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It is shown that an elementary particle of conventional field theory may, under certain conditions, lie on
a Regge trajectory. These conditions are that the system contain a "nonsense" channel at the angular
momentum of the particle and that the Born approximation scattering amplitude factor in a well-defined
way. They are satisfied by a spin —, fermion interacting through a conserved current with a spin one neutral
boson. The particle in question is the fermion.

1. INTRODUCTION
'

N early discussions of Regge poles it was assumed
' - that an "elementary particle" of renormalized
Lagrangian 6eld theory would not lie on a Regge
trajectory. Instead it would correspond to a special
term in scattering amplitudes describing scattering at
its particular value of J (angular momentum) and
would not agree with the analytic continuation of the
scattering amplitude from large ReJ. Such a term
would contain a pole in the energy at the mass of the
particle.

The belief that there was a sharp distinction between
6eld theory and the Regge ideas was based on experi-
ence with 6eld theories of scalar or pseudoscalar
mesons interacting with spinor or scalar "nucleons. "
It was pointed out by Gell-Mann and Goldberger' that
if one considers radiative corrections involving massive
vector bosons the situation is quite diferent and that
in fourth-order perturbation theory there is an indi-
cation that those special terms in the scattering ampli-
tude which in second order look like fixed singularities
in the angular momentum plane (like 8ss, say) in fact
get turned into moving Regge trajectories.

It is of course well known that Regge poles occur in
the description of manifestly composite systems, both
in potential theory and in simple approximations to
field theory. It is a new and drastically diferent obser-
vation that an "elementary particle, " appearing in the
Lagrangian of a specific field theory, lies on a Regge
trajectory.

We have found that a spin one-half elementary
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particle when coupled to a massive vector boson
through a conserved current does, in fact, lie on a
Regge trajectory. The same thing does eo/ happen for
a spin zero particle coupled to vector bosons. This is
an exceedingly striking result. Although we can see
how such a distinction arises between theories we have
no deep explanation at present. It does show quite
clearly at least two things: Not all 6eld theories are
the same and, contrary to what is frequently said,
spin is an essential complication.

There are at present three principal approaches to
relativistic quantum mechanics: axiomatic field theory,
Lagrangian theory with Feynman diagrams, and dis-
persion and unitarity relations. No one has yet made
any convincing argument that these approaches contra-
dict one another; nor has anyone been able to make
satisfactory calculations with any of them in the case
of strong coupling. In particular, the contribution of
axiomatic field theory to calculations has been less than
any preassigned positive number, however small. The
method of dispersion relations, sometimes referred to
in the popular literature as "5-matrix theory, " does
not provide a complete calculational framework. The
analyticity and generalized unitarity principles that are
to provide the foundation of a dispersion theory are
obtained in practice from experimentation with Feyn-
man diagrams. It is a reasonable conjecture that these
principles follow from the axioms of local field theory,
which the Feynman diagrams formally obey.

The study of Feynman diagrams is a particularly
useful tool for exploring the properties of relativistic
quantum mechanics, since a direct appeal to the
axioms has proved so dificult and tedious and since
the "S-matrix theory" suGers from the disease of not
yet existing. (One must admit, of course, that the sum
of all the Feynman diagrams in a particular 6eld
theory may suGer from the disease of being wrong,
even if it exists. )

A major new idea is the "bootstrap" hypothesis of
Chew and collaborators, according to which all the
strongly interacting particles are composite systems
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made up of one another, with dynamicably calculable
ratios and coupling constants. This hypothesis has
usually been stated in terms of dispersion theory, in
the incomplete version now available. It is not clear,
however, that the bootstrap idea is necessarily tied to
that particular formulation of relativistic quantum
mechanics.

It has also been suggested that the bootstrap hy-
pothesis is equivalent to the statement that all strongly
interacting particles lie on Regge trajectories. The fact
that elementary particles in certain 6eld theories are
Reggeistic makes this equivalence unlikely (though
not impossible) since it would demand that the boot-
strap mechanism actually operate in some subtle way
in conventional field theory to 6x the coupling constant
and mass ratio.

Apart from the strong interactions, there is the
problem of quantum electrodynamics, where the boot-
strap idea has not so far been applied. It is very
interesting that the 6eld theory in which the spinor
particle if Reggeistic resembles so closely the only field
theory in which we have any confidence. Of course our
work applies just to the case in which the photon mass
is nonvanishing, and the situation in real quantum
electrodynamics remains to be investigated.

It is the purpose of the present paper and the suc-
ceeding one to amplify a brief discussion of the necessary
and sufFicient conditions for the Reggeization of an
"elementary particle" published recently. ' There it
was shown that the critical feature of a particular
theory was the presence or absence of a factoring
property of the Born approximation and the presence
of a "nonsense" channel (aside from certain questions
involving subtractions in dispersion equations). We
remarked that the factoring property obtained in a
theory with spin one-half "nucleons" interacting with
massive vector bosons, but failed for spin zero "nu-
cleons. " The latter point is treated in the following
paper. ' All of our earlier considerations have been
confined to a study of perturbation theory in which we
examine and sum the largest asymptotic term in a
scattering amplitude for each power of the coupling
constant. We continue this approximate discussion, in
which the Regge angular momentum is calculated up
to the first order in the coupling constant. Our tra-
jectory thus includes only two-particle intermediate
state contributions. This limitation enables us to use
two-particle unitarity for analytically continued. partial
wave amplitudes.

The plan of the paper is as follows: In Sec. 2 a
modification of the Jacob-Wick theory of scattering is
given which is very useful in Reggeization of scattering

~ M. Gell-Mann, M. L. Goldberger, F. E. Low, and F. Zacha-
riasen, Phys. Letters 4, 265 (1963).. (hereinafter referred to as II).

'M. Gell-Mann, M. L. Goldberger, F. E. Low, V. Singh, and
1.Zachariasen, Phys. Rev. 133, 8161 (1964).' M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1954).

amplitudes. ' It consists of using parity conserving
helicity amplitudes and eliminates the d functions of
Jacob and Wick in favor of Legendre functions. The
general problem of Reggeization in the presence of spin
is discussed in Sec. 3, and results for our special cases
are given. In Appendix A general properties of the
functions encountered in our formulation of scattering
theory (definite combinations of Legendre functions)
are given and a tabulation of all those encountered here
and in any problem involving spins less than or equal
to one. Details of the general Reggeization procedure
are given in Appendix B where special attention is paid
to the important concepts of "sense and nonsense" and
compensating trajectories. A criticism of the latter
notion by Berestetsky~ is disposed of at the same time.
In Sec. 4 we treat the Compton scattering of massive
vector bosons by spin one-half particles in Born
approximation, showing the crucial factoring property
and the appearance of a nonsense channel; the pre-
diction of the answer to all orders is made on the
basis of these results. The manner in which the unitarity
and dispersion equations in the two-particle approxi-
mation show the necessity and sufficiency of the
factoring property is taken up in Sec. 5. Unanswered
questions involving subtraction constants are considered
in Sec. 6 where we treat the complete fourth-order
amplitude and show that our conjecture is exactly
valid to that order. In addition, we show how the
expected eth-order term may be extracted although we
have not yet succeeded in eliminating all possible
subtraction constants. The results are summarized in
Sec. 7 and a number of theoretical implications and
speculations are discussed.

2. PARITY-CONSERVING HELICITY AMPLITUDES

We treat collisions of the type ct+b~ c+tE, em-
ploying for the most part the notation of Jacob and
Wick. 4 We note that on one of their helicity states,
say

~
J3II; )t,Xe), the parity operation P produces the

eGect

P
~
J3rI; )t,) e)= rt, rta( 1) ' '~ J3rI;——X,—Xa); (2.1)

here X means helicity, 5 spin, and p intrinsic parity.
We want to define eigenstates

~
J3f;),Xe)~ of parity

such that

where v is ~ for half-integral J and 0 for integral J.
A given Regge trajectory will then belong either to +

~ Essentially the same method has been developed independ-
ently by F. Calogero, J. Charap, and E. Squires, Ann. Phys. (to
be published).

