
P H YSI CAL REVIEW VOLUME 133, NUMBER 68 23 MARCH 1964

~ Scattering with Unitarity and Crossing
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A model of pion-pion scattering is presented in which each partial-wave amplitude in the s channel satis6es
unitarity including inelastic states. This is accomplished by the use of the S/D technique. The full ampli-
tude, i.e., the explicit, continued, partial-wave sum does not satisfy unitarity in the t and I channels, but
it does have the correct branch points in these channels. These characteristics are guaranteed by construction
and do not depend on arbitrary parameters occurring in the 3l functions. The parameters are Axed by
imposing the crossing relations and by demanding the existence of a Pomeranchuk trajectory in the T=0
channel. The existence of the p is not assumed. Since crossing is not satisfied exactly, the parameters are
determined as those that yield the best Qt to the crossing relations. Once the parameters have been Axed,
the behavior of each partial wave in each isospin channel is determined. Phase shifts are presented for the
S, P, and D waves. The P wave is repulsive at low energies but becomes quite attractive at higher energies
due to inelastic eQ'ects. A resonance occurs at s =33.7 p' with a width about three times that experimentally
observed; this width is extremely sensitive to the parameters, the position is not. An S-wave ghost occurs
at s= —57.1 gP (whose residue is zero) as well as the Pomeranchuk trajectory at s=0. The 5 waves are
strongly repulsive at low energies. In fact, they are so repulsive that rather broad peaks are produced in
their cross sections near 400 MeV when the phase shifts pass through —z-/2. The peak in the T=0 channel
may very well correspond to the Abashian, Booth, and Crowe (ABC) anomaly. There are no resonances
in the D waves. In particular, the existence of an fo is incompatible with any choice of the parameters unless
it is accompanied by another strong D-wave resonance at low energy, and even this possibility violates
crossing badly. This may be due to a poor choice for our trial function.

I. INTRODUCTION

' 'N the past few years, several attempts' ' have been
~ ~ made to determine the pion-pion scattering ampli-
tude. It is clear that this is an important amplitude to
determine since a knowledge of it is necessary for a
determination of all other amplitudes. Among other
characteristics, the vr—z amplitude is unique in the
sense that the crossing relations are relations between
the same amplitudes, no other amplitudes being in-
volved. In addition to the constraint of crossing, one
has of course the usual restrictions of unitarity, thresh-
old behavior, etc. Not surprisingly, the solution of this
complete problem is very dificult and various approxi-
mation schemes have been developed to make the
problem tractable. The goal of any given calculation
using such a scheme has been primarily to reproduce
the pronounced resonance in the T=1, l= j, channel,
the p meson. These calculations have shown, if nothing
else, that the basic difficulty in a study of the x—7t-

amplitude is the imposition of the crossing relations in

the following sense. One conventionally decomposes
the amplitude into partial waves and then analyzes
these partial waves by some method, say the X/D
technique, by means of which one can proceed a
reasonable distance, but the crossing relations apply
to the full amplitude, i.e., the partial-wave sum.

To avoid the total complexity of the crossing rela-
tions, the concept of a "self-consistent" calculation'
was introduced, i.e., the presence of a p meson in the
crossed channels will itself provide an exchange force
which may produce a resonance in the direct channel.
Such calculations have encountered divergence diffi-
culties (which can be eliminated by the use of Regge
poles in the crossed channeP), but they have been
useful. They do su6er, however, from the essential

difhculty of principle in that they assume the existence
of the p meson itself. This, of course, is independent of
the violence done to the proper crossing relations which
is related to the divergence difhculties alluded to above.
Also inelastic states have been shown to play an
important role in producing resonances which occur at
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existence, is certainly of interest. This, in fact, is the
object of this paper.

Finally, our main motivation here is not to perform
a "better" calculation than those done by others since
at this stage of development, the word "better, " like
the rest of the theory, is probably not well defined.
On the other hand, we feel that it is not sensible to
believe a model of the strong interactions simply
because there happens to be some approximation
scheme which when applied to the model yields results
more or less in agreement with experiment. The natural
question to ask is the following: Is this agreement a
property of the model or the approximations' This
question is of the utmost importance for those who
want to "bootstrap" the phenomena associated with
strong-interaction physics as we know it. We have
tried to develop a scheme which is diferent from those
already reported in the literature, and yet which is at
the same time sensible. If the reader will bear this in
mind, many obscure points of logic will become clear.
This paper is probably unique in that we make very
little use of Regge poles (none from a strictly logical
point of view) simply because it is simpler to avoid
Chem in our analysis. It should also be kept in mind
that our results, which come from a numerical vari-
ational procedure, are strongly limited by our choice
of a trial function and lack of time on a computer.

In this analysis, we will construct a model which
includes nearly all of the restrictions inherent in the
m —+ problem and show that, in fact, the p meson is a
necessary consequence of these constraints. Basically,
our procedure will be to construct scattering amplitudes
which intrinsically satisfy certain of the usual con-
straints, e.g., unitarity, threshold behavior, etc., while
the remaining constraint and crossing will be satisfied
by choosing specific values for parameters which will
be introduced into the amplitude. Once these parame-
ters are determined, the complete amplitude is known.
Section II will provide a construction of those ampli-
tudes which satisfy all of the constraints except crossing.
In Sec. III, we discuss the parameter determination
by the use of crossing in detail. Finally, in Sec. IV, we
present the numerical results of our analysis including
the phase shifts for the 5, P, and D waves in all three
isospin channels.

II. CONSTRUCTION OF THE SCATTERING
AMPLITUDES

A. Elastic States

As stated in the Introduction, our goal is to construct
a parameterized scattering amplitude which intrin-
sically satisfies some of the constraints imposed on any
scattering amplitude and such that the remaining
requirements can be approximately satisfied by choosing
the parameters judiciously. This has been the object of
several studies' ' from various points of view, but we
believe the analysis given here is a more properly self-

FIG. 1. Elastic pion-pion
scattering.

Z= (P, Pg')/P', (2)

where P; and P,' denote the initial and 6nal pion
momenta, and P'= ~~(s—4). All quantities refer to the
barycentric system in the s channel. We now expand
the amplitude, using superscripts to denote the isotopic
spin values, in a partial-wave series in the s channel as

M&' "(s,t) =—,
' Q(2l+1)M(&' '&(s)LPg(s)+Pq( —s)j (3)

M"'(s t) =-,' P(2l+1)M(&" (s)[P)(s)—P((—s)]. (4)

The requirements that M&(s) satisfy unitarity and also
have the correct threshold behavior are usually ac-
complished by first explicitly displaying the threshold
behavior and then writing the remaining amplitude in
terms of the 1V/D procedure. ' Therefore one writes for
all s,

For the purposes of this analysis, however, Eq. (5)

consistent one than those previously presented and,
as such, is more comprehensive. Although we will
include the effects of some inelastic states, we will

begin by imposing only elastic unitarity.
Our procedure will be to choose a specific form for

the partial-wave amplitudes in some channel such that
each amplitude satisfies unitarity and has the correct
threshold behavior in the relevant variable. Ke will
further insist that the full amplitude, i.e., partial-wave
sum, have, at least, discontinuities in the remaining
variables over the correct range, although unitarity
and the correct threshold behavior may not be satisfied
in these variables. Even though the chosen partial-wave
amplitudes will contain parameters, it is to be empha-
sized that the above requirements must be satisfied
independent of a particular choice of the parameters.
Other constraints on the amplitudes, such as crossing,
will be approximately satisfied by the choice of the
parameters.

We begin by defining the usual variables, see Fig. 1,
as

s= —(Pg+ P2)',
t= —(P,—P~')'

u= —(Pg—P2')',

where Pj'=P2'=P~" ——P2"= —1, and we introduce the
scattering angle in the s channel as



KREPS, COOK, BREHM, AND BLANKENBECLER

FIG. 2. Born approximation: two-
pion state in the crossed channel.

is not a favorable choice. Especially, within the frame-
work of approximations we wish to employ, it will not
lead to the correct cuts in the t plane. A more suitable
choice is provided by the modification of the simple,
Regge-pole formula due to Khuri, ' in which the full

amplitude exhibits the correct t cuts explicitly. Rather
than Eq. (5) we write,

M t(s) =e-~'E/(s),

cosh)= 1+(2M/(s —4)), (7)

where M is the lowest mass exchanged in the t and n
channels. If we regard the diagram in Fig. 2 as the
driving term of the s-channel, partial-wave, dispersion
relations, then M=4. By use of Eq. (7), we may write

(sl/2 2)/(sl/2+ 2) (g)

which leads to the same threshold behavior as that
given in Eq. (5). Thus, rewriting Eqs. (3) and (4), we

have

culation the sum in Fig. 3. We may explicitly display
such diagrams by expanding the D function as,

M/(s) =h'(s)Xg(s)$1+d&(s)+

where we have introduced h(s) as

h(s) = e &= (s'/' 2)/(s'/—'+2) .

