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previously unreported 2+ level in addition to the well
known 1 level. (2) The 13.88-MeV level has a spin and
parity of 4+. (3) The previously unreported level at
14.80 MeV is either 0+ or 1 . The simultaneous experi-
ment by Ferguson'~ '8 yielded nearly identical results.

Several general features of the coupled-equations
approach are well illustrated by the C"(n,ct&)C"* re-
action. DWBA overestimates the cross section by more
than an order of magnitude at these energies (this is no
longer true at higher energies). The coupling of addi-
tional states has a pronounced eGect on the elastic
scattering, even when the inelastic cross section is small.
Many of the qualitative features of the experimental
data (shape, magnitude, energy dependence) are cor-
rectly reproduced. Explicit consideration of only two
channels, and compound nuclear eGects preclude de-
tailed quantitative agreement. Compared to DWBA,

however, the "two-channel" coupled-equations approxi-
mation is fairly successful.
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The two-nucleon stripping reaction is examined in detail, with particular reference to the (He, a) reaction.
Three models are studied and compared: (1) the plane-wave Born approximation, (2) the distorted-wave
Born approximation, and (3) a simple diffraction model. Zero-range approximations are not assumed
a Priori For (1) an. d (2), the wave functions of the two captured nucleons are taken to be eigenstates of an
infinite harmonic oscillator, the strength of which is adjusted to reproduce single-particle eigenfunctions of
a Gnite Saxon well in regions close to the nuclear surface. The erst model is primarily employed to show that
the modulation of the angular distribution due to the structure of He' is also sensitive to the form and range
of the stripping interaction. Model (2) is used to calculate absolute diB'erential cross sections to various
final states, in particular for C", O', Ni, and Sn targets with 20-Mep incident He' ions. Comparison with
experimental data is made where available and agreement is found. To further such comparisons we also
compute summed cross sections to several low-lying states of the anal nucleus. Spectroscopic weights are
obtained for pure and mixed configurations of single-particle wave functions. Model (3) provides insight
into the dominant features of the experimental and calculated Lmodel (2)j differential cross sections. These
are: (a) a strong forward peaking of the distribution especially for spin 0 to 0 transitions, but also for summed
cross sections, (b) an angular distribution for such sums that is roughly independent of the atomic weight
of the target nucleus, and (c) an enhancement of cross sections to higher spin states (=3 or 4) of final nuclei.
These features are not reproduced with model (1).

I. INTRODUCTION

' &HE use of deuteron projectiles for studying nuclear
spectroscopy is well known. Recently, attention

has focused on the double stripping reaction for the
same purpose. In fact, it has been pointed out by
Yoshida' that double stripping may be particularly
suited to the study of collective (vibrational) levels.

Although considerable experimental investigation of
the two-nucleon stripping reaction has already taken
place, all theoretical analyses to date use the plane-wave

* Supported in part by the U. S. Atomic Energy Commission
under Contract A. T. (45-1}1388,Program B.' S. Yoshida, Nucl. Phys. 33, 685 (1962).

Born approximation to describe the process. This, even
though not valid, is of some use for obtaining level
spin assignments from angular distribution in deuteron
stripping. However, it is not known whether the same
information can be extracted from the application of
the Born approximation to two-nucleon stripping
processes.

In this paper we shall examine the two-nucleon strip-
ping reaction in detail. In Sec. II we first develop a
general formulation of the double-stripping reaction,
which we specialize to the (He', e) process as a particular
example. We do not make any zero-range approxima-
tions. We use a Gaussian for the internal wave function
of He' as well as for the stripping interaction. For the
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captured nucleons Ltwo protons in the (He', e) reactions
we employ shell-model wave functions of an in6nite
harmonic oscillator. The use of this potential for bound
states allows a separation of center-of-mass and relative
coordinates.

