Fragment Mass Distributions for Thermal-Neutron-Induced Fission of Pu²³⁹ and Pu²⁴¹

F. J. WALTER, H. W. SCHMITT, AND J. H. NEILER* Oak Ridge National Laboratory, Oak Ridge, Tennessee (Received 10 October 1963)

The fragment mass distributions for thermal-neutron-induced fission of Pu²³⁹ and Pu²⁴¹ have been determined from correlated energy measurements of fragment pairs. These mass distributions are compared with each other and with the post-neutron-emission mass yield for Pu²³⁹ obtained from radiochemical and mass spectrometric measurements. It is shown that these comparisons are consistent with the saw-tooth character of the function $\nu(M)$ as well as with the cluster model of fission in which the stability of the closed-shell structures fundamentally influences the fragment mass and energy distribution for fission at low excitation energy.

HE fragment mass distributions for thermalneutron-induced fission of Pu²³⁹ and Pu²⁴¹ have been determined from correlated energy measurements of fragment pairs. The method was generally the same as that employed in earlier experiments.^{1,2} Surface barrier detectors were used in conjunction with standard low noise, charge-sensitive amplifier systems, and the resulting correlated pulse heights were recorded by a 128×128-channel punched-paper-tape correlation recorder. Special fast coincidence and inspection circuits, which are described elsewhere,3 were used to minimize spectrum distortion by pile-up of fission fragments or natural alpha particles on fission fragments. A narrow, highly collimated beam of unfiltered neutrons from the Oak Ridge Research Reactor was incident on a 50-µg/ cm² deposit of Pu²³⁹ on a 70-µg/cm² self-supporting nickel foil or on a $50-\mu g/cm^2 Pu^{241}$ deposit on a $30-\mu g/cm^2$ self-supporting carbon foil. The silicon surface barrier detectors, made from 500-ohm-cm silicon, were located outside the neutron beam and were collimated with round-edge aluminum collimators. These detectors were 4 cm^2 in area and were of the same type which have exhibited resolution widths of <1.5 MeV full width at half-maximum for high-energy Br79, Br81, and I127 ions as determined in an auxiliary experiment.^{4,5}

A typical single-side energy spectrum for Pu²³⁹ is shown in Fig. 1. The energy calibrations for the detectors were obtained for Pu²³⁹ by normalization of the average pulse height for each fragment group (light and heavy) to the appropriate average fragment energy obtained from time-of-flight data,⁶ corrected for neutron emission. The fragment pulse height versus energy relation thus derived for each detector was assumed to apply also to fragments from the fission of Pu²⁴¹.

For each experiment the correlated pulse heights, serially recorded on punched paper tape, were sorted and summed into a 128×128 -channel matrix. Energy calibrations were applied and appropriate transformations of the data (assuming momentum and mass conservation; $M_1E_1 = M_2E_2$, $M_1 + M_2 = 240$ or 242) were made in order to derive the fragment mass distribution. The mass distribution thus obtained (without corrections for neutron emission) is essentially the pre-neutron-emission mass distribution. The results for Pu²³⁹ are shown in Fig. 2. The mass yields obtained from radiochemical and mass spectrometric measurements, as compiled by Katcoff,⁷ are plotted for comparison. These are post-neutron-emission mass yields and are expected to produce a mass distribution curve shifted to slightly lower masses, as indeed is observed. The shift indicated in Fig. 2 is greater for the light fragment than for the heavy fragment in near-symmetric fission, and is greater for the heavy fragment than for the light fragment in very asymmetric fission.

FIG. 1. Pulse-height spectrum for fission fragments from Pu²³⁹ thermal-neutron-induced fission.

⁷ S. Katcoff, Nucleonics 18, 201 (1960).