(15)

The first term in Eq. (15) when summed over l is
simply the Born approximation, i.e., the first diagram
in Fig. 3, and the second term represents the second
diagram in Fig. 3. However, Eq. (15) implies that the
positions of the left-hand cuts arising from the diagrams
in Fig. 3 are the same, which is not true. Thus if we
wish to keep the first two terms in the expansion of
1/D&(s), we must modify $&(s) if we are to obtain the
correct left-hand cuts. We therefore truncate the ex-
pansion of 1/D&(s) but replace X&(s) by

= 1+d&(s)+
D/(s) 1—dg(s)

where we have suppressed the isotopic-spin labels. Of
course, if the series is truncated, it will not be a good
approximation of the D function itself, especially if the
value of s is near that of a resonance, but term by term
the series is useful in determining the analytic proper-
ties. Thus

M&"&(s,t) =-,' P(2t+1)e &'F&&''&(s)

&&5~ (s)+& (—s)3, (9)

M&'&(s, t) =-' P(21+1)e &'Ft&'&(s)

&& L~~(s) —~~(—s)], (1o)

N&(s) ~ Xt(s)L1—d~(s)+'Yt(s)g, (17)

where yg(s) is a correction to d~(s) and is proportional
to an integral over E/, (s). Equation (15) now becomes,

Mt (s)= h'( s)& (ts)L1 d(s)+~—l {s)jP+dt(s) j
h'(s)1V&(s) L1+y&(s)$, (18)

where

and

with

F ' ()=~ "()/D "'(),
1 " (s')e-&'Ã '"(s')

D &r&(s) =1—— ds'
1

7l s —s
(12)

where we have neglected the quadratic terms. In order
that we preserve the fundamental spirit of the 1V/D
method we must insist that Z(s), as modified in Eq.
(17), is still analytic on the right. Since d&(s) is cut from
s=4 to ~, yt(s) must also be so cut and thus let us
choose for Vq(s)

p(s') = ((s' —4)/s')'/' ~ (13)

~ N. N. Khuri, Phys. Rev. 130, 429 (1963).

Extraneous constant factors in the phase-space func-
tion p(s) are absorbed into the multiplicative parameters
of the g~, these factors will be the same for all channels,
Once a choice of the form of X&&r&(s) is made, the
amplitude is determined except for the values of the
parameters occurring in X~&r&(s). This will be discussed
in Sec. III.

It is obvious from this construction that M~(s) has
the proper threshold behavior and satisfies unitarity in
the s channel. We now show that M&r&(s, t) has the
correct positions of the 3 and I cuts. It is well known
that the X/D procedure starts with a Born-approxima-
tion diagram (S) and iterates this to satisfy unitarity
(D). Thus the diagram in Fig. 2 yields in an X/D cal-

1 ds
'y&(s) =— p(s')h '(s)H'(s, s')K(s, s'), (19)

7l 4 S —S

h'(s)1V(s) =h '(s)H'(s, s)K(s,s),
which may be satisfied by requiring that

H(s, s) =h'(s)

K(s,s) =E(s) .

(20)

(21)

It is easy to see that M&(s) satisfies unitarity, by use of
Eqs. (19) and (21) to first order, i.e.,

ImLM/(s)/h'(s) j=p(s)h'(s)XP(s), (22)

for reasons that will become clear shortly. With this
choice for 'Y, (s), the requirement that X/(s) have no
right-hand discontinuity leads to the relation
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FIG. 3. Iteration of two-pion ex-
change by means of one-channel
unitarity.

+ ~ ~ ~

where f(s') is some function of s' alone. We may de-
terinine f(s') immediately by setting s equal to s' and
using Eq. (21). This yields

f(s') = 16s'/(s' —4),
and this is the principal reason for the choice in Eq.
(19).

The total amplitude is given now as

M(s, t) =P (2l+ 1)h'(s) 1Vi(s)L1+Vi(s))Pi(s) . (23)

If we assume that we may neglect the l dependence in
N&(s), say as compared to h'(s), we may sum the series
explicitly. In particular,

M(s, t) =1V(s)P (2l+1)h'(s)Pi(s)

GS

+ (1/s.) p(s') 1V(s)E(s,s')
4 $ —$

which is, of course, the equation of the boundary of
the Mandelstam spectral function. The function
H(s, s') itself may now be determined from Eq. (25),
and one obtains

f(s') f(s'—) f'(s') -'i'
H(s, s') =1+ — +

2P'(s) P'(s) 4P4(s)
~ (2&)

The opposite sign for the square root does not satisfy
Eq. (21).

However, Eq. (24) is still unsatisfactory because the
integrand still contains a dependence on s other than
that occurring in the denominator (s' —s). Again we
insist that

XQ (2l+1)H'(s, s')Pi(s)
P'(s) (1—H'(s, s') )

1V(s)E(s,s') =P(s'),
H3i'(s, s')

(28)

1—lt'(s)
= &V(s)

L(1—h(s))' —2h(s) (s—1)]'t'

1 ds'
+

7l 4

p(s')N (s)E(s,s')
s —s

1—H'(s, s')
X )

L(1—H(s, s'))' —2H(s, s') (s—1)]"'

and determine F(s') by setting s equal to s' and using
Eq. (21). This gives

P( ') =N'( ')(P'( ')/&'( '))(1—&'( ')),
and

P(s') ' H(s, s') '~ 1—h'(s') N'(s')
E(s,s') = (29)

P(s) h'(s') 1 IP(s,s') N(s)—

We may therefore write Eq. (24) as

which follows by use of the generating function of the
Legendre polynomials. By use of Eqs. (16) and (2), M(s t)
this may be reduced to 8 (4 t)3/2

M(s, t) =
s'~'(s't'+2) N(s)

g(4 —t)'t'

ds'p (s')P'(s')00

(s' —s) L(16s'/(s' —4))—t)'~'

ds P'(s) (1—H'(s, s') )+— p (s') N(s) E(s,s')
4 $ —$ H3i'(s, s')

-1—h4(s')
X N2(s'), (30)

li'(s')

X (24)
r (P'( )/H(, '))(1—H(,"))'—t7"

The first term in this expression clearly represents the
singularities in t arising from the first diagram in Fig. 3.
However, the second term is quite unsatisfactory in
representing the singularities in t for the second diagram
in Fig. 3. If one insists on a product, cut-plane repre-
sentation (i.e., a Mandelstam representation). In par-
ticular, the cuts in t depend on s as well as s'. Since
H(s, s') is arbitrary except for the condition in Eq. (21),
we will insist that H(s, s) satisfy the additional re-
striction

(P'(s)/H(, s'))(1—H(s, '))'= f(s')

which correctly represents the singularities in s and t
arising from the diagrams in Fig. 3. The proper cuts in
N follow immediately from the symmetrization of
M(s, t) given in Eqs. (3) and (4), specifically if s ~ —s,
then t —+ N.

Although we would not expect M(s, t) as given in
Eq. (30) to yield reliable results in any calculation,
especially those involving resonances, it does show that
the form given in Eqs. (9) and (10) satisfies our require-
ments for a scattering amplitude. Further, we note that
the l dependence of 1V&(s) played no essential role in
the development of the proper t and N singularities. By
neglecting this l dependence we have only allowed
ourselves the possibility of summing the series ex-
plicitly. In everything that follows, we will assume it
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is a good approximation to neglect the l dependence
of E&(s) especially when compared to that of e &'.

Therefore, our model, in the approximation of elastic
unitarity, is defined by Eqs. (9) to (13) and by the
parameters which occur in the function 1V(s).

(b)

Pro. 4. Two-pion exchange states in
elastic eau and pp scattering.

B. Inelastic States

We would now lik.e to extend the analysis of the
previous section to include inelastic states in the uni-
tarity relation. The motivation for this follows pri-
marily from the observation that important experi-
mental effects are present considerably above the
lowest inelastic threshold (s=16) and also that the
effects of inelastic channels can be large below the
inelastic thresholds. ~ In order to include, in a general
way, the inelastic effects, we will consider two "two-
particle" inelastic channels which represent in some
Way the StateS (2r—1d) and (p—p).

In the T=O and T=2 channels the (2r—cv) state
cannot contribute, and thus we represent the inelastic
states for even isospin by the (p—p) state alone. Since
we have even isospin, Bose statistics requires that the
spin-zero and spin-two states couple to even orbital
angular momentum (L) in the (p—p) system, while the
spin-one state couples to odd L. The complications here
due to the spin may be considerably reduced by neg-
lecting, for the moment, all values of L except L=O.
This is a reasonable physical assumption since the
primary inelastic contribution to x—z scattering below,
say, 1500 MeV is probably dominated by the low-energy
region of this production reaction; this region is domi-
nated, in turn, by the S-wave, (p—p) phase space. Thus
under this assumption, in each isospin state, the spin-
zero (p-p) state contributes to 8-wave 2r1r scattering
while the spin-two state contributes to D-wave z—x
scattering; the spin-one state does not contribute at
all. Actually, we shall construct all the partial waves
not just those corresponding to L=O. These remarks
concerning the importance of L=O motivate the in-
elastic model we shall use to hold for all l.