6 M. Gell-Mann, in ProceeCing of the 1WZ Annla/ International
Conference on Hegh Energy Physics at CE-RE, edited by J. Prentki
I;CERN, Geneva, 1962).

7 V. Berestetsky, Phys. Letters 3, 175 (1963).
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or to —when parity is conserved. We may take'

~m;) P,),=2-iIs~ Jm;),),„)
&2 "'rl r)g( —1)s'+s' '~ JM; —)i,—) g). (2.3)

Instead of the 5 matrix we use the Ii matrix defined
by the relation

Ff = (Sr, 5~,—) (2z) kr I k; ~ (2.4)

where k refers to the center-of-mass momentum. When
parity is conserved, F has no matrix elements between
+ states and —states and the nonvanishing matrix
elements are given by the formula

F&+,,„,.„=—,(Jm; x,).~F
~
Jcv;) „)b),

r) r), ( 1)s,+ss .(JM. -) ) „~F
~

JM. ), )„)
=(),) (F~~X,) o)

~g, rIq( —1)s+ss '(—), —X&IF~ I'A„)'&). (2.5)

The scattering amplitudes of Jacob and Wick, for
azimuthal angle & =0, can be expressed as follows:

f4&s &~&s(8)'

=k 'I'k-'~'P (2J/1)(X,X [F~~X.X.)d„„~(8);
0 =).—),„&=),-).). (2.6)

We now define parity-conserving scattering ampli-
tudes by the rule

f+)„i, ),.i, (z)—=fv2 cos(8/2)]-~ "+"~

Xfv2 sin(8/2)]-~"- ~ fi,g-,g.i, (8)
~ ( 1)X+imr) r)~( 1)s~ss—sf~ sin(8/2)] —[i+@[

Xf~2cos(8/2)] " "f-i,,-~,: i.).,(8), (2.7)

whe~e & =max()) (, ~ pI), s=cos8. Correspondingly, we
define new functions in place of the d's

ei„+(z)=—2 f&2 cos(8/2)] ~ "+"~

X f&2 sin(8/2)] ~" &~di„~(8)

&(—1)"+""2 'fv2 sin(8/2)] ~"+&~

X f&2 cos(8/2)] ~" &~dz, „~(8). (2.8)

Our final formula expressing scattering amplitudes in
terms of F-matrix elements, with parity conservation,
is then

f X xs;X Xs kf ki 2J(2J+1)f~is (&)F i xs;x ig

+~i,~ (s)F~y)„i,;X.X,]. (2 9)

We see that f+ has contributions from both F~+ and
F~+, but when we Reggeize in the next section and
consider large s, we will find that e~+ always dominates
e~ and the asymptotic behavior of f+ is thus deter-
mined by Ii ~+.

' Note that, for both helicities equal to zero and y,gq( —1)s~+s'
=1, the minus-state vanishes while the plus-state vector has
length V2 instead of 1. The matrix elements F),,qz;g, 7,~

+ of Eq.
(2.5) reflect this peculiarity, which must be taken into account
in unitary equations when either pair of X's vanishes. For
g,qd( —1) +8"= —1, the plus-state vanishes.

To invert the partial wave expansion (2.9) we define

1

F +&, i y y =2 kr I k' I~ dz[cy„+(z)f+i,y„;y,i (s)

+c),„—(z)f+i,g, i.i,(z)]. (2.11)

The properties of the c's and e's are described in
Appendix A. The e's are given in terms of a simple
linear operator applied to I'g~„, while the c's can be
written as linear combinations of Legendre functions

I'g+q„with constant coeScients. We have
tabulated the functions for non-negative X and p up
to 2, with general J.

When ) or y) J and J+u is integral, then that value
of J is not reached physically and we refer to the
channel as "nonsense" for the particular J under
consideration. Otherwise the channel corresponds to
"sense."'

Let us now specialize to the case of elastic scattering
of a vector particle by a spinor particle. We have
S,=S,=1, Ss——Sg=i/2, rl, =g,= —1, gs

——gd=+1, v

= 1/2, k, =kr = k. We define /= J'—1/2. To avoid
duplicating amplitudes f+ and F+, we restrict their
indices ) s and Xq to the value +1/2 and we then
supress those indices entirely, writing simply Fi,&„(z)
with ) and X,= —1, 0, and 1. For each parity there
are thus six distinct elements of the symmetric matrix
F'. Since J is half-integral, the matrix elements of
opposite parity are related by MacDowell's formula'

F„+(W)= —F„+(—W) (2.12)

where lV is the total energy. Thus we need concern
ourselves only with one sign of the F's, which we take
to be+.

The nucleon as an intermediate state represents a
pole in the F+ matrix at J=1/2 (or l=0) and W=m.

At 3=0, the channels with X or X,=0, 1 are sensible
while that with X or X,= —1 is nonsensical. We let
the Greek indices ~, v, etc. , run over the sensible values
0, 1. It turns out that the partial wave expansions
(2.9) for our problem can be written as follows, with
the aid of the formulas in Appendix A:

Fl+1 +zFl+1 +Fl
~—1,—1

l(l+2)

F i+1 +zFl—+Fl
F '+ (2.13)

l(3+2)
' S. MacDowell, Phys. Rev. 116, 774 (1959).

2ci„~+=—fV2 cos(8/2)]~ "+&~fV2 sin(8/2)]~" "~di,„'
~ (—1)"+"" 'f'/2' sin(8/2)]~ "+"~

XfvT cos(8/2)]~" "~di, „~. (2.10)

We then obtain the inversion formula
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f 1 v Pl+1 F 1v- p p tW-(-1)"E,(2 14)
V2 1 [/(/+2)g"' 1 [/(/+2) j"'

f„p/v2=+ Pi+1'e,.F„'+—Q Pi'e„F„„'+,
l

(2.15)

where ~„„=1unless x=0, v=1, in which case e„„=—1.
Similarly, the inversion formulas (2.11) for integral /

become

1 ' (/+1)Pi,+3/Pi+1
&2F, ,'+ =— ds f i, i+

2

V2F 1„'+ 1

[/(/+2))'~2 2

3 (/+2)P 1+/Pcs
f 1, 1+, (2.16)

2/+3

pl-1 pl+1
ds f 1,„++

2/+1

pl Pt+2
+(—1)" f 1,.",-(2 17)

2/+3

1

v2F„„'+= ds[P—ie„„f„„++Pi~,e„„f„Pj
2 ]

(2.18)

3. REGGE POLE CONTRIBUTIONS

Now let us consider what happens when we "Reg-
geize" the partial wave formulas. We treat the contri-
bution of a moving pole in the l plane to the scattering
amplitudes, when the partial wave sums are replaced

by Sommerfeld-Watson integrals.
In Appendix B we discuss the general question of

Reggeizing in the presence of spin, particularly in
connection with "sense" and "nonsense" and with twin

trajectories. Here we merely apply the results to our
problem of elastic vector-spinor scattering. We consider
a moving pole in the Ft+ matrix elements near l=0,
with the idea of relating this trajectory to the nucleon.
For the time being, for simplicity, we ignore exchange
forces and signature.

Let the position of the Regge pole be given by
/=u(W). Then the partial wave amplitudes will have
the form

F„„'+=2)„(W)rj„(W)/[/ cr(W) ], —
F-i,."/L/(/+2)]'"=/-1(W)n. (W)/D —~(W)j, (3 1)

F-i,-i'+=[/-1(W) 7~(W)[~(W)+2)/[/ —~(W)3

in the neighborhood of the pole. Here we have used the
factorization property of the residues of Regge poles. "
If the trajectory chooses sense at ca= 0, so as to produce
a physical nucleon, then the amplitudes p„approach
finite numbers as cr —+ 0. The amplitude f' 1[n(a+2))'12
for the nonsense channel vanishes like n'/" as o. —+0,

so that f 1 also approaches a finite number as a —+0.
~e have written F 1„+ divided by [/(/+2) $~2 so as
to treat a quantity without fixed branch points in the
l plane at l=0 and l= —2.