We 6rst reexamine the plane-wave Born approxima-
tion description of the (He', e) reaction in order to
bring out some features not studied previously, such
as those involving the stripping interaction. Thus, we
show that the "He' form factor, "which limits the mag-
nitude of the differential cross section at large angles, is
sensitive to the form and range of this interaction.
However for medium energies, we demonstrate that
this factor, akin to that which occurs in the Born ap-
proximation of deuteron stripping, is unimportant in
the forward hemisphere. At higher energies we show
that this factor is closely related to the Serber descrip-
tion' of the stripping process.

In the last part of Sec. II we fully develop the dis-
torted-wave Born approximation description of the
two-nucleon stripping reaction, making use of optical
potentials in the incoming and outgoing channels. This
model is applied in Sec. III to studies of the (He', e)
reaction for various targets and to different 6nal states.
The spectroscopic amplitudes to these states are com-
puted for pure- and mixed-configuration shell-model
wave functions, as well as for the "pairing plus long-
range force" model of the Copenhagen group, where
applicable. Differential cross sections for 20-MeV He'
particles are calculated and compared with experiments.
Furthermore, in order to make comparisons with
threshold detector experiments, we sum the cross sec-
tions to low-lying states of the 6nal nucleus. One
advantage of this type of experiment is that results
obtained therefrom are less sensitive to nuclear spec-
troscopy and more so to other factors, such as nuclear
distortions of the He' and neutron. Indeed, Manley
6nds that a strong forward peaking always obtains for
targets at or near closed proton shells"; we show that
the distorted-wave Born approximation can explain
this characteristic feature.

In the last section we develop a simple diGraction
model for the stripping process. This model is based on
the strong absorption of the incident He' and fairly
large absorption of the outgoing neutron in the energy
region of interest. It gives insight into the diRerential
cross section of the stripping reaction, particularly the
observed forward peaking.

II. FORMULATION

A. Introduction

The Hamiltonian for the interaction of an incident
E-nucleon system with a nucleus of mass number A

~ R. Serber, Phys. Rev. 72, 1008 (1947).
s J. H. Mauley, Phys. Rev. 130, 1475 (1963).
'~ lVote added in proof. The forward peaking has now been ob-

served for other targets as well; see J.H. Manley and W. E. Stein,
Bull. Am. Phys. Soc. 8, 611 (1963).

can be written as

A+N A+N A+N
&=- 2 2'~+ E

j'=1 k-j+1

where Tk is the kinetic energy of nucleon k, and V;k
represents a nucleon-nucleon (including Coulomb) in-
teraction. When the incident E-particle system and
target nucleus are far apart, the initial wave function
C; is an eigenfunction of H;, (5=c= 1)

N N A A

j=l k=j+1 j=l k=j+1

A+N N—2 N—2 A+2 A+2

~f—g 2'~+ p p V;„+p p V, i, (3a)
j=l k=a+1 1 k=j+1

of the form (in the laboratory system)

r
—

lt ((1, , A+2)pr'(1, , i7 2)—
XciPN 2'aN sc»A+—2'a&+-2 (3b)7

where the notation is similar to that of Eqs. (2). All
wave functions are understood to be antisymmetric
under nucleon exchange. The exact matrix element for
the two-particle stripping process can then be written as4

A+2 N—2

1 k=1 j I k=1

where %'r (4,+) is an eigenfunction of energy 8 of the
Hamiltonian H, with incoming (outgoing) wave bound-
ary conditions.

In the approximation that the interaction of the in-
coming and outgoing systems with the relevant nuclei
are represented by optical model potentials, the matrix
element (to first order in the residual interaction)
becomes4

m, ,=(x;l~v, lx,+&

N—2 A

=(x.-l Z Z v;.-vr+Z(v;. +v;.)lx,+&, (5)
j=l k~1

where Xf and X;+ are eigenfunctions of energy 8
(with ingoing and outgoing wave boundary con.ditions,

M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(1953).

of the form (in the laboratory system)