If we continue to impose the condition that L=O in
the (p—p) state, then this state does not contribute to
the T= 1 channel since L=O requires even parity while
Bose statistics requires odd parity in the (2r—2r) system.
Even if the (p—p) state could contribute to the T= 1

channel, e.g., by removing the restriction that L=O,
we would neglect its e6ect because its threshold
(112 p2) is so much higher than that of the (2r—cv) state
(42 p2). While it is necessary to assume some model for
the weighting of the spin zero and two in the inelastic
(p-p) amplitude, spin presents no problem for the
inelastic (2r—co) amplitude. Since the orbital angular
momentum in the (2r—co) channel is uniquely related to
/, we can readily include all / in the construction.

There are, of course, many other two-particle states
which contribute to the inelastic effects, e.g. , the (ao—~)
state. However, since all we wish to accomplish is an

approximate representation of the inelastic states, we
will ignore these additional states. As a matter of fact
the (co—a&) state is well approximated by the (p-p) state;
their thresholds and the analysis of their spin de-
pendences are similar, and they will contribute to the
T=O (2r—2r) state in approximately the same way.
(They do not couple to the T=2 state. ) Intermediate
(EZ) states, etc. , are neglected altogether.

If we do confine our attention, and we will, to the
(2r—a&) and (p—p) StateS then it iS neCeSSary tO ShOW that
including these inelastic states does not affect the
remarks made in Sec. IIA concerning threshold be-
havior and crossed-channel cuts. In order to show that
the previous analysis still applies, let us ignore all
questions of spin, both intrinsic and isotopic. We now
have three channels (2r—2r), (2r—or), and (p—p) which we
will label 1, 2, and 3, respectively. For channel 1 we
relabel the relevant quantities as:

~1= L(s 4)/s]"—
h1 = (s'"—)/(s'"+ ) = e

cosh]1 ——1+(4/2P12),

P12= (s—4)/4.

(31)

[s1/2 1]2 M2

h2 ——e
—&2=

s'~2+1]

cosh/2 ——1+(4/2P22),

[s—(~+1)'][s—(~—1)']
p2—

2

(32)

where we note that h2 ~ P2' as s —+ (co+1)'. Similarly
for channel 3 we consider the diagram in Fig. 4(b) and
write

& 2= ((s—4u')/s)"'

[s—4p2+4]"'—2
h3 ——e

—&'=
[s—4p2+ 4]"'+2

coshb ——1+(4/2P22),

P '= ( —4u')/4,

(33)

and, of course, h2 —+ P22 as s ~ 4p2. Just as in the case

From the preceding section we know that if the partial-
wave amplitudes exhibit the factor h~', then the correct
threshold behavior is present.

For channel 2 we consider the diagram in Fig. 4(a)
and de6.ne

( [s—(co+1)'][s—(o)—1)2]) '~2

P2=
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of channel 1, if the partial-wave amplitudes in channels
2 and 3 exhibit the factors h2' and h3', the correct
threshold behavior will be present.

If one proceeds in analogy with the previous section,
we now write the many-channel, partial-wave ampli-
tudes as"

Fle. S. Iteration of tvro-pion
exchange by means of two-
channel unitarity.

(o) (b) (c)

where

M)(~) =h(~)&&2P (~)h(&)&&2

h(o) h
o

&0 hi'

(34) may be again summed exactly and one obtains

1—h12

Mll(s) =/11
(1+h12—2shl) 2t2

and
hl 0

h(1)=]
&0 h)

'

(35) Sli " dS'

+ . Pl All($)$ )
7l 4 $ —$

The amplitudes p&(r) may be written in terms of a
many-channel, 1V/D analysis so that

1 H 112(s—,s')
X

(1+H 11(s,s')' —22H11(s,s') )'"
P

1(&)
D 1

(&) =N)(&)

JS

1l

~1 Pl +ill
s —s/

where, suppressing the isotopic spin label,

(36) ds
P2 E21(S,S )

X' (co+i)2 $ $

1 H12'(s, s'—)
X (39)

(1+H12'(s,s') 2sH12(s, s—') )'t'
1 ds

~1 Pl +lil
s —sI

dS
h P,'S,l)',

~ s —s

ds
k p S,,i',

$ —s

(40a)t)2(2

$(16s'/(s' —4) )—t$' ', (40b)

The three terms in Eq. (39) correspond to the diagrams
in Figs. 5(a), (b), (c), respectively, and the definition

(37) of the E;, and H,, is obvious from Eqs. (20) and (21).
Proceeding in precisely the same way as Sec. IIA, we
find the appropriate denominators corresponding to
Fig. 5 as

1 $
Mill hl +11 1+ hl pl +11

4 $ —$

4$00

+hi +12 h2 p2 +21 ~ (3g)
(o)+1)&S $

The series

Mll(s, t) =p (21+1)M)11(s)P,(s)

' R. Blankenbecler, Phys. Rev. 122, 983 (1961).

in which the primed functions under the integrals are
functions of s' and where i =2(3) for T=1(0,2). Also
s2 ——(a&+1)2 and s2 ——4p', and we have suppressed the
spin-state quantum numbers in the case of i=3 in the
above equations.

To show that the correct cuts in the crossed channels
are still retained, we proceed exactly as before. Let us
consider the T= 1 channel and expand the determinant,
a=1—d, which now replaces the simple denominator
function, as well as replacing N by N(1—d+p). As
before, we assume the matrix elements of Nl to be
/ independent. To second order, i.e., keeping the
diagrams in Fig. 5, we obtain for the x~ channel,

(2s'+1—M2) 2

(s'+1—e)')' —4s'

—3/2

(40c)

Equations (40b) and (40c), of course, give the Mandel-
stam spectral curves for diagrams (b) and (c), respec-
tively, in Fig. 5. One may also determine the remaining
functions, but we will not do so here. The same argu-
ments apply equally well to the T=0 and T= 2
channels.

The complications introduced by including inelastic
contributions can be considerably reduced by making
two approximations. First, the fact that the (lr—e))
state consists of two nonidentical particles played no
crucial role in the above and will not do so in what
follows. It is therefore convenient to replace the (2r—e))
state by an identical particle state for which:

f'2'= ($—(~+1)')/4,

p2
——(S—((v+ 1)')/S,

Ls —((0+1) +4y2 —2
h2—

Ls —((e+1)2+4]'l2+ 2

Second, we have no a prioriway of relating th, e
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q q

FIG. 6. One-pion exchange diagram in
the inelastic process xx —+ pp.

then be expressed as, e.g.,

X. =(1/%B;~ +~ ~~—(.t*.],
X,'= (1/6' ') [//+f2 +$g $2—++2&lo$2o]

(47)

contributions of the 5=0 and 5=2 states in the reaction
z.+or —+ p+p, even when we only allow (p—p) s waves,
and this forces us to consider several amplitudes. It
is much more convenient to consider a specific diagram,
compute the relative spin weightings, and apply that
weighting to all /. In particular, let us consider the
diagram in Fig. 6. The symmetrized amplitude is

r2
~13 $1pPlp)2d 2v

(Pg —qg)'+1
p2

+ B~P2,h,Pi. , (42)
(Pi—q~)'+1

where $~ and $2 are the spin 4-vectors for the odd-
parity, spin-one particles, satisfying $;„q,„=O. In Fig.
7 we have defined the angles 0 and g relative to P and q,
the center-of-mass momenta in the initial and final
states, respectively. We have, setting s= cos8,

After some algebra one obtains,

(P—q) $2 ~ (P—q) = (1/v3) $2PqP& (s)—P' —q']X.'
+q+'X2 '+V2q+)P —qPg(s)]X2 '

+ (2/3)'/2P" —
2PqPg (z)+q'P2(s)]X2'

+VZq LP—qP&(s)]X2'+q 'XP, (48)

P~ ~ 2 .' ——P C(l—2, m, 2, —m; l—2, 2, l, o) (5o)

and similarly for g~ (P+q)(2 ~ (P+q). At the inelastic
threshold, Eq. (48) becomes

g, ~ (P—)~, ~ (P—) —(1/K3)P'x.
+ (2/3)'"P'x ' (49)

and in fact we will use the amplitudes near threshold
to determine the weighting. The partial-wave ampli-
tudes at threshold are determined by projecting with
a state of total angular momentum l and spin 0 or 2,
with an orbital angular momentum, 1., in the (p—p)
channel equal to 1 or / —2, respectively; these states are