If the trajectory were to choose nonsense at u =0,
then we would have, instead of (3.1), the relations

F„„'+=f'.t „rr(cr+2)/(/ rr)—,
F-i,.'+/L/(/+2) 7"=~- t./(/ —~),

F-,—"=[ —1'/(/ —)

(3.2)

F„„'+= —(2/„2) „n
—') 8p 1,

F 1.'+/ [/(/+2)l'&'= |-",-/',
F 1, 1+=2(f 12n)/ ',

(3.5)

where 21„2/„cr
' goes liken ' near n=0, f l„sirtays finite,

and f 12u vanishes like n.
For general l, the definitions of F~,),.+ are not, of

course, exactly the same as the inversion formulas

[(2.16)—(2.18)), which are valid for physical /. Instead,
we must normally employ the Froissart definition,
which coincides with (2.16)—(2.18) at physical /. For
the Froissart definition, each f is replaced by its weight
function m in a dispersion relation in s, each P„ is
replaced by 2Q„, and the integration over s is over the
region in which x»0. Keeping only the terms that are
important for l=o:=0, we obtain

v2F„„'+= dsQi(s)e„„w„„+(s),

V2F-1. '+/[ (/+ )J"= dsQ ( ) —,.+(s), ( )

with |and rl again approaching finite numbers as cr —+ 0.
Returning to (3.1), we now examine the asymptotic

form of the partial wave expansions [(2.13)—(2.15)] at
large s, Reggeizing as in Appendix B. We obtain the
results

f 1, 1+ v—+—at 122r(—sin2rcr)
—

lrr2 (12+1)( s) ~—1

f i, v+V X„t 12)v2r(Sinirer)
—'Cr(er+1)( —S)

—', (3.3)
f„„+—+ —cV e„„r1„21„2r(sin2rn) 1(n+1) (—s)

where /V =&22 +'I'(a+3/2)[+2rI'(cr+2) j '. Near rr

=0, the sense-sense amplitudes f„„+go like (—s)' at
large s, while the others go like (—s) '. In fact we

have, as+ —+0, s —+ ~

f 1, 1+—& v2t 12—ns ',
f 1 v ~ v2 f 1'Y/vs (3.4)

fvv ~ ~2evvr) r/vcrv

In terms of the quantities occurring here, we may
rewrite the expressions (3.1) for the partial wave
amplitudes near the pole n —+0. Using the fact that
cr(/ —n) '-+ —8pi as n —+0, we obtain for the pole
contributions near 0.=0 the following:

'P M. Ge11-Mann, Phys. Rev. Letters 8, 263 (1962); V. Gribov
and L Pomeranchuk, Phys. Rev. Letters 8, 343 (1962).

~F—1,—1 ds2Q11(s) 22-1,—1 (-s) ~
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In an approximation in which n is treated as very
small, the last two of these equations can lead to the
results of Eq. (3.5), since Q~ & has a pole in i at l=0.
We must not, however, expect to pick up the Kronecker
delta for Ii„„'+ from the Froissart dednition in this
limiting approximation. Instead, we see from (3.4)
that f„„+ has a term in»' as n-+0, with no weight
function, and the Kronecker delta will show up in the
ordinary inversion formula (2.18).

In an exact treatment, the Froissart definitions are
all right, if they are used at large Rel and analytically
continued, and they should lead to the formulas (3.1)
for the behavior of Iiq,q,+ near the Regge pole. We
have mentioned the approximation of very small 0.

because it corresponds to the Born approximation in
field theory, which we discuss in the next two sections.

f= (m/4m W)M, M =

u2BR„„upend„eg„

(4.1)

where IN=1 and e~ and c2 are the initial and 6nal
photon polarization four vectors, normalized to unity.
We have Cjoy= 42k2=0. W is the total c.m. energy.
The conservation of current, expressed by the equations

k2„BR„„=0,
5R„„kg„=0,

(4.2)

(4.3)

then allows us to ignore temporal components of the
e's and modify the longitudinal components accordingly.

Equations (4.2) and (4.3) also permit us to change
the gauge of external photons according to the rule

t Alp) (4.4)

where the vector A is completely arbitrary.
Our 6rst step is to calculate the second-order Feyn-

man amplitude for the process y+Z-+y+&. The
relevant diagrams are shown in Fig. 1.

m„.=~'fear„I 1/(i~ p+m))ir.
+ir„(1/iy q+m)ir„), (4.5)

4. CALCULATION OF SECOND ORDER AND
FORMULATION OF nth ORDER

We consider the interaction through a conserved
current of a spin 1/2 fermion of mass m (which we call
the nucleon) with a spin 1 boson of mass X (which we
call the photon). The initial and Anal four-momenta
of the nucleon are pq and p2, respectively, and those
of the photon are k& and k2. The nucleon energy is
called E, and that of the photon &u. Boldface y and k
stand for three vectors. Solid lines in Feynman dia-
grams represent nucleons, dotted lines photons and
wavy lines spinless mesons. We employ p's and a
metric such that the Dirac equation is iy p+m= 0 and
such that p'+m'= 0.

The Compton scattering Feynman amplitude 3f and
the conventional scattering amplitude f are given by

FIG. 1. Born approxima-
tion diagram for Compton
scat tering.

Pa k„p,

/
/

p kl, v
l

k~, p,

p ki)v
I

where p= pq+kq, q= pq
—k2, y is the coupling constant

and the gauges

r„=y„—(y k2kg„/kg k2), r„=y„—(y kgk2„/kg k2) (4.6)

and

( 2k),p,) (m+E) I

u~=l 1+
m+& &2m)

2k).~p~) (1—2K~0 k2) (m+E) '~'

um ——
/
1+ (4 7)

m+E) (2cos(0/2) & k 2m )

where Xq and 'Aq are the initial and final nucleon heli-
cities, respectively, and Xz is a spin state with 0,=2).

The photon polarizations are given as follows (with
temporal components of e's eliminated, as described
above):

A,=~1:
),=0:
X,=~1:
X,=O:

s,=—X.(i+a.y)/VZ,
A

sg= kgb/M .
e2 ———Xc (f, cos8—k sin8 —ih,p)/v2,

»2 ——k2'h/~.

The scattering amplitudes may now be calculated
in the high z limit. As in previous sections we specify
states only by photon 1&elicity: thus f+z,z, ,z, &,,—& f+z, &„,

have been chosen for the initial and 6nal photons, re-
spectively. The point of this choice is that as cos8 —& ~,
all the matrix elements of F„and F„~constant, as do
the anticommutators {r„,y q},where q is any momen-
tum in the problem. Therefore, in this gauge, the crossed
diagram contributes only to order 1/» compared with the
uncrossed diagram. Since all our calculations will be
asymptotic in z, we may thus restrict our attention to
uncrossed diagrams. The simplification thus attained,
although modest in second order, is enormous in fourth
and higher orders.

Following Jacob and Wick, we take the incident
photon in the +» direction, and therefore the target
nucleon in the —z direction in the c.m. system. The
final photon momentum is in the x—z plane, and makes
an angle 0 with the z axis.

The spinors describing the initial and final nucleons,
respectively, are
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m ~'ir„[( z—)-t -'~/(i~ p+. -~)jul'„(4.10)

acts like —t'V. Therefore, if we want to multiply the
asymptotic f+ by a function of W, we can do that by
placing the same function of —iy p bet.ween I'„and I'„.

FIG. 2. Higher- The behavior of higher order Feynman diagrams is
order ladder dia- now clear if the Regge pole behavior persists. We must
grams which gener-
ate the iiucleon

I

Regge pole.
I

etc. We And

y' E+m (E—m —co)' /1)
11 +ol —I,

&2 8z Wk' W—m

(zan

y2 E+m )' 1
foo +0-

42 4mwk' W—m z

E+et X(E—m —cu) (1)1+=- +ol —I,
v2 4n-v2 Wk' W—m 5 z)

y' E+m 1 f1
f ii+= —— (W—m) —+~—

VZ 8~Wk2

E+m 1 1
f 10— l~ —+0-

42 47r42Wk' z z'

where we retain the highest power of ln( —z) for each
power of y' and use just the second-order n. It is this
behavior that we must try to establish.

