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However, he assumed that the maximum effect would
be produced by a totally black disc, and it is not clear
that this is true. If we add only inelastic states to the
model, however, we find that we can produce a I'-wave
resonance virtually anywhere. The Nmiqle value for the
position and width of the p meson is obtained when one
imposes crossing symmetry as well. Thus it would

appear that all aspects are equally important; elastic
unitarity and the correct crossed cuts yield a dasicall&

repulsive interaction, the attraction necessary to pro-
duce a resonance is provided by the inelastic states (a
phenomenon observed in other calculations' ), and the
actual value of the resonance is determined by the
crossing relations.
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For in6nite energies, we determine the asymptotic behavior of partial-wave amplitudes when the full
scattering amplitude satis6es Mandelstam representation and has itself a Regge asymptotic behavior.
Particular attention is paid to the behavior of the partial-wave-amplitude discontinuities on their cuts.
They are shown to behave as ~t

~

&'& ', where t is the energy squared and u(0) is the leading Regge-pole
position at zero energy. This result removes an old-standing diKcuIty in the Chew-Mandelstam calculation
of amplitudes and provides a precise justi6cation of the nearest singularity technique. As an application, we
show that no subtraction is necessary in partial-wave-amplitude dispersion relations at physical values of
the angular momentum, even for the case of S waves.

I. INTRODUCTION

"N their original program, Chew and Mandelstam
~ ~ stressed that a particle or a resonance in a crossed
channel contributes to the forces acting between two
particles. ' More precisely, the partial-wave amplitudes
for pion-pion scattering have both a left- and a right-
hand cut as functions of the energy, and the resonances
in the crossed channels determine the discontinuity
across the left-hand cut or, equivalently, the forces.
Unfortunately, it appeared that the discontinuity ob-
tained from that mechanism increased at a rate in
conQict with unitarity when the energy became infinite
and negative, as soon as the spin of the resonance or of
the bound state in the crossed channel was larger than
or equal to one. Such is the case for the p meson (and
now also for the f' meson). The problem of determining
the exact high-energy behavior of amplitudes became
a necessiry preliminary to the dispersion theory of
elementary particles.

It was indeed felt that a simple solution of the
problem had to exist since, in several cases, the simple
trick of introducing a cutoff for the left-hand cut dis-
continuity leads to sensible results. This idea has been
expressed as the nearest singularity hypothesis, by
which one meant that a physical process was mostly
determined by the effects of the singularities nearest to
the physical region and was not affected by any mis-
behavior of the amplitudes at infinity. '

' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
2 See, for instance, G. F. Chew, S-Matrix Theory of Strong Inter-

actiorts (W. A. Benjamin, Inc., ¹wYork, 1961).

The clue to a solution of the problem was provided
by the observation, due to Regge, ' that the asymptotic
behavior of the nonrelativistic-scattering amplitudes,
as functions of the angle, are determined by the singu-
larities of the partial-wave amplitudes as functions of a
continuous angular momentum. ' Actually, these singu-
larities are only poles. Chew and Frautschi4 and
Mandelstam' pointed out that the high-energy diK-
culties of the S-matrix theory of strong interactions
could be eliminated if one takes as an ansatz that the
asymptotic behavior of the total amplitude in relativ-
istic theory is analogous to the one found in non-
relativistic theory.

Although it was clear that the asymptotic difBculties
were removed by that hypothesis, one had yet to
exhibit a practical way of resuming the Chew-Mandel-
stam program, now enlarged to be a program for self-
consistently computing the leading Regge-pole trajec-
tories. Chew and Jones are currently investigating such
an approach in which they work both with the full
amplitude and with the partial-wave amplitudes. '~
However, it is not clear whether only using the partial-
wave amplitudes, which has the advantage of leading
to one-dimensional well-known equations, could lead

' T. Regge, Nuovo Cimento 18, 947 (1960).
4 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394

(1961).
e S. Mandelstam (unpublished).' G. F. Chew and C. E. Jones, Lawrence Radiation Laboratory

Report UCRL-10992, August 1963 (unpublished).
7 G. F. Chew, Conferences at the Department of Applied Math-

ematics and Theoretical Physics, University of Cambridge,
England, 1963 (unpublished); see also Ref. 9.
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to simpler or mort accurate calculations. Before we
enter into such a program, nevertheless, it is necessary
to solve explicitly the preliminary problem of high-
energy divergences and to find the explicit behavior of
partial-wave amplitude discontinuities once the Regge
asymptotic behavior is assumed for the full amplitude.