C"=0'(,", )4''(1," &)c' ' ( )

where P;(1, ,A) is the internal (isospin-spin-space)
wave function of the target and lt (1, ,X) is that of
the incident system. The total momentum PN and
center-of-mass coordinate RN refer to the incident
X-body system. For a two-particle stripping reaction
the 6nal wave function for the separated system is an
eigenfunction of the Hamiltonian Hf,



DOUBLE STRI P PI NG: (Hee, n) REACTION B1447

j=l k=j+1 j=l k j+1

A+N N A

II;= Q Ts+Q Q V/2++ P Vp, +V, .
j=I k=j'+I j=l k- j+1

respectively) of the Hamiltonians

A+N N—2 N—2 A+2 A+2

&r= Z I'2+2 E V/2+2 2 V/2+Vf (6a)

(6b)

this further limits the nuclear states that can be
reached. ~ However, all of the considerations developed
below can easily be extended to other two-particle
stripping reactions such as (cr,d) processes. For the
(Hes, rt) reaction, Eq. (7a) reduces to

BIIr;= (Xr—i V 1+V„s i X;+), (7b)

Here Vf and V; are, respectively, optical potentials of
the interaction of the 6nal X—2-body system with the
nucleus A+2, and of the initial X-body system with
the target A. The potential hV; is the residual inter-
action, de6ned by

A N

AV;=Q Q V/2 —V;.

The last form of Eq. (5) is more useful than the first
one in the event that g;=1 'ps=i V;2—Vf can be
neglected. Arguments for this omission have been given
in the past and are summarized by Tobocman. ' With
the neglect of this term, the distorted-wave Born-
approximation matrix element becomes

OR/, =(X/
~ Q (Vl;+V2;) ~X,+). (7a)

In this work we shall restrict ourselves to an incident
three-particle system (e.g., He', H'), and for definite-
ness consider the (Hes, rt) reaction. ' It has the advantage
of a single outgoing nucleon; furthermore, if the ampli-
tude for spin-Qip is small, there occur restrictive selec-
tion rules. Thus, if this amplitude is negligible, the two
captured protons must be in a singlet spin state in the
6nal nucleus, because this is their state in He. Since
the two captured protons must also be in an isospin
T = 1 state, their relative spatial wave function must be
an even one (i.e., orbital angular momentum even) and

where 1 and 2 refer to the two protons and m to the
neutron in He'.

To carry the development further, it is necessary to
introduce a speci6c nuclear model. We shall be most
interested in nuclei near closed shells and will therefore
take the spherical-shell model as the starting point in
obtaining nuclear wave functions. For other targets,
collective rotational effects can, be of importance. To
bring out and discuss the treatment of the spatial
integrals in the matrix element, Eq. (7), we shall

temporarily introduce several further simplifications:

(a) We assume I. Scouplin-g to be valid. This is
approximately satisfied for light p-shell nuclei.

(b) We take the two protons to be captured into
pure shell-model states.

(c) We restrict ourselves to an initial state of the
target that consists of a closed inert core (i.e., closed
shell nucleus) of spin and parity 0+ (also T=O). This
core then plays no role in the matrix element, as it
simply integrates out. The advantage of this assump-
tion is that the spectroscopic factors are then trivial.

(d) We assume A ~co, or rather, neglect eGects of
order 2—'. The recoil effects due to finite 2 are simple
kinematical factors which we shall include later on.

(e) Here and later we assume that V„l and V„2 are
spin- and isospin-independent central potentials.

With the above simplifying assumptions, the matrix
element reduces to

~1~2/1/2
(I12 1 2~)t )(2 2/tltts~~tt)(t'1/2"'l l/2"'|1/2""~fl/2" ')