One amendment is still in order. We show later that
the leading terms come from the set of graphs shown
in Fig. 2. These have alternately 3 cuts in even orders
of y' and u cuts in odd orders, whereas (—z) has only
t cuts in all orders. "This necessitates the introduction
of two trajectories, one of positive signature, equal to
0, , and the second of negative signature, equal to —n,
so that (—z) is replaced by

(4 8) -(—z) +z (—z)
——z-"-

= 1+n ln( —z)+—(lnz)'+
2!

which has its cuts appropriately placed.

E+m 1 (11
f „+=— (E—~—m) -+0~ —~.

V2 8zwk'

Comparing with Eq. (3.4), we see that the Born
approximation at large s corresponds exactly to the
contribution at large s of a Regge pole with 0. —+ 0 as
y'~0. We discover that the leading term in n is of
order y'; it is then clear that the leading terms in q„'
and i P are of order p' and 1, respectively:

v2n»'{—= Pp'(E+m) (W—m)/87rWk'y'

(~=—u '~'iIO ——{Ly'(E+m)/8z-Wk'j P,'/( W m)5)»'

(i—=u '"gati ———{Ly'(E+ m)/16'-Wk'] (4.9)
P(E—m —~)2/W —m))»2

The quantities $ give a very simple form to the
expressions (3.5) for the partial wave amplitudes. We
see that for a —& 0 at W=m like W —m (that is, a
physical nucleon lying on the Regge trajectory), the
Born approximation formulas for the $'s have the right
behavior, with $ i going like (W—m)»' and &o and &i

like (W—m) '~'.

If the Regge behavior persists in higher order, then
the asymptotic forms of the f+ amplitudes will go as
in Eq. (3.3). Keeping just the highest power of ln( —z)
for each power of p', we find that each f+ is just multi-
plied by (—z) &~&=expla(w) ln( —z)].

It can be shown that for the asymptotic f+ amplitudes
the Dirac matrix iy p occurring between I'„and I'„

S. ANGULAR MOMENTUM BEHAVIOR

The singularities in the partial wave amplitudes at
l=0 in Born approximation should now be given by
the approximation of Eq. (3.5), that is, small n and
small l. In terms of the quantities $ defined and evalu-
ated in lowest order in Eq. (4.9), we obtain

(5.1)

Alternatively, we may take the explicit forms of the
amplitudes f in Born approximation and compute the
singularities in the J!"+ at l=0 using normal inversion
formulas (2.18) for F„„and Froissart definitions (3.6)
otherwise. The result is the same, and again we obtain
the expressions (4.9) for the $'s.

The appearance of the 1/l terms is critical to the
success of our program, and is characteristic of the

'1 In this paper we consider scattering in the s channel, where
s is the square of the energy in the c.m. system. Large s=cos6t
then corresponds to large t= —2k2(1 —s), where k is the c.m.
momentum. The third Mandelstam variable is u =2k'+2m' —s—t.
The present convention is different from that of I and II, in
which the scattering was in the u channel, t was the momentum
transfer, and s the crossed momentum transfer. The problem
was treated in the u channel in I and II since for large t and s
and finite negative u we were in the physical region in the s
channel: high-energy and backward scattering. In the present
paper our use of unitarity in the s channel requires us to uses) (m+X)2, so that we are in any case not in a physical region
for s —+ ~.We have therefore reverted to the more usual notation.
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paper' for the scalar-vector scattering. The unitarity
arguments are presented there using f amplitudes at
large z instead of amplitudes near /=0. It is still true,
however, that in each order we must resort to a "meas-
urement" of Feynman diagrams in order to show the
absence of subtraction constants.

6.FOURTH- AND nth-ORDER PERTURBATION THEORY
FIG. 3. Fourth-order Compton scattering diagrams.

it, we have been forced to turn to experiment, i.e.,
fourth and higher order perturbation theory, which we
describe in the next section.

An identical calculation can be performed for F ~ „
where @=0 or 1. Again the dominant intermediate
state is —1, so that the unitarity relation reads

In this section we carry out a direct "measurement"
of the Compton amplitude in the limit of large cose. In
this way we compute 4r (W) directly and verify explicitly
that at least to fourth order in y the assumptions about
subtraction constants made in Sec. 5 are borne out.
As a matter of fact we exhibit in arbitrary order
precisely the term which corresponds to our complete
prediction of the large coso amplitude given previously:

IrnF g, p, kF g, g F g, y

which is satisfied by the new ansatz

&-...= ~ .O'I'/(I- )

(5.13)

(5.14)

( «) (—'r~)
5K=y'iF„ il"„+signature terms. (6.1)

iy p+m

with real t„ together with the old assumption for F i
Finally, the approximate unitarity equation for F„

(t4, =0, 1) is
ImF„„=kF„, g*F„, g, (5 15)

which is solved by setting

~..= ~,~,L-/(t —-)]. (5.16)

The agreement of our formulas for F ~ ~ and F ~,„
with the calculated Born approximation does not
depend on factorization, since the scale of F ~ „at
each energy is not determined by unitarity LEq. (5.13)]
and can be arbitrarily chosen to fit the lowest order of
perturbation theory. Once („has been chosen in this
way, however, F„„ is determined in 4th and higher
order, as shown by Eq. (5.15). The second-order limit
in. (5.15) is $„$„its, w—hich need not agree with the
second-order calculation of a specific theory (e.g. , scalar
nucleons+vector mesons). ' As shown by Eq. (5.1), it
does agree for the case treated in this article.

Our cavalier treatment of left-hand cuts can be
corrected by using the method of asymptotic unitarity
for the f amplitudes, developed in the succeeding

We begin by looking at fourth-order perturbation
theory and expect according to the above formula to
find a term proportional to ln( —«)=ln( —t), where

(—t) is the square of the mornen. turn transfer,
= (pi—ps)'. There have been a number of papers on
the subject of extracting the high-energy behavior of
Feynman diagrams. " Whereas we rely partly on this
work it is instructive to consider the fourth-order
problem explicitly if for no other reason than complete-
ness. Actually, the more elaborate treatments have
been con6ned to the somewhat simpler case of spinless
particles whereas in our case spin considerations are
crucial.

For orientation and as a guide to the natural order
of magnitude of the integrals we encounter, let us
begin by writing down the result we would obtain for
the diagram a~ of Fig. 3 if all the particles were spinless.
This diagram contributes the leading term in ln( —t),
even in the case of particles with spin, provided the
gauge F„ is used, since all other uncrossed diagrams
are essentially independent of t, just as in the Born
approximation. In such a case we have for the Feynman
matrix element, called BRo,

d4l

(2«.)'i [(pt—l)'+m']Lps —t)'+m']Lp —l)'+tie'][P+)t']

and with the standard parameterization and integration over t this becomes (recall p = —s)

dxi .dx45 (1—xt —xs—xs—x4)
5R{)=

16'' P,'x4+ (m' —s)xs —(p,x,+p,x,+px,)']'

(6 2)

dxi dx4b (1—xi xs xs x4)
(6.3)

16m' P,'x4+ (its' —s)xs+sxs'+m'(xt+xs)'+ (s+m' —)t')xs(x, +x,)—tx,x,]'
'4 P. Federbush and M. Grisaru, Ann. Phys. 22, 263, 299 (1963);J. Polkinghorne, J. Math. Phys. (to be published); R. P. Feynman

(unpublished); G. Tiktopoulos, Phys. Rev. 131, 2373 (1963).
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The limit of interest in our work is large t and 6xed
6nite s. It is clear that the only range of the parameters
xq and x2 which is important is x~=0, x2=0, otherwise
Gap will surely go like 1/t'. We may therefore set x& and
x2 equal to zero everywhere in the integrand except in
the term (—t)x4xp and integrate x~ and x& from zero
to some small positive value. After an elementary
calculation we Gnd in the limit (—t) ~ po:

1 1
5RQ dx

16m p 'A'(1 —x)+ (64'—s)x+sx' —4p

-ln( —t)-
X . (6.4)-(—t)-

The usual ie heretofore unwritten has been restored.
The coeKcient of ln (—t)/( —t) is just what we called
Ip in Sec. 5 and we recall that it has the dispersion
representation

Ip=
16m 16m' ~~q~& k s ~ s —s —se

where k' is the center of mass momentum of two

particles of mass m and X with total energy s"t'. It is
perhaps worth noting that the mass m occurring in the
last two formulas is that associated with the internal
propagator, [(p—l)'+m'] —'. In the large t limit the
masses of the other propagators as well as the external
masses disappear. We are now in a position to deal
with the real problem. The matrix element associated
with Fig. 3, aq (call it OKq) with all the correct factors is

d4l

(24)ri4P+X' iy (pp —l)+m

xr„ r„ ~., (6 3)
iy (p—1)+m iy (pg —l)+m

where we recall that

I'„=y„—y kpkg„/kg kp, I'„=y„—y kgkp„/ky kp.