(Pg —qg)'+1= (s/2) —p' —2Pqs,

(P2—qi)'+ 1= (s/2) —p~+ 2Pqz,
(43)

and the projections are as follows:

XI'& 2 X2 ",

where, of course,

P'= (s—4)/4 and q = (s—4p')/4

By use of the polarization conditions on $& and $2, we
obtain, suppressing the index (13),

~ ~ ~ (P-q)~. ~ (P-q)

2Eg

4' (P+q) 4' (P+q)
(44)

1 P //2l+1) '/2 P((s)
(Pt, („',M) = ——I'— dQ~

v3 q (4~ ) 1—s

= —(4m/3) '/'I"'(P/q) (2)+1)'/'Q) (P,),

9'&, t—2, 2',~)=
(

—
[

q

(51)
dQC(l —2, o, 2, o; l—2, 2, l, o)

where
X= (s—2p')/4Pq.

|'2l—3)'/2 P( 2(z)
xi(4s~ X—s

Since we wish to know the relative weighting between
the 5=0 and S=2 states, we must express Eq. (44) in
terms of total spin states. In order to do this, it is
convenient to introduce the quantities

r.=-(1/~)(&.+ ~,),
5 -=(1/~)(k -—~5.),

1/2 P (l(l 1))1/2

I Qi-20)
E3 q (2l—1)

We use a superscript to denote the spin-0 and spin-2
components of the partial-wave amplitudes of our
model and we write (suppressing the index 13):

$10 )le 1

and similarly for g2, P and q, so that

g A= A+) A $+—

+Aalu-

0,—-
in which

and
(46)

where A is any vector. The total spin states, X,~' may

/lf(=M ("X,+M("&X2,

Mg ' ——hg'"Ah3'"

l(l—1) q
'" 8—h»~

( (2l+1) (2l—1)) hs

(52)
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We now assume I.=O to dominate and determine the
ratio of A to 8 by setting

M ('& [(1/(2l+1)'")($1 1 'M)i(

Ms "& [(1/(2l+1)'")(Pt, (—s,s M)]t=s

FIG. 7. Polar and azimuthal
angles used in the computation of.V13.

and evaluate the result at threshold. By this procedure
we obtain:

p 1 8 8
p+1 v2 2

(54) D;;(s), and

Mts((s) =ht Fist

D (&) (sh —]Thus the inelastic amplitude M»& is determined by a
single function as

1 ('s' —4) '"
ds'

s' —s( s' i

t
s""—2q' 1

xl
E,s" '+2j s" '(s" '+2)

1 s' —4)'
ds'

s' —s s' )

(s9)

Q(s) =a/s'"(st('+2) . (56)

C. Choice of the N, ;(s)

Our task of constructing a scattering amplitude
which satisfies unitarity in the s channel, with the
correct "crossed cuts" and threshold behavior has been
completed, and there remains only the explicit choice
of the X;;(s). The X,;(s) will contain a certain set of
parameters which will allow us to satisfy the crossing
relations.

The choice of the N;;(s) is, of course, rather arbitrary
with simplicity and ease of manipulation being the
primary considerations. However, referring to the
previous sections, especially Eq. (30), we see that one
choice will lead to a correct analytic behavior of the
Born term, viz. ,

(s' —2) ' s' —s.('& 1
xl

( s'+2) s'+st"' s'""(s"'+2)

4p =$~~2 —2 (60)

so that Eq. (57) becomes

~' "'( ) = "'/(y+1)(y+l) .

Equation (59) now takes the form

2 ~
/ y 11+

D111 '($) = 1—ai"'- dy'l
ky'+1/

It is now convenient to introduce the quantity y as

This function is deined in the plane cut from S=O to
s= —, and has a pole on its second sheet at s=4.

We must choose the X;; for all isospins and let us
begin with T=1. If we refer to Eq. (56) then we would and
write

Ntt(') (s) = 16at(')/s'"(s'('+2)

and the simplest choice for Nis(') (s) would be, therefore,

(') (s) = 16())(')/s'"(s'"+2) .

(1) (s) = —(t) (')
-s—s,&"

o(((s)
$+$1(1)

s."'+s ("
+ (t1 (—s 1('&)

S+$1(1)

X
(y' —y) (y'+y+ 1)(y'+s)

=1 a, 'n()(—s(), (61)

However, in order to allow more freedom in satisfying
the constraints discussed in Sec. III, we define Xts(') (s)
with two additional parameters as

f)(1)P (1) (s) (62)

In order to de6ne S2~ and X22 we introduce the
quantity x, in analogy to y, as

' (s) = ((s—s. ' ) i (s+s, ' ))
X (16b(')/s'('(s'('+2)) (58)

4m = [s—((o+ 1)'+4]'"—2, (63)

which vanishes at the (tc—o)) threshold, and make the
Equations (57) and (58) allow us to determine the following choices:
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PO) s—s, (

1V2i&') (s) = 1V22(s),
a,"' s+s &'&

1V2g(') (s) = (64)
(*+2)(&+1)

[&(&+1)+((~+1)/4)2ji~2
X

Dgii( ) (s) = —$( )Pi( )[s—(~+1)'+47
D22i"' (s) = 1 a,—("ni[s (&o—+1)'+4j.

(65)

The T=0 and 2 channels will be handled in somewhat
the same way. We write, for T=O,

ai ' s—s,(')
1V)i('(s) = 1Vii(') (s),

(t)(0) s+s (')

$ (0)

1V)3&') (s) =
(X+1)(X+l)

(66)
[w(w+1)+p'/4 J"

1V3)&') (s) =
(w+1) (w+-', )
g3(o) $—$ (o)

tV33(') (s) = 1V8)(') (s),
l)(') s+s, '&

w+q

where we have used the quantity

4w = [s—4p'+4 j"'—2, (67)

The perhaps surprising choice for 1V»(')(s) is easily

understood in terins of the resulting D2, i&'&(s); in par-
ticular, we find with Eq. (64)

variables; we take these to be proportional to the unit
matrix. Likewise the (13) and (31) elements have been
taken to be proportional to the unit row and column,
respectively, where the proportionality factors involve
that weighting of the spin components which we have
already indicated.

The 1V;, (s) and D;;(s) are now completely specified
and are determined by the single function n((s),
defined in Eq. (61). The integral defining ni(s) may be
performed and yields hypergeometric functions; in
particular, we 6nd

4 1
ni (s) = —{(s' +2)2Fi(1) 1;l+ ~~; (s' —2)/4)

n. (l+-', ) s
—(s'"—2)2Fi(1, 1; l+-,'; (2—s'")/4)

—42Fi(1) 1; I+-', ; -', )}) (69)

which is defined by analytic continuation outside the
interval 0&s&4. We note that the D,;(s) have dis-
continuities for s&~4 or s&&(co+1)', s&~4p', depending
on the argument of the e& since the hypergeometric
function has a branch point at one.

III. CONSTRAINTS AND DETERMINATION
OF THE PARAMETERS

The analysis in Sec. II specifies the 7r—x scattering
amplitude completely except for the explicit numerical
value of the parameters. The method of determination
of these numerical values is the subject of this section.

The primary constraint on the amplitudes will be
that of crossing. This constraint may be expressed by
requiring that the amplitudes satisfy the following
relations':

which is the appropriate variable for the (p—p) channel.
These lead to the D;;i(s) as

D„i&'& (s) = 1—ai&'&Pi&'& (s),
Disi" (s) = —l) "«(s) ~

M&'& (s,t,u) =—M&') (t,s,u)+M&'& (t,s,u)

+ (5/3) M &"(t,s,u),
M &'& (s,t,u) =-',M &') (t,s,u)+-'M(» (t,s,u)

——',M &'& (t,s,u),
(70)

Diu(')(s) = l)" ni(s ——4p'+4)

l(l —1)
+ ni 2(s 4p'+4)— , (68)

(l+-') (l—-') A, (s,t) =M &'& (s,t,u) —M(') (t,s,u), (71)

M(» (s,t,u) = —,'M &'& (t,s,u) ——,'M('& (t,s,u)+-,'M &"(t,s,u) .
If we delne t&,;(s,t) as

Ds()i(') (s) = 1—aq(' Pi &'& (s—4p'+4)
then Eq. (70) implies that

l&„(s,t) = —2t4(s, t) = —2t&,2(s,t), (72)

l(l—1)
+ pi 2"(s 4p'+4)—

(l+l) (l—l)
where the l dependence in D3~ and D33 is determined
by Eq. (55). The 1V;;(')(s) and D;;"&(s) are identical
to those in Eqs. (66) and (68) with (0) replaced by (2).
It is to be understood that a highly simplifying as-
sumption has been made with regard to the spin
dependence in channel 3. The matrix elements %33~
and D33~ are themselves 9X9 matrices in the spin

which must be satisfied for all s and t.
In order to determine the values of the parameters

we must be able to obtain numerical expressions for
the M'&(s, t) and M&'&(t, s). However, since we can only
compute M('&(s, t) from the partial-wave sum, we must
restrict our attention to those values of s and t for
which the sum converges. In particular, our formulation
does not allow us to obtain numerical expressions for
M(') (s,t) if t)~ 4 or u~) 4, and since we must use the same
values of s and t, we are restricted to the range: t(4,
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FIG. 8. T=O pa-
rameters leading to
the occurrence of an
f, resonance with in-
dicated width. Sensi-
tivity of the position
of the ghost is also
shown.
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From Eq. (68), this yields