X&x, (r-)4l (rl)4't (r2)~ V-i+V-2~XP (RH)4'H Lrl r2 r 2(rl+r2))), (8)

where RH, ——(rl+rs+ r„)/3, the p's and x's are spatial
wave functions of the bound states and scattering
states, respectively, and the i's are spin wave functions.
The two proton Gnal-state function should be anti-
symmetrized; however, the stripping interaction is
symmetric and the initial state is antisymmetric under
the exchange of 1 and 2. Thus, we need not explicitly
antisymmetrize the 6nal bound-state wave function.
In Eq. (8) ( ~ ) are Clebsch-Gordan coeKcients

and the subscript ) and the superscript (1) refer to the
final nuclear state reached; X stands for its angular
momentum and energy and (1) for its isospin. If the
internal relative state of the two protons in He' is
taken to be purely 'so, then the spin sums in Eq. (8)
are trivial and A must be even since the isospin is 1.
We thus 6nd

(9a)
with

fnlm2
(flf2ntlnt2[)1&)(xy (r )pt (rl)pl (r2) [

V 1+V 2[ xP (RH )QH Lrl rs r 2 (ri+r2) j) ~ (9b)

' W. Tobocman, Theory of Direst Nuclear Reacteons (Oxford University Press, New York, 1961), Chap. III.
6 The I'H', p) reaction is symmetrical to that treated here, and divers from it chivy due to Coulomb eBects.
2 See also H. C. Newns, Proc. Phys. Soc. (London) 76, 489 (1960); N. K. Glendenning, Nucl. Phys. 29, 109 (1962).
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TABLE I. Values of the parameter p determined by variational techniques and other means. The wave function e is given
by v=NN "expL —(2) 'I'gpss, with I= (3r'/2+2@)'I' and 7)7 a normalization constant.

Method

Variation (including D wave)

Reference

E. Guerjoy and J. Schwinger, Phys. Rev. 61,
138 (1942).

J. Irving, Phil. Mag. 42, 338 (1951).
S. Suekane and W. Watari, Progr. Theoret.

Phys. (Kyoto) 14, 490 (1955).
Von W. Inthoff, Ann. Physik 3, 220 (1959).

Variation for H3
Shell model

Shell model+ variation
((ra') is used to find y)

Independent pair modelH. J. Mang and W. Wild, Z. Physik 154,
182 (1959).

W. Laskar, Ann. Phys. (N. Y.) 17, 436 (1962).
Y. C. Tang, E. Schmid, and K. Wildermuth,

Phys. Rev. 131, 2631 (1963).
H. Collard, R. Hofstadter, et al. , Phys. Rev.

Letters 11, 132 (1963).
A. Goldberg and D. Krueger

(private communication).

Variation
Cluster model, variation

Electron scattering

Analysis of electron scattering,
including nucleon form factor

Weighted average of last 7 values

Wave function

Eq. (11)+Dwave

Eq. (11)

Eq. (11)

Eq. (11)
Eq (11)

Eq (11)

Eq. (11)+nucleon
form factor

7(F ")

0.33

=0.39

0.27

0.39
0.384

0.31

0.36

0.36

In terms of this matrix, the differential cross section is &0.15. This corresponds to a r.m.s. radius of &3.8 F,
(0+ target state) which is unreasonably large.

dir), 1 p

dQ 4z' I'
(10)

where 3f~ is the nucleon mass. Before evaluating the
matrix 5K),(', we shall discuss the spatial properties of
the wave functions and interactions in Eq. (9b).

where EH, is a normalization constant,

+333/4&—3/2

and r= rr —rs, g= r„——,'(rr+ rs). The value of the single

parameter 7 can be determined from two considera-
tions: (a) electron-scattering experiments and (b) varia-
tional calculations for the ground-state energy. Several
calculations of the latter type, or variants thereof, have
been reported in the literature. We summarize their
results in Table I. In this table we also include the
value of p deduced from the mean square radius (rs'),
found from He' electron-scattering experiments. We
shall take y=0.36F ', which is the mean value of
recent data (with double weight given to the electron-
scattering data). The calculated differential cross sec-
tion in the forward hemisphere will be shown to be
relatively insensitive to p, unless its value becomes

' H. Collard and R. Hofstadter, Phys. Rev. 131, 416 (1963);
H. Collard, R. Hofstadter, A. Johansson, R. Parks, M. Ryneveld,
A. Walker, M. R. Yearian, R. S. Day, and R. T. Wagner, Phys.
Rev. Letters ll, 132 (1963).