In the present paper, we devote our work to the
solution of this problem. Our main result is that the
discontinuity at infinity is determined by the position
of the leading Regge pole at zero total energy rr(0) and
not by the spin of the physical bound states or reso-
nances. Since, as has been shown by Froissart, 8 the
requirement of unitarity implies that n(0) ~& 1, it may
be shown that the difhculty originally encountered by
Chew and Mandelstam is removed. In fact, the dis-
continuities on the left-hand cut and the right-hand cut
fit so well that no subtraction is needed in any physical
partial-wave dispersion relation, even for the 5 wave.
Therefore, no subtraction parameters have to be
introduced when one solves the Chew-Mandelstam
equations.

Apart from this result, which bears on the consistency
of the theory, it will be useful to use the asymptotic
form of the discontinuities in such practical applications
as the determination of the Regge-pole trajectory from
E/D equations. In fact, it is obvious that in the partic-
ular case of the S wave this procedure will lead to more
rapidly convergent calculations than those which can
be obtained by introducing a cutoff.

The simple form of the discontinuity, which is not
oscillating as sometimes assumed, ' but smoothly
damped, is in fact a justification of the nearest singu-
larity method.

After some preliminaries about partial-wave ampli-
tudes, their properties, and a precise statement of our
hypotheses in Secs. I to III, we compute the asymptotic
behavior of the discontinuities in Secs. IV through VII.
Applications to the number of subtractions in partial-
wave-dispersion relations, as well as the possibility of
cuts in the angular momentum plane, are made in
Sec. VIII.

II. HYPOTHESES

Let us consider the amplitude A (s,t) for the scattering
of identical neutral spinless particles with mass unity.
We consider t to be the total center-of-mass energy
squared, and s to be the square of the invariant momen-
tum transfer. The partial-wave-scattering amplitudes
at(t) are given by

domain that contains the segment (—1,+1), Eq. (1)
can be replaced by the Neumann formula

1
at(t) =

2m~
A(s, t)Qt(s)vs, (2)

where C is a contour around —1 and +1.In particular,
when A (z,t) is analytic in the complex s plane cut from
zo to ~, as is the case for any nonrelativistic amplitude
satisfying the Mandelstam representation, Eq. (2) can
be replaced by

1
at(t) =— Qt(s)A, (s, t)tls, (3)

so that one has to deal with two different analytic
functions of / that coincide respectively with at(t) for
even and odd values of /. One distinguishes these two
analytic functions by their signature &1.For simplicity,
we shall only consider in this paper the simple model of
neutral spinless particles for which the odd amplitude
vanishes and only the amplitudes with even signature
play a role.

III. DISPERSION RELATION

The function at(t) has a branch point at the two-body
threshold t=p and it is convenient to define, with
Gribov, " the new function Pt(l)=at(t)/(t —tt)t, which

where 2iA, (s,t) is the discontinuity of A(s, t) across its
s cut. Equation (3) was first given by Froissart. " Its
main properties are that it can be extended to complex
values of l, and that the function obtained in this way
is analytic in at least a half-plane Rel&X, where X is
the necessary number of subtractions in a dispersion
relation at the fixed energy t. Within that half-plane,
at(t) is a bounded function. In accordance with a
theorem by Carlson, "it is therefore the unique analyitc
function that interpolates the physical amplitudes from
/ integer to l complex and that does not at most increase
as fast as exp'-~l~. Equation (1) does not verify this
boundedness property and coincides with Eq. (2) only
for positive integer values of l.