Using the fact that 5K~ is to be evaluated between
u(p2) and N(p4) we see that Vq[—iy (pp —l)+m] on
the left may be written as [—2ip&z+Vzip l] and

[—iy (pq —l)+m]&&, on the right becomes [—2ip~q
+iy l'rp]. We And then for 5Rq the result

5Rg=y4
(2m)4i [Pg—i)Pygmy][(Pp —i)P+4NP][(P —l)&+ygP][P+ yP]

4l l [ 2ip —
&,+Vqiy l]I'„[ iy (—p l)+—m]I'„[ 2ip&—x+iy lyq]

(6.6)

Ke introduce the Feynman parameters x&x2xax& and
make the displacement l ~ l+r, r= pgxg+ppxp+pxg.
It is not dificult to show that the only term of 5R&

that we need to keep is the explicit p~ pp=t/2 together
with the displacement xpp in the middle term. The
point is that all other ways of producing a t in the
numerator (needed to cancel the natural 1/t occurring
in 5Rp) inevitably involve an x& or x&, which removes
the logarithm and makes the term too small to be of
interest here. There results, in the large z limit,

~.= (-v/8-')'I. [(-'v p+ )I.
+ i~ pI,]il „ln( —t), (6.7)

where Ip and Ij are as defined in Sec. 5.
The entire answer for the matrix element, including

all terms through order y4 in the limit of large z, is
obtained by adding to 5K& the Born approximation:

5R=yPiI'„[1/(iy P+nz](1+ (y P/84r)P( iy P m—)—
X[( ip p+m)Ip+i& —pI~] ln( —t)}il'„. (6.8)

This is precisely of the predicted form (with no unex-
pected appendages) namely, (to fourth order),

~=V'I'.[(—)' '"'"'/('V. p+ )]'I'., (69)
where

n (W) = (7'/84'') (W—m) [(W+no)Ip —WIg]. (6.10)

The slight modihcations caused by signature are
discussed in connection with the sixth order, where
they make their 6rst appearance.

This whole calculation is really very simple, but we
would like to point out that, if one does not use our
external gauge, it takes on a nightmarish quality. If
one simply uses "good old gauge, " where vertices are
written as p„and p„, from numerator spinology one
gets powers of (cos0)'. As a result all diagrams which
have t dependence (a~, ap, ap and a4 of Fig. 3) must be
added up in detail and terms like 1nt/tP must be re-
ligiously kept. There then appear fantastic cancella-
tions, ultimately leading to the result we obtained so
easily. One particularly troublesome aspect of this
straightforward approach is the cancellation of the
[ln( —t)]' term between u~ and a~ of Fig. 3 and the need
for extracting the terms proportional to ln( —t) hiding
under the leading power. We mention this because the
same disease plagues us in our discussion of the higher
orders.

Ke turn now to the 6th and eGectively nth-order
contributions. Unfortunately our treatment of 6th
order is still incomplete. Although we can isolate the
expected contribution, the term proportional to
[ln(+t)]' [recall the alternation from order to order
from ln( —t) to ln(+t)], we have not shown the absence
of other [ln(+t))' terms without imaginary parts in s.
The external gauge which was so useful in 4th order
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note as in the fourth-order case the relations

7g[—z7 (pz —tz)+m] —[—2zpzg+7gz7. tz],

[ z7' (Pl /1)+m]7e= [ 2zPlr+z7'/17'] ~

We now retain only the terms (—2ipzz) and ( 2—ipi, )
as these are the ones with the greatest potential for
producing an explicit factor of t in Xq. In fact these
are the only relevant terms, but we leave it to the
reader to convince himself of this. Then X~ becomes

is not sufficient to isolate the one diagram of interest
and at least a subset of the total 6th order graphs must
be considered together. This will become clear in a
moment. It is of course true that in addition to the
expected term which we anticipate being roughly of
the form [aint]'/2 with the same n as previously
determined, there will be one with a three-particle
threshold proportional to ln( —t) which we do not
discuss here although it is not too hard to compute.
It would lead to part of the 74 contribution ton( —i7 P).
(There are also 74 terms with a two-particle threshold. )
We are therefore going to confine our attention to the
highest power of in/ for the given power p', namely
(lnt)'.

It is evident that it is the diagram b~ of Fig. 4 which
we expect to be the interesting one, since it is the only
one with a repeated two-particle intermediate state.
The role of the other two diagrams in Fig. 4 will be
explained shortly. The same external gauge used
previously will be taken for the external photon
vertices. The matrix element becomes

4zry[ z7' (p /z)+m]7'p&[ z7' (p /& /&)

+m]7 Pz[ i7—(P l,—)+m]iI'„(.6.13)

Next we move 7 Pz to the left and 7 Pi to the right so
that they may ultimately act on the appropriate spinors
to give (im). We make use of the fact that the only
important components of /i and tz are parallel to p in
the limit of large t; components parallel to pi and pz
will bring in Feynman parameters which will make the
integral too small to be of interest. Further, only

(7 Pi,7.Pz) is of significant size, since (7 Pi,7.P)
=(7 Pz,7 P't= —(s+m' —X') and (7 Pi,7 Pz)=t/2.
We are left with

X,=—4(t/2)zT'„[ —i7 (P—/, )+m]
x[+i7 (p —li —tz)+m][ —i7 (p ti)+—m]ir„,

4(t/—2)ir„[ z7 (—P—t,)+m]
X[—z7 P—m][—z7 (P—t,)+m]zr„(6.14)
—4(t/2) 'r.L(p —l )'+ '][—'7 (p —t )+~5 r.
—4(t/2) zr„[—z7 (P—t,)ym][(P —t,)'+mz]zr „.

d'lg d4l2 j
OR~( ) ——7

(2zr)'i (2zr)'i z7 (pz —lz)+m

XiF„ +0'
z7 (P—/z)+m z7 (P—/i —tz)+m

X&) iF„-
i7 (p —ti)+. m i7. (pi —li)+m

x7. . (6.»)
(/,z+X') (/pyV)

In order to simplify the writing, for the time being we
drop the factors and deal only with the numerator
which results from rationalizing the fermion propa-
gators; call it K~.

ati 7g[ i7 (Pz
———tz)+—m]ir„[—i7 (P—/z)+m]

X7.[—z7 (p —t,—t,)+m]7,[—z7 (p —tz)ym]
xiI'„[ i7 (p,——/, )+.m)7. . (6.12)

The first step in the isolation of the desired term is to

The second form comes from writing

[z7 (p —t,—t,)+m]
=[i7 (p —l,)+m+i7 (p I,)+m i—7 p m]— —

The 6rst term in this equation for K~ is, as we show
in a moment, just what we want. The remaining two
terms are unfortunately quite disgusting. They give
rise to a large t dependence of the form t(lnt)'. It has
been shown by P. Federbush that these terms are
cancelled by the diagrams b2 and b3 of Fig. 4. In fact
the result for 5R&(."~ implied by the first term in the
above formula for K~ is the total answer in so far as
the absorptive part of the amplitude in the s channel
is concerned. The only remaining task in 6th order is
to show that the sum of the (lnt)' terms which have
constant or polynomial (in s) coefficients indeed cancel.
This has not yet been completed. It is unfortunate
that the use of our external gauge, which even in 6th
order serves to easily eliminate many diagrams, does
not at the same time dispose of the (Int)' terms just
as (lnt)' terms disappeared in 4th order. We were
unable to find any choice of gauge that would do the
job. It is the presence of these extraneous contributions
(i.e. , higher powers of lnt) which makes it useless to
write down an integral equation for the ladders of the
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variety shown in Fig. 3, a1 and Fig. 4, b1, and solve for
the part of n which has the two particle cut, to all
orders of y'.