^{*} Present address: Oak Ridge Technical Enterprises Corporation, Oak Ridge, Tennessee.
¹ H. W. Schmitt, J. H. Neiler, F. J. Walter, and A. Chetham-Strode, Phys. Rev. Letters 9, 427 (1962).
² W. M. Gibson, T. D. Thomas, and G. L. Miller, Phys. Rev. Letters 7, 65 (1961).
^a C. W. Williams, H. W. Schmitt, F. J. Walter, and J. H. Neiler, Nucl. Instr. Methods (to be published).
^a C. D. Moak, J. H. Neiler, H. W. Schmitt, F. J. Walter, and G. F. Wells, Rev. Sci. Instr. 34, 853 (1963).
^c F. J. Walter, C. D. Moak, J. H. Neiler, H. W. Schmitt, W. M. Gibson, and T. D. Thomas, Bull. Am. Phys. Soc. 8, 39 (1963).
^e J. C. D. Milton and J. S. Fraser, Can. J. Phys. 40, 1626 (1962).

This result is consistent with the saw-tooth character of the function $\nu(M)$, the number of neutrons emitted as a function of fragment mass, as discussed by Terrell.⁸

In Fig. 3, the Pu²³⁹ mass distribution from this experiment is compared to the time-of-flight results of Milton and Fraser.⁶ The two yields are normalized at the peaks of the distribution in order to allow comparison of shapes.

The mass distribution for Pu^{241} , obtained in the present experiment, is shown in Fig. 4. In addition, the observed mass distribution of Pu^{239} , normalized at the peak of the distribution for comparison of shapes, is plotted. It is of interest that the shapes of the mass distributions are similar, although the observed peakto-valley ratios for Pu^{239} and Pu^{241} are 130 and 270, respectively. Perhaps of greater importance is the

FIG. 2. Fission fragment mass yield for Pu²³⁹ thermal-neutron-induced fission.

observation (from Fig. 4) that the two-neutron difference (242-240) in the compound system appears predominantly in the light fragment for near-symmetric fission, and appears to be shared between the light and heavy fragments for more asymmetric fission. As with the 3-particle fission result,¹ this result is quite consistent with the cluster model of fission,⁹ in which the stability of the closed-shell clusters fundamentally influences the fragment mass and energy distributions in fission at low excitation energy. The formation of

⁹K. Wildermuth and H. Faissner, *Proceedings of the International Conference on Nuclear Structure, Kingston*, edited by D. A. Bromley and E. W. Vogt (The University of Toronto Press, Toronto, Canada, 1960), p. 972; Phys. Letters 2, 212 (1962).

FIG. 3. Comparison of time-of-flight and correlated energy measurements of the fragment mass yield for Pu²³⁹ thermal-neutron-induced fission.

heavy fragments containing a minimum of 50 protons and/or 82 neutrons is energetically favored; hence, it is reasonable that the low-mass edge of the heavyfragment peak occurs in the mass range 128–135 amu, where $Z \cong 50$ and/or $N \cong 82$. This occurs both for Pu²³⁹ and for Pu²⁴¹ thermal-neutron-induced fission, as shown in Fig. 4.

In the case of very asymmetric fission, for both plutonium isotopes, both fragments contain more neutrons than are contained in the next-lowest closed neutron shell (N=50 for the light fragment, N=82 for

FIG. 4. Comparison of fission fragment mass distributions for thermal-neutron-induced fission of Pu²³⁹ and Pu²⁴¹.

⁸ J. Terrell, Phys. Rev. 127, 880 (1962).

the heavy fragment). On this basis it is reasonable that the two-neutron difference in the compound system be shared between the very asymmetric fragments, as is observed.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the development of special instrumentation by C. W. Williams and J. W.

PHYSICAL REVIEW

VOLUME 133, NUMBER 6B

Pu²⁴¹ target.

23 MARCH 1964

Q Value for the $B^{10}(He^3, N^{12})n$ Reaction by Magnetic Analysis^{*}

T. R. FISHER[†] AND W. WHALING California Institute of Technology, Pasadena, California (Received 7 November 1963)

The Q value for the reaction $B^{10}(He^3, N^{12})n$ has been measured by observing the $(N^{12})^{5+}$ recoil ions in a magnetic spectrometer at 10-MeV bombarding energy. Observations at 1.7° and 7.0° laboratory angle yield $Q=1.570\pm0.025$ MeV, based on the ThC' alpha line at 8.7841 MeV. The N¹²-C¹² mass difference computed from this Q value corresponds to an endpoint energy of 16.320 MeV for the N¹² beta decay and a ft value of $(1.29\pm0.02)\times10^4$. The ratio $ft(N^{12})/ft(B^{12})$ becomes 1.10 ± 0.02 .