L1— ')~.('(0)]L1— '&P.&'(—4"+4)3
—(b(')jgn, (0)nl( —4p'+4) =0. (74)

The existence of an S-wave ghost implies

D„(.,)D... (.,)-D... (,)D-. (,)=0,
or

ol—"P."(sg)PE1 os—"& "(sg 4p—'+4)j
—(b&'&)'n, (sg)n. (sg —4p'+4) =0, (75)

where s, is the position of the ghost and is negative.
Since the vanishing of the S-wave determinant will

produce a ghost in all of the reactions gr+gr &-+ gr+gr,

gr+gr ~ p+p and p+p+-+ p+p, we must insist that all

of the numerator functions vanish at s= s,. As a matter
of fact, it is sufhcient to require that

s&4, s+t)0. Further, each partial wave becomes
complex for s&0. Although the summation over / must
yield a full amplitude which is analytic down to s= —t,
the technique for carrying out this summation and
continuation with s&0 is not treated in this paper.
Consequently, we are limited to the region: 0&t&4,
0&s&4

In principle, we would proceed as follows: We choose
a set of points, say s=~~, 1, ~3 ~

2 and similarly for t,
compute 6;(s,t) for various choices of the parameters
and 6nally obtain a set of parameters which satisfies
the requirements in Eq. (72) most accurately. Within
our framework we would have no a priori reason to
believe that this set would be unique and, in fact, it
would probably change as we change the mesh of points
in the (s—t) plane. Such a program is simply not feasible
at this point because we have so many parameters that
a search, even by rnachine techniques, is impractical.
Therefore, it will be necessary Qrst for us to reduce the
number of parameters in a more straightforward
manner.

Let us con6ne our attention to the T=O channel
first. In this channel we have 6ve parameters, a~('),
a2&'), b('), s,~') and s~('~, and we wish to reduce this to
a smaller number of independent parameters. In order
to do this we will require that this channel exhibit a
Pomeranchuk trajectory, "" i.e., we insist that the
parameters be such that the determinant of Dl(')(s),
Dl(') (s), vanish for t= 1, s=0. Such a requirement will

lead to the vanishing of D.'&(s) for some s&0, i.e., for
an S-wave ghost, and we will also require that the
residue of this ghost state vanish. To be more explicit
we have

(76)

To see that this implies the vanishing of the off-diagonal

elements, consider F». Multiply the 6rst equation in

Eq. (76) by D», &'&(s,)D11.&')(s,) to obtain, dropping

the angular Inomentum and isospin labels,

But by Eq. (75) this yields

Dll(sg)1V12(sg) Xll(sg)D12(sg) 0 q

which is the numerator function of Fls(sg).
The constraints contained in Eqs. (75) and (76) may

be reduced to

s,—s,&')

&11" P."(S.)— n, (sg) =1,
Sg+Sl

s,—s, ('~

as(') P.(') (s,—4p'+4)—
Sg+Sl(')

&(n.(sg—4p'+4) = 1,

(77)

$ S (o)q2

(b (o) )2—g (o)gs (o)
~

ks,+s, ( )t '

or expressing these in a more tractable form

sg+sl&'& 1
g (o)—

1
s.&'&+s &'& n, (—s &'&)

& (.)D (.)D (.)D (s.)
—D»(s,yr»(s, )D„(s,)D»(s, ) =0.

Dl (o) (())—D 1(o) (0)D 1(o) (()) D 21
(o) (0)D2 1(o) (())

=0 for /= 1. (73)

'0 See e.g., S. Pomeranchuk, Zh. Kksperim. i Teor. Fiz. 34, 725
(1958) LEnglish transl. : Soviet Phys. —JETP 7, 499 (1958)g.

"G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 8, 41
(1962).

g (o)—
3

(b(o))2

s,+s, ( &

s.('&+sl&'& n, (—sl —4p'+4)

s s (o) -2

s.('&+sl&'& u. (—s &')n. (—sl&'& —4p'+4)

(78)
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The reduction of the parameters now proceeds as
follows: We choose values of s,&' and s~&' which, by
Eq. (77), determine ai'), (&3(o), and (b")' as a function
of s,. The quantity s, is then determined by substi-
tuting these functional expressions into Eq. (74). This where

As''+ 28sg+C =0, (79)

equation is an algebraic equation, quadratic in s„and
can be solved immediately. In particular, we have

A=
LS (o)+Si(o)72

Lsi(o)+si(o)]2

t. (0)t. (-4"+4) -.-(0)-,( 4;-+4)

n. (—si(')n. (—si(' —4p'+4)

»"Pi"(0)Pi"( 4p'-+4)+s. "ni(o)ni(-4p'+4)

n. (—si('&)n (—s, ('& —4p'+4)

Pi" (o) Pi" ( 4p'+4-)

2gs. ('&+s, (')7
—

P ('(0)
X

Pi" ( 4p'+—l)

n, (—si(') n. ( si(—'& 4p—'+4)

s,('+s (' n (—s (') n (—s (') —4p'+l) (s.(o)+s (o)]

»'"Pi" (0)Pi"(—4p'+4) —s.'"ni(o)ni( —4p'+4)

n. (—si('))n (—s, ') —4p'+4)

The nature of the roots of Eq. (77) restricts somewhat
the possible choices of s,(' and s&&'); specifically we
allow only those solutions which contain at least one
real, negative root. As we will see this is not an im-

portant restriction of the possible range of the s.&'

and s~&'. In the case that there are two negative roots
we choose the more negative one on the basis of
continuity.

Finally, we remark that it is not possible to choose

(l/(ti ' )1Vii ' (s) = (1/aa(o))X&3('(s) as we pointed out
in Sec. II. This, of course, could be accomplished by
choosing s, ('&= —si('& /see Eq. (66)], but we see from
Eq. (78) that this implies ai ('& =aa ('& = (b ('&)'= ~.
Actually this means that the equations in Eq. (77) or
(78) are reduced to identities for all values of the
parameters and thus the parameters cannot be
determined.

Thus the T=O channel is characterized by two input
parameters, s, ('& and sj('&, and these are to be deter-
mined by crossing.

Let us now turn to the 7= 1 channel. In this case
there are no restrictions that can be imposed in analogy
to the T=O channel. However, because there are no
restrictions to satisfy, we can reduce the number of
parameters rather arbitrarily keeping simplicity in
mind. In particular, we may choose s,"~=—s~&" in
contrast to the T=O channel, and this possibility will

be discussed in detail in Sec. IV. Also it is possible to
take the point of view that rescattert'Ng of the (ir—&u)

state plays no crucial role in determining 3f»(s, t)
although the existence itself of an inelastic state is
significant, i.e., the (ir—ru) state can contribute to (~—cu)

elastic scattering only by means of the (ir—rr) state
through unitarity, but the (ir—~) state can contribute

directly to the elastic (m--7r) amplitude since the
inelastic amplitude is nonzero. We will, in fact take this
point of view and set a2O~ =0 in everything that follows.
The remaining parameters, as well as those for the T= 0
channel, are then""determined by the 6rst crossing
relation in Eq. (72).

It should be emphasized that there is no choice of
the parameters which will satisfy crossing exactly.
After all, we have certainly not been clever enough to
guess the correct solution to the problem. The values
of the parameters will simply be those that lead to
amplitudes that satisfy crossing most accurately.
These will then determine, within the model presented
here, the behavior of the various partial-wave ampli-
tudes in each isospin channel.

IV. NUMERICAL RESULTS

In this section we shall discuss the consequences of
the parameter variation defined in the preceding
section. For the moment, we will restrict our attention
to simply one of the crossing relations, viz. , 6,= —2A&.

It is to be admitted that parameters determined in this

way may lead to parameters in the T= 2 channel which

yield undesirable consequences, e.g., ghosts or bound
states in the T=2 channel. (As we shall see, this does
not occur. ) However, with the wealth of parameters
available in this model, a simultaneous variation of all
the parameters is not practical even with the use of
machines. Further, there are many sets of parameters
which can be used, each set satisfying the crossing
relations to some extent. In any case, what we wish to
show is that the main features of pion-pion scattering
are a necessary consequence of the symmetries imposed,
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FIG. 9. T=O determi-
nants for /=0 and 2 for
the case s~&') =74, s,(')=—56.6. Above thresh-
old the real parts are
plotted.