It is now quite easy to see that the term we have
isolated in 6th order fits into the predicted pattern.
Quite explicitly we have

where

d ll ir„[ i—y (p l—2)+m[ i—y p m—][ i—y (p l—g)+m]iI',d4/1

DR, &') = —4y'~ —
[

(ll
E2/ (2m)4i . (2m)'i

D=[(P~—l~)'+m'][(P l2)'+m'][(P —lq —l2)'+m'][(P —l~)'+m'][(P2 —l~)'+m'][lP+X'][lP+), ']

(6.15)

This integral can be discussed by the methods of
Federbush and Grisaru"; except for the numerators
they have actually done it. It turns out that the
factoring of the integral into a product obtains here
also and one simply replaces the numerator l~ and l~ by
their components parallel to p (times the appropriate
Feynman integration parameter). The result is

ÃL) &') = —(p'/2)iI'„( i r —p m) —{(y'/8')r )
X[(—iy P+m)IO+iy PIq]}'ii'„(1 n)l'. (6.16)

This is exactly what is predicted from the formula

~= (~'/2)il'. {[(—l)' "")+(l)' '" "']
—[(—$) ~& ~T n) (—l)

—~(—~v n)]

&([1/(iy p+m)]iI', (6.1. 7)

The formula now holds through order p' subject to the
previously mentioned quali6cations. It is perhaps worth
remarking that the explicit appearance of the factor
( iy p—m) i—n 6th order is an entirely nontrivial
miracle; we see in the following paper that the corre-
sponding factor does not occur for a scalar target
particle. It is this factor which shows that the tra-
jectory is passing through the elementary particle pole.

It should be quite apparent that the isolation of the
term obtained by expanding the above formula to
arbitrary order can be done exactly as we did for the
6th order. Needless to say, the cancellation of unwanted
powers of lnt becomes more and more of a problem in
higher orders.

7. CONCLUSIONS

Ke have examined the scattering of neutral vector
mesons from spinor nucleons in perturbation theory,
keeping the highest power of lns in each order of the
coupling constant y'. Except for checking that sub-
traction constants vanish in sixth and higher orders,
we have verified that the nucleon lies on a Regge
trajectory in this approximation, with o;(W) given by
a power series in y', of which we have calculated the
first term. To carry the investigation that far, it was
not necessary to go beyond elastic unitarity for the
scattering.

The crucial features of the theory that allow the
nucleon to turn into a Regge pole as a result of radiative

corrections are:

(a) the existence of at. least one "nonsense" channel
at 7= 1/2 that couples to the "sense" channels
in which the nucleon appears as an intermediate
state;

(b) the factoring of the Born approximation.

We have shown above, as in II, that. these conditions
are necessary and that apart from possible subtraction
constants in higher order, they are sufhcient in our
approximation.

In a fieM theory of just scalar or pseudoscalar
mesons and spinor nucleons (or scalar mesons and
scalar nucleons), the two-particle channels that com-
municate with the nucleon do not include a nonsense
channel at the angular momentum of the nucleon. The
mathematical condition for the appearance of such a
channel is that

I~+sy+sy, —1,

where J is the spin of the particle that is to lie on a
trajectory and s1 and s& are the spins of the particles
into which it dissociates.

It is, of course, possible that the particle may turn
into a Regge pole as a result of dissociation into more
than two particles, but if so we conjecture that the
condition is

J~+ st+$2+$3—2, etc.

If that is right, then in the absence of vector mesons
the nucleon, introduced as an "elementary" particle
into a renormalized field theory, will not lie on a
Regge trajectory.

In I, the question was also raised of whether a scalar
nucleon, coupled through a conserved current to a
vector meson, would lie on a Regge trajectory. Here
a two-particle nonsense channel is available, but the
Born approximation does not factor. The details are
given in the next paper, where it is shown that a
Regge trajectory develops, but the scalar nucleon does
not lie on it. (The interesting possibility is raised of
mutilating the theory so that the Born approximation
does factor; if the mutilated theory can be made finite,
then the Regge trajectory does pass through the
nucleon. ')

The theory of spinor and vector particles (quantum
electrodynamics with massive photons) thus seems to
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have special virtues. It is possible, as mentioned in I,
that the massive photon also lies on a trajectory when
coupling to three-photon states is included, but that
question is not yet settled. The same theory may also
give rise to a Porneranchuk trajectory (passing through
J=1 at zero energy); this possibility was raised by
Freund and Oehme" and some of the present authors'4
have extended this work. It is certainly worthwhile to
pay further attention to the vector-spinor field theory.
We mention here some points that seem particularly
interesting:

(a) The limiting case of true quantum electrody-
namics () —+ 0) should be studied. Here the individual
scattering amplitudes actually vanish, because of
possibility of radiating an infinite number of soft
photons. One might, however, factor out of the two-
particle amplitudes the main ) dependence, then allow
X to approach zero, and finally consider large cos0. This
type of double limit gives the physically interesting
behavior at high energies in the crossed reaction; it is
not the same as taking our results at large coso and
then considering small ).

(b) Possible applications of neutral vector meson
theory to strong interactions cannot be excluded. There
is, however, a difficulty if the resulting description of
strongly interacting particles is to resemble the eight-
fold way. If we introduce eight degenerate spin 1/2
baryons coupled through the conserved baryon current
to a neutral vector meson, the resulting theory is
symmetrical under the group SU(8), with 63 generators.
It is hard to see how to reduce the symmetry to SU(3)
in a natural way without, for example, introducing a
further octet of vector mesons described by a theory
of the Yang-Mills type; such a theory does not seem
to be renormalizable in the usual sense and we have
no evidence that it is consistent with Regge pole
behavior. Of course we can eventually introduce mass
differences among the eight baryons and/or coupling
of the original vector meson to the strangeness current
as well as the baryon current, but such terms break
the symmetry rather than reducing it from SU(8) to
SU(3).

(c) Ignoring the difficulties we have just mentioned,
we may speculate about the relation of neutral vector
meson theory to a theory of strong interactions based
on dispersion relations with only moving singularities
in the J plane. Chew and Frautschi" have raised the
hope that in the absence of fixed singularities in J (for
ReJ)0) all coupling constants and mass ratios may
be determined by the "bootstrap" mechanism. In our
6eld theory it is possible that there are only moving
singularities, but the coupling constant y' and the

"P. Freund and R. Oehme, Phys. Rev. Letters 10, 199, 315
(1963).

'4M. Gell-Mann, M. L. Goldberger, and F. E. Low (to be
published)."G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 8, 41
(1962).

mass ratio ) /nz are introduced arbitrarily. Is there some
kind of consistency that determines their values? If
not, and if Chew and Frautschi are right, then is there
some experimental distinction between a Regge tra-
jectory determined dynamically by a bootstrap and
one that arises from an elementary particle of 6eld
theory?

(d) If our mathematical nucleon has anything to do
with real nucleons, there may be some importance to
the trajectory of opposite signature which has, in
second order, a value of e equal and opposite to that
of the nucleon. Could this trajectory have any connec-
tion with the "second resonance" around 1510 MeV,
which is thought to have J=3/2-P

(e) In our approximation, we have not treated low
enough powers of lnz for a given order in y' to encounter
the Gribov phenomenon" or the cuts in the angular
momentum plane that Mandelstam has found and that
are supposed to exclude Gribov's essential singularities
from the physical sheet. It will be instructive to see
how these things go in the vector-spinor field theory.

(f) It is interesting that the Regge behavior of the
nucleon in vector meson theory persists even if we
study scattering by nucleons of scalar or pseudoscalar
mesons, with these particles introduced only as external
lines. In I (particularly the Erratum) this problem has
been discussed, but we do not fully understand the
meaning of the result. Mathematically, the basis is the
factoring, in Born approximation, of all the scattering
amplitudes with vector, scalar, and pseudoscalar
mesons coming or going out.