I. Internat Wave Function of IIe'

For the space properties of He' we shall assume a
completely symmetric s state of Gaussian form,

rt)H, Nr(, exp{—-',——y'L(rr —rs)'+ (rt —r„)'+ (rs—r„)'])
=NH. exp) —-,'y'(-', r' +$2)$, (11)

Z. Stripping Interaction

For the potential V„t+V„s, we shall take a purely
central Gaussian interaction:

+V V Le
—ti (r„—ri)2+e—t) (r~—rr) $ (12a)

This form is simple to work with, as it allows many of
the integrals to be evaluated analytically. Furthermore,
for large P it can be made to simulate a ()-function
interaction; if the strength and range are normalized
so that the volume integrals are the same, we can write

(12b)

where p is to be taken finite on the right-hand side. In
the development that follows, we shall retain a finite
range p ' but the limit of zero-range forces can be
obtained by use of Eq. (12b).

3. Suclear 8"use J"Nmctioms

For the radial parts of the nuclear wave functions of
the captured protons, we shall, in most of this work,
assume those of an infinite harmonic oscillator. For
highly excited states these wave functions certainly
differ in the asymptotic region from those of a particle
in a finite well. ' We shall discuss this effect below; for
purposes of comparison with a finite potential, we shall

carry out a simplified calculation with a potential of the
Saxon type" for the bound protons. However, for

9A further problem that can occur in the shell model generally
is that spurious states may occur in which the center-of-mass of
the nucleus is excited. See J. P. Elliott and T. H. R. Skyrme,
Proc. Roy. Soc. (London) A232, 62 (1957). These states are not
met in our work.

"See, for example, M. A. Melkano8, J. S. Nodvik, D. S. Saxon,
and R. D. Woods, Phys. Rev. 106, 793 (1957).
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close to the nuclear surface can be reproduced by ad-
justing the natural frequency of the harmonic oscillator,
as we shall show below.

The chief advantage of an infinite harmonic oscillator
is that a two-particle state function separates into
simple center-of-mass and relative-motion wave func-
tions. "This separation is, of course, also possible for a
finite well, but the expansion involves an infinite rather
than a finite number of energy states. For two-particle
bound states in a reasonably shaped 6nite well, one
might expect that the expansion coefficients are large
only for those states that are not zero for an infinite
harmonic oscillator. In the latter case, the state func-
tion of two particles coupled to an angular momentum
X can be written as

P (ltlsmtms
~
»)g„,t,"'(rt)4.,t,"'(rs)

qrbII722

=Q„ttrr srH(nlNL, nrem&nels, X)(/LmM~Xv)

Xp (R)p. (r), (13)

0 80
Angle (degrees)

I

[20
1

160

where R=-', (rt+rs), r= (rt rs),—nt, ns, N, and n are
principal quantum numbers, and H is a Talmi coeK-
cient. These coeKcients are independent of magnetic
quantum numbers but depend on the angular momenta
and principal quantum numbers. They have been
tabulated in useful form by Brody and MoshinsIry. "

Fro. 1. Form factor F~ (q') as a function of scattering angle for
20- and 200-MeV incident He' ions. F~ =exp L

—q'/2(P'+p') j, and
the curves are for tt =y= 0.36 F ' and q= P/3 —p with P =1/3P.
The effect of F&(q') on the plane-wave Born approximation at 20
MeV is also depicted for a spin zero-to-zero transition.

nuclear-bound states, we believe that the assumptions
of an infinite well will inhuence mainly the magnitude
of the cross section. Since there are many other pa-
rameters that affect this magnitude $e.g. , the optical
potential parameters (see Sec. III)j, we feel that the
assumption is justified with the present state of our
knowledge. Furthermore, the finite well wave functions

B. Plane-Wave Born Ayproximations

For comparison with later developments, we shall
first calculate the matrix element BRq&" in Born ap-
proximation. Then X~- and Xp+ are replaced by plane
waves, and the matrix element can be evaluated ana-
lytically. This approximation has been amply discussed
in the past. '~" However, it serves to bring out several
interesting features not studied previously, especially
those associated with the form and range of the strip-
ping interaction and with the structure of He'.

