dependence of the
Xj82 scattering amplitude on the cutoff parameter X,
it is customary to introduce a renormalized coupling
constant g, related to the residue of the pole in this
amplitude at co=m& —mN. By a subtraction in the
integral in (E2) at ~p ——my —m/v, we obtain

H'= f(t) (1//~ tPP~+1//~ ti//~ ), (E17)

where f(t) has a Fourier transform f(p/). The process of
interest is the emission of a 8 by a V particle: V ~ 3l'
+8. The transition amplitude to 6rst order in H' is
given by

d/(1V'8, !a'(~)U(~, —~) I V)

g
i f(m/v +p/ mv)— — (E19)

(2P/0) '/'(my —m/v —1P+2a)

corresponding to the amplitude for diagram (i), Fig. 3.
The transition probability for emitting the 8 in the

energy range me~co~e, where mq(&~~), is

if(m~. +—p/ my)(A'8&—
l U+I V) . (E18)

To first order in g, (E18) becomes

2 (pp'+m/v —my)2(p/' —
pp
—in)

(E14)
4m' (m/v+ p&

—m, y) '
g' '

d&/1pI f(m/v +p/ mv)l'— .

(E20)

where g, =Z2'/'g, and Z2=
I (Vl U+I V) I' is given by

(E1).The limit X —+ ~ of (E14), keeping g, fixed, exists.
However, if we keep g. fixed as p, ~ 0 then the inte-
grand in the denominator of (E14) becomes singular

If f(m~+pp my) is finite at p—/=m// this transition
probability diverges in the limit p ~ 0.

To cancel this singularity we must consider also the
process 1@+82,—& 1P+822. The transition amplitude to
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6rst order in H' is

if—(nttv +ass rr—t~ os—i)(N8g,
~

U+~ N8i„) . (E21)

Evaluating (E21) to second order in g', we obtain
according to Kqs. (A16) and (A17) given in Appendix
A,

( g'
&f—(srttr +os2 rrtt—r coi)—

~ 4, , x, +
(4coiccs)'"0

by

g
egg s SION

4~'
(E23)

, (ntiv+co —ntv)'

pn Eq. (E23), we hs,ve summed over initial states of the
8 particle in the same energy interval. Now if we add
Eqs. (E20) and (E23) we see that the combined transi-
tion probability is 6nite in the limit p ~ 0.

XP(co2 col+2itr) (sttN+coi —trtv+icr)$ '
~

. (E22)

The first and second terms in (E22) are, respectively,
the amplitudes for diagrams (ii) and (iii), Fig. 3.
To order g', the contribution to the probability of find-
ing the 8 particle in the energy interval m&(co~ e due
to the interference between these amplitudes is given

Remark

Note that Eq. (E22) di8ers from the usual Feynman
amplitude in the factor 2 multiplying n. This factor
can be neglected in the nondiagonal elements of the U
matrix, but is essential here, since we are evaluating
the interference term with the disconnected process,
diagram (ii) Fig. 3, at ki ——k2.
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Crossed Graphs in the Feinberg-Pais Theory of Weak Interactions*
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A possible damping mechanism is suggested to prevent the occurrence of essential singularities, such as
that found on the light cone by Bardakci, Bolsterli, and Suura, when Qnite order expansions of the irreducible
Bethe-Salpeter amplitude are iterated in conhguration space without prior regularization. An in6nite num-
ber of irreducible Feynman graphs are considered and approximated by a "peratization" method; a simple
example is found in which the light cone damping, obtained by Feinberg and Pais by summing over the
regularized ladder graphs, is reproduced by this crossed graph method.

ECENTLY, Feinberg and Pais' have developed a
theory of higher-order corrections to weak. inter-

' ~

~

~

actions mediated by charged 8' mesons of spin one.
Their discussion of the leptonic processes, based on an
approximate solution to a regularized ladder approxi-
mation BS equation, has been verihed by Pwu and Wu. '
Recently, however, Bardakci, Bolsterli, and Suura'
have remarked that the sum of the unregularized ladder
graphs has, in configuration space, an essential singu-
larity on the light cone which cannot be regularized
away. Thus the procedures of regularization and sum-
mation apparently do not commute, and in the sense of
BBS, this interaction is not renormalizable.

The purpose of this paper is to suggest a mechanism
whereby the crossed graphs without the aid of regulari-
zation may provide sufhcient damping to prevent the
occurrence of an essential siiigularity. This conjecture is

*.Supported-in part by a Sloan Foundation grant for mathe-
matical physics.' G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963).' Y. Pwu and T. T. Wu, Phys. Rev. 133, B1299 (1964).

'K. Bardakci, M. Bolsterli, and H. Suura, Phys. Rev. 133,
B1273 (1964).

made here within the context of the weak interactions,
but the mechanism might be expected to be relevant to
the renormalization of other vector meson theories.

A standard way of writing the BS amplitude (omit-
ting self-energy, vertex, and closed fermion loop com-
plications) is in terms of the iteration of an irreducible
kernel or amplitude

T= T'+T'XT,

where, as illustrated in Fig. 1, the irreducible amplitude
is de6ned to be the sum of all the irreducible Feynman
graphs. The use of a finite-order expansion ( g'") of the
irreducible amplitude leads, in the approximation of
neglecting 4-momenta but not momentum transfer, 4 to
BS equations whose solutions apparently contain
essential singularities, with the severity of the singu-
larity increasing with order e. For example, for m=2,
one obtains for the "forbidden" crossed graph amplitude

4 An additional simplifying approximation, equivalent to
iterating only the "most singular part" of the irreducible ampli-
tude expansion, has been made here. For n=2 this corresponds to
iterating not the simplest crossed graph but, rather, its value
between spinors.