Finally, let us re-emphasize our belief that additional
experiments in the laboratory of Feynman diagrams
will be of great value to all students of relativistic
quantum mechanics, including those who use the
language of "S-matrix theory" and those who are
investigating the consequences of the "axioms. "
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APPENDIX A

Properties of e and c Functions

We refer to a list of properties of d&,„~(8) given by
Jacob and Wick' in their Appendix A. Using our
definitions (2.8) and (2.10) we find the corresponding
relations for ei„~+(s) and ci„~+(s).

'6 V. Gribov, in Proceedings of the 196Z Annual International
Conference on High-Energy Physics at CERN, edited by J. Prentki
(CERN, Geneva, 1962).
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The functions need be given only for positive sub-
scripts in a particular order. We may then 6nd eJ+ and
cJ+ for other values of the subscripts from the relations

eq„~ and cq„~. Let us consider positive indices only.
When p&~X we obtain

e&, „~q ——[(J+//+1) (J //)—]'/2Deq„) (A7)
e „),~+(z) =e/, „~+(s), (A1)

where D means d/ds. For //, (X, we hand

e,~"(s) = (—1)" "e~."(z), (A2)

e, „~+(s)=W(—1)"+" e „~+(s), (A3)
e~,+i'= L(J+/+ 1)(J / )]-"

XL(1—s)D+//, —X]eq„~. (AS)
with corresponding formulas for the c's.

P =max([l) /, fpf)].
Under 8 —+ x—8, we have s ~ —s and we find

e~ J'6( z) —~ ( 1)J—) )Ne~ Jk(z)

and likewise for the c's. In fact, if we define

(A4)

eq„~(z) =eq„~+—(z)+eq„~ (s) =t V2 cos(8/2)] I "+"I

XL&2 sin(8/2)] I" "Id/, ), (8) (A5)

e& „~(s)=e„„~+(z)+e„„~(s) =—
A%2 cos(8/2)]i~+/'I

X(v2 sin(8/2)]i" "IA& (8), (A6)

then we may evaluate e»~+ and c&„J+ as the parts of
eq„J and cy„J, respectively, that transform according
to (A4) under s ~ —s. The functions eq„~(s) are
proportional to the so-called Jacobi polynomials

P»"—~ "+~(s) for

The recursion relations for dq„~ given by Jacob and
Wick are easily transformed into recursion relations for

Using (A2), we can now derive an exact general
expression for integral J and non-negative A, p,

e/, p~= (—1)"L(J—X)!(J—//)!/(JyX)! (J+p)!]'/'
XDI" "I (D' D sD—')"P—J ) (A9)

where we have used the fact that e00 =EJ. Here
m=min(X, y). It is clear that at large values of s, the
larger of eq„J+ and eq„J goes like D™PJ and transforms
under s —+ —s with a factor (—1)~ "";thus it is eq„~+
that dominates.

For half-integral J we 6nd for positive X and p

J—( 1)x—1/2 (Jy 1/2)

XI (J-~) i(J-~) I/(J+~) i(J+~) I]"'
XDI))—xi (D2 D zD2)))) 1/2e z— (A10)

with eq/2 q/2 ——2 '/'(J+1/2) '(P~+q/2' —Pj—g/2 ) from
Jacob and Wick. Again the + function dominates at
large s.

Using (A9) and (A10) we generate the following list
of e functions for non-negative ) and p, up to 2:

e00 ~J )
J+

e&0'+= eo—&' =P~'/[J-(J+ 1)]"',
e20~+= e02~+= Pg "/II (J 1)J(J+—1)(J+2)]"',

e, g
+= (P~'+spy")/J(J+1),

2p ))yzp

J(J+1)[(J—1)(1+2)]'/'

2P& +.4zP& +, ( zy2)1P& v)

e22 J+
(J—1)J(J+1)(J+2)

„,„,+= (1/&2)P' '/(l+1)],
1

vZ (ly1)P(ly2)]~/2
'

e00 =0.J——

—ey0 =,80].J— J— A

820 = 802
J— J— R

eg)
—= Pg"/J(J+1)—.

—EJ

J(J+1)L(J—1)(J+2)]"'
—4P'J "—2sPJ'

e22
J—

(J—1)J(J+1)(J+2)

eg/2 ~/2 = (—1/&2) Lpg'/(l+1)].

~ (l+1)D(1+2)1~/~

1 P/~) "+sp/~&"'+P/"'
e J+=-

v2 l(l+ 1)(l+2)
e3/2 3/2

J——1 pl+1 +zpl +p/

l(lg1) (l+2)
. (A11)

Now let us discuss the calculation of c functions. By de6nition of c»J and ez„~ we have, of course,

&&„&=(1+s)I&+))I (1 z) I&
—))ie&„& (A12)

and this formula provides a way of finding the c's from the e's; and the & parts can be picked out by their behavior
under s —+ —s. It is more convenient, however, to express cq„as a linear combination, with constant coefficients,
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of Legendre functions ranging from Pq q,„to PJ~i . We start with cpp =Pg and c&(p &)p = (1+s)eigp &)&
——(1/v2)

X (P i+P i+1)~

We dehne the operators L, 6+, and 6 by the relations LP„—=nP„, 6+P =—P +&, and 6 P =—P„&.Then the
recursion relations of Jacob and Wick give, for non-negative X and p, the results

CA+I, X+1
J

(J+X+1) (J—X)

L+1 1.
4X (X+1) L(L—+1) +— (L—2P,)'—5 (L+1—2X)' cqq~, (A13)

2L+1 2L,+1

@~~X: Cg p+1

1 L(L+1) L+1 L
(s —s,) —2K+2@ 6+ +M C'A~

[(J+I+1)(J 1)l"—' 2L+1 2L+1 2L+1
(A14)

By using these formulas we can obtain all the c functions, step by step, in the desired form. Ke thus generate
the following list, for non-negative 'A and p up to 2:

Cpo =PJ.J+—
Cpo

J—

—cip +=cpi += [J(J+1)]i /2J+1(Pz i Pg+i), cip =cpi =0.

[(J—1)J(J+1)(J+2)]"'
C20 C02 [(2J+3)Pg p

—2(2J+1)Pg+(2J—1)Pg+p])
(2J—1)(2J+1)(2J+3)

Co2 = C2o

~»'+= [(J+1)P~ i+JP~+i]/(2J+1), C11 PJ ~

J—

—c21J+=c12J+= [(J'+1)(2J+3)Pg,—3(2J+1)Pg—J(2J—1)Pg+,],
(2J—1)(2J+1)(2J'+3)

[(J—1)(J+2)]"'
C21 C12 (PJ—i PJ+1).

2J+1
(A15)

(J+1)(J+2)(2J+3)PJ p+6(J—1)(J+2)(2J+1)Pg+ (J—1)J(2J—1)Pg+p
C22 +=

(2J—1)(2J+1)(2J+3)

2(J+2)Pg i+2(J—1)Pq+,
C22

J—
2J+1

c&(p i(p +——(1/&2)Pi, ci(p i(p
———(1/V2)Pi+, .

[l(l+2)]"'Pi P, , —
C3/2 1/2 = C1/2 3/2

J—— J—
2l+1

[l(l+2)]'" P& i Pi+, —
C3/2 1/2 = C1/2 3/2

1 (1+2)Pi i+3lPi+i
C3/2 3/2

v2 2l+1

1 3(l+2)Pi+lPi+p
C3/2 3/2

J—
v2 2l+3

APPENDIX B

Reggeizing, Sense and Nonsense,
Compensating Trajectories

We present here an expanded discussion of Regge-
ization in the presence of spin as treated, in Ref. 6,
with emphasis on sense and nonsense and on compen-
sating trajectories, such as the P and Q trajectories.
The notion of compensating trajectories has been
attacked by Berestetsky, ~ but there is no basis for his
criticisms, as can be seen below.

For simplicity, we ignore exchange forces and signa-
ture until the very end. In Reggeizing, we do not prove
that the contribution of the large semicircular contour

can be discarded as it recedes to infinity. (In our work
on vector-spinor scattering in perturbation theory, the
agreement between the asymptotic behavior of the f's
and the behavior of the F's in the l plane shows that
we do not have to worry about trouble from the large
contour, at least to the right of l=0.")