Substituting Eqs. (11), (12), and (13) into Eq.
(9b), we obtain

9Rxt') =NB, Vp grtrt srH(nlNL, ntltnsls X) (&LmM ~)) t)(g~r~(R)qb„t (r) expPip ((+R)g ~
exp/ —P'()c+sr)'j

+exp/ —P'(g —sr)s)
~
exp/i p (R+I()1 expt —sos(sr'+2/)]). (14)

The spatial integrations are carried out below with
and without further assumptions.

l. SimPl@ed Interaction

In the spirit of the optical model we can approximate
the interaction of the neutron with the two protons by
that with their center-of-mass only,

Vo{e~f—P'(4+-'r)'3+expL —P'((——.'r)'3}
=2Vp' exp( —P'ts).

ln this case, the matrix element separates into three

factors

3TIx
"'——2 Vp'NH, Qr tv t„„xrH (nlNL, ntl tnsls, X)

X PLmM ~»)~.~»~„(15)
"I.Talmi, Helv. Phys. Acta 25, 185 (1952)."T. A. Brody and M. Moshinsky, Tables of Trartsformatsort

Brackets (Institute of Physics, University of Mexico, 1960). This
reference uses r=(2) "'(r&—rs) and R= (2) '"(r~+rs) whereas
we shall use —,'cP and 2' for the relative and center-of-mass
harmonic oscillator parameters, respectively. The single-particle
value of 0.' is related to the harmonic oscillator frequency co by
of'= M'~co, where M~ is the nucleon mass.

"M. El Nadi, Proc. Phys Soc. (Londo. n) A70, 62 (1957).
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with

Sq;r,—= ($~1.~(R)e'&'R
~

e' '")
Sit'p, —= (exp(iy. () ~

e—~'&'~ exp(rsiP g) exp( —y'P)),
m(r)

~

e f ymrs)—

In the subsections below, we shall brieQy discuss the
effects on the cross section of each integral or sub-
matrix of Eq. (15).

(a) SI(r,. If Ptvt, ~(R) is concentrated close to the
nuclear surface, or if the first integral's main contribu-
tion is assumed to occur close to R=Rp (see Sec. IV),
then we obtain the usual factor"

(Q~z~(R)e'p'
~

e' 'R)=her, pL4m. (2L+1)]'t'
Xi (Rp'/cr') (RN), (Rp)j z (QRp) . (16)

In Eq. (16), n' is related to the binding energy 8 of
g» by cr"=&&~f3, (R&1. is the radial part of Ptvr,
and Q=—P—y is taken as the axis of quantization.
Other "more realistic" approximations for evaluating
the integral in Eq. (16) are summarized by Tobocman. "
The square of the Bessel function in Eq. (16) char-
acterizes the angular distribution for the process being
considered.

(tb) SRp~. The second overlap in Eq. (15) contributes"

reproduced" /rather than by means of Eq. (11b)$,

The form factor is then simply a constant. For a finite
range force and at medium energies the form factor,
Eq. (17), gives rise to a modulation envelope of the
more rapidly varying angular distribution, determined
by jl,'(QRp) Lsee Eq. (16)].