For a relativistic amplitude satisfying the Mandel-
stam representation, there are two cuts, and Eq. (3)
has to be replaced by

1
at(t) =- Qt(s)A. (s l)

0

(—1)™
Qt(")A„(~,l)vs', (~)

where s= 1+2s/(t —4), is the cosine of the c.m. scatter-
ing angle. When A (t,s) is an analytic function of s in a

M. Froissart, Phys. Rev. 123, 1053 (1961).' G. F. Chew, Phys. Rev. 129, 2363 (1963l.

'0 M. Froissart, International Conference on Strong Inter-
actions, La Jolla, California, 1961 (unpublished)."R. P. Boas, Entire Functions (Academic Press Inc., New York,
1956}.

"V. N. Gribov, in Prooeedtngs of the 1WZ Amelal Interwattottal
Conference on High-Energy I'hysics at CERN, edited by J. Prentki
(CERN, Geneva, 1962).
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Pro. 1. Bound of the integral
for ay(».

(b) When one of the variables s, t, or I tends to
indnity, the asymptotic behavior of the amplitude is of
the Regge type. ' More precisely, if t tends to infinity at
a fixed value of s, one has

A(s, z)=p y„(s)

P-, & )L
—1—(2z/(~ —4))3+P-,&.iL1+(2z/(~ —4))3

sinzrn„(s)

has only a second-order branch point at the two-body
threshold. The function Pi(t) satisfies the dispersion
relation, for Re/ large enough and we have

where the sum goes over the indices r of the Regge-poles
trajectories. We assume explicitly that there are no
cuts in the angular-momentum plane. For simplicity,
we make all the subsequent considerations by taking
only into account one Regge pole.

(c) We suppose that n„(s) is an analytic function of s
in the complex s plane cut from s=4 to +~, and that
it has a limit when n tends to infinity so that by the
formal transformation defined by n, (s), it transforms
the s plane into the kidney-shaped region indicated
ln Flg. 2.

In fact, it would be easy to trace out the modifications
of the following arguments if some of these assumptions
were to fail. They are just made here for the sake of
simplicity.

Again, for more clarity, we do not consider the Regge
poles of the I channel, but only those of the s channel
as they are exhibited in Eq. (8). This is equivalent to
putting the residues of the I-channel Regge poles
identically equal to zero and taking into account only
the s-channel Regge poles, then exchanging the role of
s and I and adding the results. That simply makes the
equations shorter so that when we reestablish the
contributions of the I-channel Regge poles at the end
of the argument, we shall only have to multiply in some
places by a factor of 2.

Lastly, we insist on the reality of dpi(t) for /—real by
writing, in place of Eq. (7),

1 "Immi(t')dt' 1 ' DP&(t')dt'
~ (z)=-, +-, , (5)

t' —t m „f'—t

where it is understood that the necessary number of
subtractions have been made. When Rel becomes small

enough, it is necessary to add to Eq. (5) the contribution
of the poles of pi(t) (which are at the position of bound
states when l is a positive integer or zero).

The discontinuities on the cuts are given, for t

positive, by

4 " ( 2s ) ds
pm', (z) =— g,

~

1+ ~A„(s,z) . (6)
(.-4)'+

Here A„ is the Mandelstam weight function p(s, t). For
negative t, one has

&~&(1)= &~i&"(1)+&~ "'(z), (7a)

t' 2s ) ds
Pi~ —1 ~A, (s, t—ze), (7b)

k4 —z & (4—z)
'+'hy &'&(t) =2

and
sz&i)

/ 2$ ) ds
gil —1 IA..(s, z)

„&g) k4 t ze —~— (4—t) '+'
(7c)

~~&(z) = ~~i"(z)+~~i"(~),
where si(t) and sz(t) are the boundary of the third where
spectral region for fixed t (see Fig. 1). Note that, while

Api(/) is real, this is not true of dpi&'& and dpi&'~ sepa- ~&& ()=R ~&i (z) and ~4'i'(~)=Reined'& ' (1) ~ (10)

rately. Ithas been shown by Gribov and Pomeranchuk" Let us first 6nd the asymptotic behavior of the dis-
that, due to the existence of poles of Qi as functions of l
at /= —1, —2, , Eq. (7c) implies the existence of an
essential singularity of pi(t) at f,= 1.