A more serious simplication is our neglect of compli-
cations arising from the third. Mandelstam weight
function, for example the Gribov phenomenon" and
the associated cuts in the / plane discussed by Mandle-
stam. " We ignore cuts and essential singularities in

'7 We wish to thank. Professor S. Coleman for this comment."S. Mandelstam (to be published).
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the J plane and assume the absence of fixed poles.
That corresponds to the case of coupled Schrodinger
equations or to field theory with the approximations
used in this paper.

Our discussion lacks rigor in one further respect. We
use the Froissart de6nitions of the Ii J for general J in
terms of integrals of Q functions times the weight
functions w of the f amplitudes; but these definitions
are strictly correct only for sufficiently large ReJ. At
other values of J, they must be analytically continued.
We treat these de6nitions, however, as if they applied
at all values of J that we consider; our manipulations
of these definitions must be regarded as heuristic.

Let us now review Reggeization in the spinless case,
using essentially the method of Mandelstam. " We
start with a partial wave expansion

over all the integers if we write

f(z)= P (2J+1)(Pg(z)F~. (86)

1 (2J+1)
f()= . . ~.(-)F'

2x'z sin+J (87)

Actually O'J has poles at the half-integers, but the
residues cancel in the following way: the one at J
= —1/2 is canceled by the factor 2J+1; the others
cancel in pairs J, —J—1 of half-integers. From (82)
and (84), we have

F~=F ~ ', J half-integral, (88)

Now we convert to a contour integral, with contour
enclosing the whole real axis,

f(z) = Z (2J+1)P.(z)F'
J~0

and a Froissart inversion formula

F~= dzgg(z)w(z),

(81)

(82)

while the residues of (2J+1)vr(sinn. J) 'Pg( —z) at
half-integral J and —J—1 are equal and opposite.

Now we expand the contour in (87) to infinity,
throwing away everything but the part at the far left.
We assume for our present purposes that only moving
poles are picked up. A pole in F~ of the form P(J—n) '
then gives a contribution to f(z) equal to

where w is the weight function of f in a dispersion
relation in s. We avoid fixed poles at the negative
integers. (They are in fact absent for the Schrodinger
equation, for example, although they seem to be there
in the lowest Born approximation. When higher
approximations are included, these singularities become
moving poles. ) In our heuristic language, that corre-
sponds to setting

—
t (2n+1)~/sinnn]0'n( —z)P. (89)

Suppose at a given energy a trajectory passes through
a value n= Jo, with Jo——1/2, 3/2, , etc. Then if the
residue does not vanish at that point we see from
(88) that another trajectory u' must pass through
—Jo—1 at the same energy, with the singularities
related

dzPg(z)w(z)=0, J=O, 1, 2, ~ ~ ~ (83)

P/(Jo —n) = [j9'/( —Jo—1—u') $+nonsingular terms.

(810)

yields
Qg Qg i n- cotJ7—rPg——

Qg=m cotJz.P g i.

Now we use (84) to express P~ in the form

(at all but isolated values of the energy), since at the
negative integers the general relation

The singularity in (89), at the energy for which n= Jo,
is thus compensated by an equal and opposite singu-
larity arising from the primed trajectory passing
through —Jo—1 at the same energy.

Now let us treat an example with spin, namely the
case in, which ) =p=1. We take cii~+ and eii~+ from
Appendix A. In general, we define Cq„J+ in terms of
ci„~+ by replacing P's by Q's and we define Ei„~+ in
terms of eq„J+ by replacing P's by 6"s. We then obtain

where
Pg(z)=a'g(z)+(P g i(z), f+= Q (2J+1)(Eii~+F~++Eii~ F~+), (811)

J-l

a,=—g, , —«~ =r(J+1/2)Lr(Jy1)]- - I "'"= dz(~'~ "+~'~ ' »
)( (2z) ~F (—J/2, 1/2 —J/2; 1/2 —J ' 1/z') (85) with

(812)

as in Ref. 6. At J=O, 1, 2, ~ ~ ~, we have (PJ=I'J, while
at negative integral J we have O'J=O. Since F is 6nite
at negative integral J, we can extend the sum in (81)

'9 S. Mandelstam, Ann. Phys. 19, 254 (1962).

Pg'+z(Pg"
Eii~ =, (813)J(J+1) J(J+1)

(J+1)gz i+Jgz+i
CllJ+= Cpi ——Qg. (814)

2J+1
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We have used the fact that for J= 1, 2, 3, ~ ~ we have

Again we avoid fixed poles by putting

I' 8'+dz=0, m=0, 1, 2, ~ ~ ~ . (81S)

and that
0+ E ( i)+ (817)

Thus we can add the values J=0 and J= —1 to the
partial wave sum; they cancel.

We can now connect the partial wave sum

J—+co
f+= Q (2J+1)(E»~+F~++E»~ F~+) (818)

to a contour integral. At half-integral values of J we
have F +=F( ')+ (note the parity index is the same
on both sides) and the residue of (2J+1)or(sinor J) 'Eiq~+
cancels against the residue at —J—1 for the half-
integers.

We can then expand the contour and pick up Regge
pole contributions

f+=t((2n~+1)/sinornz]E»( +)+ ( q)P+-
—L(2~p+1)/sinoi~p]Eii( +)—(—s)P~ (819)

from trajectories 0,+ and 0. corresponding to poles in
I"J+ and Ii J, respectively. Again we have compensation
of trajectories at the half-integers, without change of
parity index.

For J=—2, —3, we then have FJ+ finite and
Eqi~+=0, so that the partial wave sum (811) can be
extended to these values of J. For J=O and —1,
however, both FJ+ and E»J+ are finite and so it is not
obvious that these values can be included in the sum.
That is the point that bothered Berestetsky. We note
that in this example J=0 is the only "nonsense" value
of J (in general, for integral )( or )o we define a nonsense
value to be a non-negative integer less than ~)(~ or

~ p~ ). The companion point in the J plane associated
by reQection through J=—1/2 is the point J= —1.

Now we can easily verify that

po+ —p(—u+

A new type of compensation has now appeared,
however, the kind discussed in Ref. 6 for the P and Q
trajectories. Consider a trajectory 0,+ passing through
J=O at a certain value of energy. If the trajectory
chooses setose at J=0, then the residue P~ for )(=1,
p, =1, vanishes like n~ as n+ —+ 0. No singularity then
appears in (819) as n+ —o 0, which is entirely appro-
priate for a nonsense value of n. H the trajectory
chooses noooseese at J= 0, then the residue P+ approaches
a finite constant as n~ ~ 0 in our nonsense+-+ nonsense
amplitude. The contribution to (819) of the trajectory
then does have a singularity at n+=0, but this must
be canceled by something, since the f's cannot have
an actual singularity at a nonsensical value of n+.

The cancellation occurs through the existence of a
compensating trajectory n~ (with opposite parity index)
that passes through J=—1 at the same energy for
which'~ passes through 0. We can deduce the existence
of the second trajectory from (816) and moreover we
conclude that

P~/n~ ——Q~/( —1—n~) $+nonsingular terms, (820)

near n~ 0, n——~= —1. Using the relation (817), we see
immediately that the singularities in the Regge pole
contributions (819) do compensate each other.

It is interesting to remark that the leading term at
large z in E» +, which goes like z ', actually vanishes
as J—+0, so that the largest nonvanishing term in
E»~ goes like z '; thus compensation by E»
which goes like z ' at large z, is possible.

Our example is now easily generalized to any integral
values of )( and p. The values Jp of J t Jp=0, 1,

~ min(~)(~,
~ p~) —1] for which we are dealing with a

nonsense-nonsense transition compensate the corre-
sponding terms with J=—Jo—1. The leading terms in
Eq„J+ at large z vanish at J=Jo, down to a term of the
right behavior to compensate E~„( & '), and we have

E& &ok —E& (—&o—i)9 F&o+=F(—&o—i)F (821)

for all relevant values of Jo.
Finally we go to half-integral values of P and p as in

our problem of vector-spinor scattering. The only
change is that compensation between all pairs of
integral J now occurs with a change of parity index,
while the compensation between Jo and —Jo—1 )for
Jp ——1/2, 3/2, min(~X~, ~y~) —1] occurs with no
change of parity index. The Jo values are again defined
as those for which we have a nonsense-nonsense
transition.