SO

SI

0

in the parameter variation the D-wave resonance near
the f. was accompanied by a D wa-ve resonance at a
lower energy. This is illustrated in Fig. 9 for the case
$,&0&= —56.6 and $i'&=74. This leads to an S-wave
ghost at s,= —66, and D-wave resonances at s=6 and
sf—81. This behavior is no t suppor ted by the experi-
mental evidence. In the parameter search to obtain
the best 6t to crossing —to be discussed shortly —we
incorporate the fact that Re D2" shall not vanish for
s~&60. It happens that this restriction improves the
fit to crossing.

and that the model presented here is a reasonable
representation of this fact.

A. T=O Channel

As shown in Sec. III, the T=0 channel is determined
by two parameters: s, (') and s&('. For any choice of
these parameters we have a Pomeranchuk trajectory
and an S-wave ghost whose residue vanishes. Before
we impose crossing syLnrnetry, let us examine the
behavior of the relevant partial waves as we vary s,&'&

and s&('&. We remark first that the position of the ghost,
s„ is not a sensitive function of s,&'& and s~('&, and in
fact occurs in the neighborhood of the conjectured
Chew and Frautschi" ghost. Second, it is possible to
find values of the parameters for which Dsi'&($), the
D-wave determinant, has a vanishing real part in the
neighborhood of the observed f. resonance, " although
it does not seem possible for our model to yield a width
for the f, which is as small as the observed value. If
we require that Re Dst'&($) =0 for /6&~$&~86, then we
obtain the values displayed in Fig. 8. This figure also
demonstrates the insensitivity of s, to s,&' and s~('&.

The width of the resonance I'f is determined by
Im D2&') and ranges over the values indicated in the
6gure. We determine 1 f as

r, =Im Ds&'&($f)/$ f) f,
where sf is the position of the resonance and Xf is the
slope of Re Ds'&($) at $=$r. Equation (80) gives

16 ($f'"—2) '" $r —$,&0&

) r$f" (sr' '+2) $r+$ito&

&& [1—as&'&[Ps&'($f 4p'+4)

+ (8/»)P. "($ 4p'+4)3—
+f&(o&s[rrs($r 4ps+4)

+(8/») ($ -4p'+4)l) . (»)

We emphasize, however, that in every case considered

12%. Selove, V. Hagopian, H. Brody, A. Baker, and E. Leboy,
Phys. Rev. Letters 9, 272 (1962); see also L J. R. Aitchison, Phys.
Rev. 131, 1797 (1963) and references given there, as vrell as V.
Hagopian and W. Selove, Phys. Rev. Letters 10, 533 (1963).

B. T=1 Channel

In this channel there are four parameters: a~o&, b('),
s,o) and s~('~, there is no ghost constraint here analogous
to the ghost constraint in T=O, so that all of these are
independent. Because of this independence, it is possible
to find an enormous number of sets of parameters which
reproduce the E'-wave resonance, " i.e., the p with the
correct width. If we insist that the crossing relations
determine a set which yields the correct properties of
the p, then we must decide how to begin the parameter
search. This can be established by determining those
sets which do yield a p with the correct properties and
then to use these sets as a starting point. This will, in
fact, be our procedure. To determine the initial set of
parameters then, we insist that Re Din&($) =0 at $=$„
the position of the p. This yields a linear relation
between a o& and bo)'

b(&)2=
1—cia'&[Ren, ($,))

[RePi"& ($,)jPi"'[$,—(~+1)'+43
(82)

'3 A. Erwin, R. March, W. D. Walker, and E. West, Phys. Rev.
Letters 6, 628 (1961).

The width of the resonance so obtained is

I'p ——Im Diu&($p)//)ip$p'",

in analogy to Eq. (80) for the f', or

($ i~s —2)s~s

X,$,s"E$ '"+23

s,—s,"&

&( at&'&+t&"" Pi&'&($,—(o&+1)'+4) . (84)
$p+$i

If we insist that 0.6~&F,~&0.8, we obtain sets of parame-
ters such as those displayed in Fig. 10. A given curve in
the figure, belonging to a given value of si(", represents
a very narrow region of values of s,&') and a&('~ for
which there is a p with the correct mass and width.
Once a~o~ is chosen and s,o& and s~('~ determined so
that we have the correct mass and width, b(')' is ob-
tained by Eq. (82). Figure 10 represents only a very
small sample of the results of the search.

The case of b('&=0, i.e., no inelastic effects in the
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FIG. 10. T= 1 parameters
leading to the occurrence of a p
resonance with width between
0.6 and 0.8.

unique, and we have considered many, but the following
seems convenient: We consider the following mesh of
twenty-one points in the s—t plane: s=~, 1, 2,
t=-,', 1, —,', , ~ with t&s. For each of these points we
evaluate A, (s,t) and —2t4(s, t), and represent this
calculation by a point in the (6„—2t&i) plane. If the
crossing relation were satisfied exactly, then all these
points would lie on the 45' line in Fig. 11.In fact, these
points will be scattered about this line as indicated in
Fig. 11. We now define the angle e(s,t) for each point
as shown and whose sine is given by

-20

—30

(
t&,.(s,t)+26)(s, t)

~

sine(s, t) =
ALA, '(s, t)+4t1)'(s, t)1' '

(86)

-40 The average sine for the T=O and T=1 case is then

elastic amplitude, is not among these results. If we set
b "&=0 and demand that Re Di('&(s,) =0, we Gnd that
the slope of this function is positive and cannot repre-
sent a true resonance. In fact, there is a ghost near
s= —90 and the zero we have demanded is the second
zero of Re Di"&(s). This result is independent of s,"'
and s~&'). In all the cases considered in the search, . the
zero at s=s„was required to be the first one.

As we showed in Sec. III, it was necessary to intro-
duce the parameters s,&' and s~&' if we were to satisfy
the Pomeranchuk trajectory condition. However, there
is no such constraint in the T=1 channel, and there
would seem to be no need for the introduction of the
parameters s,o) and s~o). In particular, we could have
simply written

(i)/b(i) —+ (i)/g (i)

If, in fact, we set s,&') = —s&o), we can eliminate these
parameters from all formulas and obtain a p with the
correct position and width. The parameters which

accomplish this are a~(') = —349 and b&')'=2919. How-
ever, this case does not provide nearly as good a 6t to
crossing syrninetry as do the sets for which s,&"& —s&&').

One could argue here that this makes little difference
because it is clear that one can improve the crossing-
symmetry fit by introducing more parameters. This of
course is true, but it is important to remember that
these parameters determine a/l of the partial waves,
not just the I' wave.

1
P.i———P sine(s, t),

g (a, ~)

(87)

s.& )=
s &')= 10

u (')= —4.3

a, ( ) = —15.0

S 0)

syo) —10

a,o) = —5.8

The points in Fig. 11 in fact represent this situation.
The position of the ghost in this case is

se= —57.1.

The determinants of the lower partial waves are plotted
in Fig. 12. This shows the 5-wave ghost, D,&')

(—57.1)=0, the I' wave resonance (-by construction),
Di"'(29)=0, and the fact that there is no D-wave
resonance.

where the sum is taken over the twenty-one points in
the mesh. The best fit to the crossing relation is defined
to be that which minimizes f,i.

The first variation of parameters was made with only
those T=1 parameters for which there is a p with the
correct mass and width. The minimum obtained in this
way is

i)t .i=0.358,

and the parameters so determined are:

C. Cross Symmetry

At this point we now impose the crossing relation

S.(s,t) = —2a, (s, t) .

As we have stated, the parameters are to be determined
as those which best satisfy the crossing relation, but
we must first establish a quantitative criterion as to
what constitutes the best fit. Such a criterioii is not

FIG. 11. Map of 6o versus—2ti&. The angle (s,t) is de6ned
in the figure.
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Fn. 12. Determinants
for T=O, l=O and 2, for
s~&'&=10 and s,(')=24,
and T=1, l =1, for the
optimum case in which
the exact p occurs.
Above threshold, the
real parts are plotted.

D(o)

DI"

'Oo

0(o)
0

S,

IOO

a2"', and b"), we must optimize the fit to the other two
crossing relations

d, (s,t) = —26&(s,t),

t4(s, t) = hg(s, t) .

(88)

(89)

In analogy to the preceding section we introduce the
following P's:

"-5
I ) ~.+»~

I

Q (s, I) ALA, '+4AP]i~'
(90)

We now fix the T=O parameters and vary a&") and
b("' in a second variation. We let a&&') and b(»' vary
in small increments until a minimum of f,i is found.
In principle, we then fix these new parameters and vary
the T=0 parameters, etc., until a stable set of parame-
ters is found, if uey. If we perform the second variation
mentioned above we find that the new minimum is
very nearby, and it is not necessary to continue the
parameter variation. It is to be emphasized that this
result is by rIo meatus built into the searching techeique-
the minimums could equally mell ha~e beel unstable aed
"rue amay. "

At the minimuin we obtain. P,i——0.356 with pa-
rameters

a o)= —6.0,
b()'= 138.