IV. BEHAVIOR ON THE RIGHT-HAND CUT

Our problem is to investigate the behavior of the
three discontinuities given by Eqs. (7) when t tends
towards &. To do this, we make the following
assumptions:

(a) The amplitude A(s, t) satisfies the Mandelstam
representation.

FIG. 2. Image of the cut s
plane by the 0, (s) conformal
transformation. a Q7)'

a(0)
=Re a

» V. ¹ Gribov and I. Ya. Pomeranchuck, Phys. Letters 2, 239
(1962).

' S. C. Frautschi, M. Gell-Mann, and I". Zachariasen, Phys,
Rev. 126, 2206 (1962).
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C

0
2s ) ds

Pti 1+ IA, (s, t)
t—4)

'
(t—4)t+r

Immit(t) =

FIG 3 Sin u]ari uch corrections of the order t ",we thus get
ties of the integrand
in Eq. (11).

continuity on the right-hand cut. This behavior may be
found in a variety of ways and the result is already well

known since it is the behavior of the phase shifts when

the diffraction peak is determined by a Regge pole.
However, we derive it in a way that is a good illustra-
tion of the method to be employed for the other
discontinuities.

As we do not take into account the I-channel Regge
poles, which when t tends to in6nity, is equivalent to
considering the A, discontinuity as zero, Eq. (6)
rea

+oLt'"'-'-'3 (14)

Obviously, this result can be obtained without using
the conformal transformation. However, this trans-
formation is extremely useful in the next two cases. It
shows immediately what. . the asymptotic behavior is of
any contour integral just by indicating up to what
point in the e plane the contour can be pushed to the
left, as well as indicating the asymptotic behavior of
any term to be neglected.

f 2s ) ds—1 iA, (s, t) . (15)
E4—t ) (4—t) '+'

Let us write it as a contour integral
gyt(&l (t) =

1 t' 2s ds 4

Imp, (t) =—
Qt~ 1+ A, (s,t), (12)

t—4 (t—4)'+' The same argument as for Immit(t) can now be given.

ds now
V. BEHAVIOR ON THE LEFT-HAND CUT

2s
Q ~

1+ A ( t) (11) Let us now look for the asymptotic form of A/to&(t).
t 4 —(t—4)'+' If we take into account only the s cut, Eq. ('7b) reads

where the contour C goes around the cut of A, (s,t) from
s=4 to s= ~ (see Fig. 3).The integrand in Eq. (12) has
this cut and also has the cut of the Legendre function
which goes from s= — to s=0. If we make the
conformal transformation from the s plane to the e
plane, Eq. (12) remains true as an integral over n on
the contour C shown in Fig. 4. The contour C can be
reduced to C', which encloses the Qt cut. It is clear from
Fig. 4 that an integral over C' cannot increase more
strongly than t ('& when t tends to infinity.

For the part of C' that is in the physical region (i.e.,
for 4—t&s&0), one can compute the discontinuity of
C' by using the relation"

Qt(x te) Qt(x+—ze) =—~e-Pt(x), . (13)

which is true for —1~&@~&1. Howe'ver, it is clear from
Fig. 4 that, as t tends to in6nity, the part of the integra-
tion over C' for s(4—t behaves as t & &. If we neglect

ci

FIG. 4. Deformation of a contour lead-
ing to the asymptotic behavior of
Immit (t).

"Bateman's Manuscript Project, in IIzgker Transcendental
FNrcctsosss, edited by A. Erdelyi (McGraw-Hill Book Company,
Inc., New York, 1950).

a(4-t

FtG. 5. Deformation of contour
for a@)(».