I. INTRODUCTION

 ${f R}^{
m ECENT}$ interest in the beta spectra of ${f B}^{12}$ and ${f N}^{12}$ has stimulated remeasurements of the ftvalues for these decays.^{1,2} Our knowledge of the ftvalue for N^{12} is limited by the uncertainty in the end point energy of this decay, which can be calculated from the N¹²-C¹² mass difference. This mass difference is determined from a cycle of nuclear reaction energies, in which the least certain link is the $B^{10}(He^3, n)N^{12}$ O value determined by neutron energy measurements in emulsions.³ We have remeasured this Q value using a magnetic spectrometer to measure the energy of the recoil N12 ions.

II. EXPERIMENTAL METHOD

The ONR-CIT tandem accelerator provided a $(He^{3})^{++}$ beam of energy 10.009 \pm 0.006 MeV. The uncertainty in the beam energy arises from the width of the entrance and exit slits, both of 0.2032-cm full width, on the 90° beam analyzing magnet of 86.36-cm radius. The beam from the tandem was passed through crossed electric and magnetic fields to filter out a weak heavy ion contaminant in the He³ beam.

The B10 target was an unsupported foil of metal enriched to 94% B¹⁰. To prepare these foils, a 400-Å layer of BaCl₂ was evaporated onto a clean glass microscope slide, and a layer of boron was deposited on this substrate by vacuum evaporation from a W boat. The boron foils were floated off on water and picked up on tantalum frames to expose an unsupported area of 0.6350-cm diameter. Analysis of the target composition by elastic proton scattering shows these foils to contain about 75% B atoms by number, with carbon and oxygen the principal contaminants.

Woody, and their assistance in carrying out the meas-

urements. We are indebted to Miss M. J. Mader for

development of the computer codes and for her assist-

ance in data handling. We are also indebted to J. R.

Povelites, Los Alamos Scientific Laboratory, for the Pu²³⁹ target and to E. H. Kobisk for preparation of the

Only trace amounts of tungsten, less than 0.5% by number of atoms, were evaporated along with the boron. The 5.3-MeV N¹² ions were observed to lose 114 keV in passing through the foil used in the O-value measurement, from which we estimate the energy loss of the 10-MeV He³ beam in the foil to be 4.4 keV.

The 180° double-focusing magnetic spectrometer of 60.96-cm radius was set at 0° to observe the recoil N¹² ions. Horizontal and vertical slits at the entrance of the spectrometer defined a square aperture with sides displaced 2.0° from the beam axis, and a square beam catcher with sides 1.1° off the beam axis prevented the He³ beam from entering the spectrometer and permitted the usual integration of the beam current. The average angle of observation computed for this entrance aperture between the square at 1.1° and square at 2.0° is 1.73°.

The particle groups emerging from the spectrometer were detected in a Au-Si surface barrier counter located behind a 0.3175-cm slit in the focal plane. The detector output was fed into a 100-channel pulse-height analyzer, and a typical pulse spectrum is shown in Fig. 1. The energy of a particle group, determined to better than 4% from the pulse height in Fig. 1, together with the magnetic rigidity fixed by the spectrometer, provides

^{*} Supported by the U. S. Office of Naval Research.

[†] Present address: Physics Department, Stanford University, Stanford, California. ¹ R. W. Peterson and N. W. Glass, Phys. Rev. **130**, 292 (1963).

 ^a T. R. Fisher, Phys. Rev. 130, 2388 (1963).
 ^a F. Ajzenberg-Selove, M. L. Bullock, and E. Almqvist, Phys. Rev. 108, 1284 (1957).