The map of ~, versus —261 for this case is not ap-
preciably different from that shown in Fig. 11. In
Fig. 13, the determinants D~(' and D1O) are plotted;
the first of these shows the (by construction) Pomer-
anchuk trajectory at s=0 and returns through zero
near s=10; the second shows the P-wave resonance to
be slightly removed from the observed position. The
parameters of the resonance are:

sp
——33.7 = (5.8)'= (812 MeV)'

F,= 2.52=353 Me&.

These results are remarkably sensitive to the variation
of parameters. In particular, a 3% change in. aI"' and
a 4% change in b&"' have shifted the position of the
resonance by 17% and have increased the width by
more than 350%.

1

S (~, Ij v2LAP+As'J"
(91)

.-I.O

Fro. 14. Minimization of P,q

and &1~ as a function u~(~).

I I I I I

-IO-8 -6 -4 -2

--.2
IRI

I I I I I
t2468 IO

scattering dominates in the crossed channel then we
have, from. the crossing relations

and
M&'I(s, t) =M&'&(t,s)

M&'& (s,t) = —-'M&'& (t,s) =——,'M&'& (s,t) .

(92)

(93)

This suggestion that we begin the variation with:

a~(2) — 1a (o)
2 1

a2(2) — 1a (p)
2 2

b(2)2 1b(p)2

The choice of parameters s&("=sy( ) =10 and s,("
=s,(')=24 suggests itself and proves to be superior
to the case s,"'=—s1"). However, we again have the
problem of where to begin our parameter variation.
In order to obtain a starting point for the variation we
will use the following argument. If we assume that T= 1

FIG. 13. /=1 determi-
nants for T=0 and 1 in the
case of minimum &,1.

I

—IOO

2-

-2.-

D. T=2 Channel

Only the T=2 channel remains undetermined. To
determine the remaining parameters s,(), s1, a1",

If in fact we do this we find that III i~ reaches a minimum
as a function of b""when b("'=0. We argue from this
that the T=2 channel prefers to be a one-channel
problem, and thus as far as the elastic 7I-~ amplitude
is concerned, only one parameter, a1(2), remains to be
varied. We have no reason to suppose that p, ~ and III i~
will have their minima for the same value of a1(2);
however, their minima are very close together as one
can see from Fig. 14. This is a very satisfactory result,
and it probably implies that we have obtained an
essentially optimum 6t to all of the crossing relations.
A good corripromise is reached if we take a~(2)=4.2.
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Fro. 15. (a) Map of a.
versus —262. (b) Map of
b,~ versus h2.

- IOO
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FIG. 16. T=2 denominator
functions for l =0 and 2. Above
threshold, real parts are
plotted.
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imaginary part of D~~,"' is negative there so that the
scattering is repulsive for low energies. This repulsive
behavior of the low-energy T=2 scattering is more
obvious from a plot of the phase shifts. This is given in
the next section.

E. Phase Shifts

The maps of ~, versus —262 and ~~ versus ~2 are
given in Fig. 15.

In the T=2 channel, for this determination of the
parameters, the relevant partial-wave denominator
function for elastic ~~ scattering is not D~(') but
simply D»&"' since only aj(" is involved. This function
is plotted in Fig. 16 for /=0 and l=2. The l=0 case
seems to show a resonance near s=8; however, the

tansr& ~= —(Im D$& ~/Re Dg& ~).

For T=O and 2 we use:

(94)

Here we will present the results of the previous
analysis in terms of phase shifts for the lower partial
waves in each of the three isospin channels. The phase
of the determinant D~'~' is —8~( ), where bg(~& is the
eigenphase shift. Therefore we have

l(l —1)
Re D$&&) —L1 gr&r)P)&&) (s)$ 1 —gs&&) P&&r) (s—4p2+ 4)+ Pr s&r) (s 4p2+ 4)

(l+l)(l —l)

l(l —1)—b&r~'n((s) n((s —4p'+4)+ n& 2(s 4p'+4), —(95)
(l+') (l—)

16(s'"—2) '+I
Im D&&r'

s (s'"y2)

for T=1 we use:

s—s, (~)

g (&)

s+s &n

l(l —1)
1—g&& & P&& '(s —4p'+4)+ P~s' '(s—4p'+4)

(l+l) (l—l)

l(l—1)
+b r" n&(s 4p'+4)+ — n~ 2(s—4p'+4); (96)

(l+l) (l—l)

1(l—1)
Re D~&'&=1—gr&'&nr(s) —b&"'p~"'(s) p&&"(s—(a&+1)'+4)+ p& 2&"(s—(&o+1)'+4)

(l+l) (l—l)

16 s' '—2) '+I s—s, &r& l(l—1)
ym D&&r) —

1

gr&&)+b&r)~ P&&&)(s (&d+1)2+.4)+ P$ so)(s (&/+1)2/4)
s s' '+2~ s+sr&'~ (1+sr)(l—rs)

(97)

(98)

For the parameters determined above we have com-
puted 8,", 82('&, b~o), 8,"', and 52"',. these are plotted
as functions of s in Fig. 17. As expected, the T=-1,
l=1 phase shift increases through 7r/2 at s=33.7. The
remarkable feature about the phase shifts to be noted
in Fig. 17 is that in every single case, except T=0,
l=2, the scattering is repulsive at threshold. That this
is true of the P wave is an unusual feature of the model
presented here, but crossing symmetry apparently

requires channel one to be repulsive. The attraction
necessary to produce a resonance is provided by the
inelastic contributions.

In addition to the P-wave resonance discussed above,
we note from Figs. 17(a) and (c) that peaks will occur
at low energy in the S-wave cross sections for both the
T=O and T=2 channels. In the T=O case, a peak will
occur at s=9ps (420 MeV) because the phase shift
passes rapidly through —s/2. On the basis of the



~ —x SCATTERING WITH UNITARITY AN D CROSSING B1541

90-

(a)

S
I I I I I I I I I I

50 IOO

-90

T 0

IO'-

(b) i I I I I I I . I I S
so IOO

-90 "

90 "

Levinson theorem one might argue that the phase
shift should be x at threshold because of the existence
of a "bound state, " i.e., the S-wave ghost. However,
since the residue of the ghost is zero, it will not con-
tribute to the contour integral in the usual derivation,
and thus the phase shift is taken to be zero at threshold.
Of course, the correct value of the phase shift at
threshold should be determined by defining b, i'& (ae ) =0
and then tracing the variation of 5,&'&(s) down to
threshold. This will fix unambiguously the phase shift
at either 0 or x. In any case, it may very well be that
this peak at 420 MeV should be identified with the
ABC'4 anomaly at 310 MeV. However, the peak ob-
tained here certainly cannot be considered a resonance
in any sense of the word since the peak is so broad and

asymmetrical as seen in Fig. 18(a), where the sins', &'&

is plotted. On the other hand, it is not impossible that

0.8 "

O.f

FIG. 18. sin~8, &~) ver-
sus s for T=O, 2.

«4 OS
Ch

Ol
C
IO OP s

08 "

0 4 IO 50 40
S

d5/dk) R. —

such behavior is consistent with the data, and that this

type of situation is what is being observed.
In close similarity to the T=O channel, the T=2

exhibits virtually the same behavior, the peak occurring
at s=8&tis (390 Mev) as seen in Fig. 18(b). To the best
of our knowledge such a situation has not been observed
experimentally, but the crossing relations within our
model appear to demand this behavior.

This repulsive nature of the T=O S wave is in con-
siderable contrast to previous studies. ""In terms of
the Lagrangian parameter X of Ref. 1, this means that
X&0, in opposition to the results of Desai" who found
A —0.2. Further, the scattering length is negative
here whereas others obtain a positive value. Of course,
positive scattering lengths are to be expected in these
other analyses since it was assumed that the T=O
S-wave scattering must be attractive to explain the
ABC data. As we have seen, it may not bc necessary
to understand these experimental results in terms of an
attractive S-wave scattering.

One might ask whether the rapidly decreasing S-wave
phase shifts in fact violate Wigner's'5 remarks con-
cerning the rate at which phase shifts can decrease.
Wigner's arguments are based on causality and a finite
range potential of range 8, and he has found that

(c)

-90

X~2
I I I I S I

50 boa

(The correct quantum mechanical relation differs but
little from this. ) All we wish to show here is that the
minimum ranges necessary for the results given in
Figs. 17(a) and (c) are not too large. In particular, if
we calculate R& ' when b, & ' passes through —Ir/2, we

6nd

R&0& =0.79(1/&ti),

Ris& = 1.25 (1/&tI) .

FIG. 17. Phase shifts as functions of s,

These are reasonable ranges.
Finally, let us obtain the scattering lengths them-

' A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev.
Letters 5, 238 (1960); 7, 35 (1961).