First transform Eq. (15) into

1 ( 2s ) ds
+pl"' =— Pt~ —1 ~A (s,t), (16)

2i o, k4 —t ) (4—t) '+'

Pt(x —ie)—Pt(x+ie) = 2i sine. lP—t(—x) (17)

(which is valid for x& —1), to compute the integral ori
C', we get

0

hatt t'"(t) = —sinhr Pt 1—
4—t)

2s
1
iA (s, t)

+oLt'"' ' 'j (1g)

where the path Cr goes from 4—t—ie to 4 t+ie and-
encloses the branch point at s=4. -Here again we can
push the transformed path Cz to the left in the n plane
(see Fig. 5) and replace Ct by the preceding contour C'.
The error committed is- caused by that part of the
integration path in Fig. 5 going from n(4 —'

t) to a(ao),
which gives terms of the order of t"( ) for t large enough.
By using now the relation"
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VI CALCULATION OF chest (t)

The calculation of AP&&'& (t) is exactly of the same type
as in the preceding section, although more involved. As
a first step we define the new function

1 '2&'& A,„(s',t)ds'
B(s,t) =-

7r g1(g) S
. (19)

FIG. 7. Singularities of the integrand
for h@~(') a plane.

is important to observe that B(s,t) behaves
asymptotically as A„(s,t) when t tends to —~, s being
kept fixed and negative. In order to show this, we
observe that A,„(s',t) behaves, when ~t~ ~ ~, as

A,„(s,t)-imp(s) I
t

I (20)
To find the asymptotic behavior of dpi&'&(t), we

proceed by the following steps:

and we write the asymptotic form of B(s,t) as

"i'&Imp(, i~t~ "
ds .

s —s
(21)

It is easy to show that the last integral behaves as

~t~
&"& ' when t tends to —~ and that the second

integral behaves as ~t~
~'& 'i'. (The integrand behaves

FIG. 6. Singularities
of the integrand for
A@~&'&, s plane.

$~ Fg

s —s/
ds )

where, again, C is a contour surrounding the cut of n(is)
and p(s) from 4 to ~. By the Cauchy theorem, this is
precisely 7(s)

~
t~ &'&; i.e., we have shown that

B(s,t) =A„(s,t)+OL~ t~
"'"~i"&-' ~&'i-zi'g, (22)

when t tends to —~. We rewrite Eq. (7c) as

as ~t~ &4i, the integration interval from 4 to si(t) is
proportional to t ', and a more careful examination of
the effect of the branch point of n(s) at s=4 leads to
the last ~t~

' ' factor. j Therefore, up to powers of t
smaller than n(4) —3/2 or n(~) —1, B(s,t) is given
asymptotically by the first integral, which can be
written as

(a) Make the conformal transformation from s to
u(s) (see Fig. 7).

(b) Split the Q~ cut into its two component cuts from
n(~ ) to n(4 —t) and from n(~ ) to n(0).

(c) Apply the contour I'i against these cuts.
(d) Deform the cut which goes from n(ao) to

u(4 —t), along with the contour which encloses it, to
push the whole pattern as much as possible to the left.
One is then led to the situation shown in Fig. 8.

(e) The contour around the cut from n(~ ) to n(4 —t)
gives a contribution to hp&&", which behaves asymp-
totically as t ( ); we drop it, keeping only the contour
which encloses the cut from n(~) to n(0).

(f) Making the conformal transformation from n to
s, we see that, asymptotically, Ap&

"& is equal to

4 2s ) ds
A4 '"(t)= Q —1 IB(s,t), (24)

2zri r, 4—t—ie ) (4—t) '+'

where F2 encloses the cut of the Legendre function from
s= —~ to s=0, as shown in Fig. 9. Therefore, taking
Eqs. (10) and (22) into account, we get

Ay, '&'& (t) =Re
2%i

Qi —1 iB(s, t) . (25)
r, 4—t—ze ) (4—t,) '+'

To find the discontinuity of the Legendre function
along the cut of interest one uses Eq. (13), which gives

~4 "'(t)=
4 ( 2s ) ds

Q, i

—1 iB(s,t), (23)
2~i „E4 t i~ J ——(4—t)'+'

where the contour Fi has to surround the cut of B(s,t)
from si(t) to sz(t) and must avoid the cuts of the
Legendre functions. The Legendre function has two
logarithmic singular points at s'= 0 and s= 4—t—i~, and
it is customary to join these two points to s= — by a
common cut as shown in Fig. 6. As for the contour j. ~,

we shall choose it as shown in Fig. 6 by making it go
from +~ and back by turning around s= 4.

PzG. 8. Deformation of cuts and contours
for ~y;(2&, ~-plane.

(0)
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0 ~ 4 SI applied directly to the Froissart formula LEq. (3)) and
that the whole function &t l(t) itself behaves as t &o& ' '

s plane. when (t( tends to infinity.

the discontinuity of Ql across the other cut, one also
uses"

and
Q (—)= —"'Q (),

2
Pl(—s) =e "Pl(s)——sins-tQl(s),

(26a)

(26b)

where Eq. (26a) gives the discontinuity across the
merged cuts and (26b) serves to evaluate the right-hand
member of Eq. (13).Finally, we have

2s ) ds
A&tl'&'&(t)=coshr Pl~ 1—

~A (s, t)
4—t) (4 t)'+'—

Imago(t) —ago(t) =0(( t ~-'), (30)

when we have t ~ ~. Therefore, if we write the disper-
sion relation in the form

VIII. APPLICATIONS

An important application of Eqs. (29) is to show that
all dispersion relations for physical partial-wave ampli-
tudes can be written without any subtraction. In fact,
as can be seen from the Froissart theorem, one has
n(0)&~ 1, so that it is clear that both integrals in the
dispersion relation (5) converge when l&0.

The case of /=0 has to be treated more carefully.
Actually, an immediate consequence of Eqs. (29) is

+0[t &"& ' '). (27)

VII. RESULTS
t'+t

1 " -Imp, (t') ay, (—t')-
4o(t) =— — dt,

0

(31)

Let us now summarize the asymptotic values of the
discontinuities when due care is taken of both the s
and I Regge poles. This leads to

2s ) ds
Imp, (t) =2 P,

~

1+ ~A, (s, t)'
(t—4)+

+0(t &"~—' ') (28a)

2s ) ds
Altll(t) =2 cosls Pli 1— iA„(s, t)

4—t)
'

(4—t)+
0 2s ) dS—2sinhr Re Pl 1— ~A( t)s

4 tf (4—t)'+'—

+0(~t~ &"& ' ') (28b)

Replacing the Legendre function by its limit (equal
to 1 when t tends to infinity), we get the less accurate
result

0 ds
Imlt l(t) =2 A, (s,t) +Opt &o&

—'—')
(t 4) l+I

and

Apl(t) =2 coslsr A (s,t) —2 sinhr
(4 t) l+1

0 ds
X ReA(s, t) +0(~t~ " ' o). (29b)

(4 t) l+1

It is now obvious that both discontinuities behave as
t ('~ ' ', up to logarithmic factors, and that they are
both damped without oscillations.

In fact, it is clear that the same method may be

A, (s,t)-p(s)t. & &,

A-(s t)-p(s)t &'&

(1+coslrQ)
ReA(s, t)-p(s)t &'&

Sin7I-n

(32a)

(32b)

(33)

into Eqs. (28), and then introducing the discontinuities
into the dispersion relation Eq. (5), that each of the
dispersion integrals in Eq. (5) is an analytic function
of / with a cut going from l= —0o to 1=n(0)—1. How-
ever, if we examine the singularity at u(0) —1, using
Eqs. (32), we find that the singularity is cancelled if
both dispersion integrals are considered together. This
is another example where a correct account of the left-
hand cut discontinuity at inanity gives much better
results than a cutoff.
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it is clear that this integral is rapidly convergent.
This result shows that, in fact, calculations involving

the exact asymptotic behavior of partial-wave ampli-
tudes will converge more rapidly than calculations
where the left-hand cut contribution is cut off.

Another application demonstrates the relevance of
partial-wave asymptotic behavior in the discussion of
angular-momentum cuts. One can easily show, by
introducing the asymptotic behavior