"T.N. Truong, Phys. Rev. Letters 6, 308 (1961); B. Desai,
~bid. 6, 497 (1961).



B1542 KREPS, COOK, BREHM AND BLANKENBECLER

(7)
i

pcot80

5 IO l5

FrG. 19. Effective-
' range plots for the

S-wave phase shifts.
20 25

«5

selves. For this purpose we would write

E"+' cot&)g&r) = —Re Di&r)LP"+'/Im Di&~)j (99)

and for the term in brackets simply make the replace-
ment

16(sUs —2) '+&

s ksUs+2) s ($1/s+ 2)2i+I
(100)

We have plotted p cot&), & ' against I" in Fig. 19, and
if we use the relation

we find

p cot&).&r) =+(1/a. &~)),

a.&'& = —1.72, a.&s) = —1.85

(101)

(102)

in units of (1/&M). As we have indicated above, the T=O
result differs considerably from other studies. The
result in the T= 2 channel is also inconsistent with that
obtained by Kirz et al. ,"who find

~
a, &s&

j
&0.15. From

Eq. (102) one finds that

a, (2) —a,~') = —0.t3. (103)

This is in agreement with the experimental results of
Botusov et aE.,'~ which yield, using an analysis of
Anselm and Gribov '

g, (2)—g &' = —0.35+0.30.

On the other hand, Khuri and Treiman" have found

a &s) a &o) —+0 7

V. DISCUSSION

We have presented in this paper a model of m~
scattering which we believe includes all of the essential
properties of the true scattering problem. In particular,
these are unitarity-including inelastic states in the s
channel with branch points located at the correct

"J.Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 126, 763
(1962).

'~ V. A. Botusov, S. A. Bunyatov, V. M. Sidorov, and V. A.
Yarba, Proc. Ann. Intern. Conf. High Energy Phys. Rochester
10, 79 (1960).In this paper see also the table of scattering lengths.' A. A. Ansel'm and V. N. Gribov, Zh. Eksperim. i Teor. Fiz.
37, 501 (1959) LEnglish trsnsl. : Soviet Phys. —JETP 10, 354
(1960}7.

"-N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (1960).

positions in the 3 and I channels, the correct threshold
behavior in the s channel, and crossing symmetry.
Basically, we have found that these constraints, when
a specific behavior in the T=O channel is assumed, i.e.,
the Pomeranchuk trajectory, force a resonance in the
T=l channel at approximately the position of the p
meson with a rather large width. It is important to
emphasize that we have not assumed the existence of
the p meson in any essential -way, but that it is a
accessary consequence of the constraints imposed. By
"essential" we mean it is the existence of the inelastic

. states themselves that is important and not the fact
that one of the inelastic states is the (s.—ar) state; the
fact that we knew of such a resonance experimentally
and used this information to begin our parameter
search is not significant. If we had not known that the
p meson existed, we would have predicted such a
resonance (practically, we admit that the parameter
search may have been somewhat disci&cult in this case).

If we consider the success of this model in reproducing
the p meson, it does not seem unreasonable to have
some confidence in the results for other partial waves,
especially the T=O channel since our model may very
well enable one to understand the ABC anomaly. Thus
let us consider the T=O, 7=2 case. As we have re-
marked, our model will not reproduce the f, Howeve. r,
considering the experimental data with respect to the

f„ it may be worth noting that the determinant func-
tion, Ds&'(s), dipped near zero in the general neighbor-
hood of the f, in many cases although it never did pass
through zero without producing a lower energy D-wave
resonance. In terms of phase shifts, this means that the
phase shift approached s/2, but then receded. In any
case, it is not clear that one can believe the results of
the model presented here at such energies.

Because of the many aspects of the model it is

certainly reasonable to ask whether any particular
aspect is more important than the others. This is a
difficult question to answer, but a few remarks can be
made. One can construct an amplitude in which all
aspects of the full model are retained except for inelastic
unitarity. This would certainly appear to be a rea-
sonable approximation and in fact is basically the form
of nearly all previous calculations. We have made such
calculations when s,o) = —s~o) so that there is only one
parameter in the T=1 channel, and we find that the
P-wave resonance cannot have a mass greater than s= 6.
This result does not depend on crossing symmetry but
simply on the form of the amplitude given in Eqs. (9)—
(13), and (57). A resonance can be produced at the
correct position by using s, (') and s~o) but this is not
very satisfactory. It would thus appear that elastic
unitarity is not adequate to reproduce the p meson with
our choice of a trial function. By including inelastic
unitarity, and ignoring crossing, we can produce the p.
This is in contrast to the results of Balazs' who found
that inelastic eGects were not particularly significant.
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However, he assumed that the maximum effect would
be produced by a totally black disc, and it is not clear
that this is true. If we add only inelastic states to the
model, however, we find that we can produce a I'-wave
resonance virtually anywhere. The Nmiqle value for the
position and width of the p meson is obtained when one
imposes crossing symmetry as well. Thus it would

appear that all aspects are equally important; elastic
unitarity and the correct crossed cuts yield a dasicall&

repulsive interaction, the attraction necessary to pro-
duce a resonance is provided by the inelastic states (a
phenomenon observed in other calculations' ), and the
actual value of the resonance is determined by the
crossing relations.
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Asymptotic Behavior of Partial-Wave Amplitudes

R. OMNEs
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For in6nite energies, we determine the asymptotic behavior of partial-wave amplitudes when the full
scattering amplitude satis6es Mandelstam representation and has itself a Regge asymptotic behavior.
Particular attention is paid to the behavior of the partial-wave-amplitude discontinuities on their cuts.
They are shown to behave as ~t

~

&'& ', where t is the energy squared and u(0) is the leading Regge-pole
position at zero energy. This result removes an old-standing diKcuIty in the Chew-Mandelstam calculation
of amplitudes and provides a precise justi6cation of the nearest singularity technique. As an application, we
show that no subtraction is necessary in partial-wave-amplitude dispersion relations at physical values of
the angular momentum, even for the case of S waves.

I. INTRODUCTION

"N their original program, Chew and Mandelstam
~ ~ stressed that a particle or a resonance in a crossed
channel contributes to the forces acting between two
particles. ' More precisely, the partial-wave amplitudes
for pion-pion scattering have both a left- and a right-
hand cut as functions of the energy, and the resonances
in the crossed channels determine the discontinuity
across the left-hand cut or, equivalently, the forces.
Unfortunately, it appeared that the discontinuity ob-
tained from that mechanism increased at a rate in
conQict with unitarity when the energy became infinite
and negative, as soon as the spin of the resonance or of
the bound state in the crossed channel was larger than
or equal to one. Such is the case for the p meson (and
now also for the f' meson). The problem of determining
the exact high-energy behavior of amplitudes became
a necessiry preliminary to the dispersion theory of
elementary particles.

It was indeed felt that a simple solution of the
problem had to exist since, in several cases, the simple
trick of introducing a cutoff for the left-hand cut dis-
continuity leads to sensible results. This idea has been
expressed as the nearest singularity hypothesis, by
which one meant that a physical process was mostly
determined by the effects of the singularities nearest to
the physical region and was not affected by any mis-
behavior of the amplitudes at infinity. '

' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
2 See, for instance, G. F. Chew, S-Matrix Theory of Strong Inter-

actiorts (W. A. Benjamin, Inc., ¹wYork, 1961).

The clue to a solution of the problem was provided
by the observation, due to Regge, ' that the asymptotic
behavior of the nonrelativistic-scattering amplitudes,
as functions of the angle, are determined by the singu-
larities of the partial-wave amplitudes as functions of a
continuous angular momentum. ' Actually, these singu-
larities are only poles. Chew and Frautschi4 and
Mandelstam' pointed out that the high-energy diK-
culties of the S-matrix theory of strong interactions
could be eliminated if one takes as an ansatz that the
asymptotic behavior of the total amplitude in relativ-
istic theory is analogous to the one found in non-
relativistic theory.

Although it was clear that the asymptotic difBculties
were removed by that hypothesis, one had yet to
exhibit a practical way of resuming the Chew-Mandel-
stam program, now enlarged to be a program for self-
consistently computing the leading Regge-pole trajec-
tories. Chew and Jones are currently investigating such
an approach in which they work both with the full
amplitude and with the partial-wave amplitudes. '~
However, it is not clear whether only using the partial-
wave amplitudes, which has the advantage of leading
to one-dimensional well-known equations, could lead

' T. Regge, Nuovo Cimento 18, 947 (1960).
4 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394

(1961).
e S. Mandelstam (unpublished).' G. F. Chew and C. E. Jones, Lawrence Radiation Laboratory

Report UCRL-10992, August 1963 (unpublished).
7 G. F. Chew, Conferences at the Department of Applied Math-

ematics and Theoretical Physics, University of Cambridge,
England, 1963 (unpublished); see also Ref. 9.