(c) 5Kt. This last submatrix is a simple overlap in-
tegral because we chose the stripping potential to
depend only on (. The integral is zero unless l=ett=0.
Furthermore, its main contribution will occur for e= 1,
since only then is p„t nodeless. In fact, if the single-
particle oscillator parameter cr= (3)'tan, then only the
overlap with the ts=1 state is nonvanishing; if p„t is
Ptp', the matrix element SRt becomes

Bit't —L(2sr)1/22~ —l(1+3~2/~2) —1/3/26 (1ga)

where o, is the single-particle oscillator parameter. "
The above considerations are not greatly affected by

short-range nuclear correlations, since these are of
primary importance in relative s states. In particular,
we may approximate the effects of these correlations by
multiplying the simple shell-model wave function gtpp(r)
by a correlation factor, f(r),

[Q)Tp, )'= Lsr/(y'+P')]'F, (q')

pt(qs) = e
—

p/ (sp'+v') (17)

to the cross section, if q= P/3 —y. This "form factor, "
due in part to the structure of He', has been discussed
by El Nadi" and Newns. ' A similar form factor is
present in the Born-approximation treatment of deu-
teron-stripping reactions (due to the internal structure
of H'); there has been considerable discussion" whether
it should be included in extended treatments (e.g. ,
optical-model description) and whether the Gt to ex-
periment indicates its presence. It occurs because the
structure of the incident system may limit available
momenta. However, it should be noted that the form
factor is determined not only by this structure, but
also by the range (and, as we shall see, the nature) of
the stripping interaction. Since He' is a fairly closely
packed nucleus, the structure of which is partially de-
termined by the range of the internucleon force, we
expect P and y to be comparable. This is different than
deuterium, for which the radius is large compared to
the range of the internucleon potential. For very short-
range forces, or more precisely, for a zero-range force,
we can normalize so that the binding energy of He' is

'4 See W. Tobocman, Ref. 5, Chap. II.
'e G. N. Watson, Theory of Bessel Fssactions (Cambridge Uni-

versity Press, Cambridge, 1958), p. 394.
' See, for example, D. A; Bromley, J. A. Kuehner, and E. Alm-

quist in Proceedings of the International Conference on unclear
Strgctnre, 1960, edited by D. A. Bromley and K. W. Vogt (North-
Holland Publishing Company, Amsterdam, 1960), p. 349; R.
Middleton and S. Hinds, Nucl. Phys. 34, 404 (1962).

as suggested by Dabrowski' and others. The overlap
integral then becomes

S

2s'r,
e '"'"+erf (s'r,), (igb)

(~)1/2

where s'= e(3y'+cr'), s"=s'+r, ', and erf is the error
function. ' Thus, the numerical value of 5R~ ls slightly
altered by these eBects, but we still expect the nodeless
ptp' to give the dominant contribution.

If, instead of treating the two protons as being bound
in single-particle states of an infinite harmonic oscillator,
we take them to be a point diproton captured into
states of a finite Saxon well, then 5K),"' becomes

ST() ' = (16/7 ) (sr/3) I p'XH g(ietlssrttsrts
~

Xt )ORp~
77b F2

X (Q ml(R)p mg (R)etp R
~

etP R)$

with SZs„defined as in Eq. (15).

' W. Tobocman, Ref. 5, p. 35.
'e J. Drabowski, Proc. Phys. Soc. (London) 71, 658 (1958);

C. M. Shklyarevsky, Zh. Eksperim. i Teor. Fiz. 89, 1031 (1961)
LEnglish transl: Soviet Phys. —JETP 12, 717 (1961)j."E.Jahnke and F. Emde, Tables of FNrtctiorts (Dover Publica-
tions, New York, 1945), 4th ed. , p. 23.
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(d) Cross section. By combining Eqs. (15), (16), (17),
and (18a), we obtain for the complete matrix element
(n= 1, /=0, L=X)

OTI/, &'&=322rs(srrr)2/'i" (2K+1)'/'b 0V0'/VH (R i, (R0)R0'

X H (nBTL,nt/iris/2, ) )
XQ/2~1 —

1L (~2+$2) (~2+3~2))—3/2

Xj y(QR0)e 0'/ &I/'+/'& (19)

with iV= ei+n2+ 2 (/i+/2 —X)—1.The differential cross
section thus becomes Lsee Eq. (10)]

2. Full Ieferaction

If the approximation is not made that the neutron
interacts with the center-of-mass of the two protons,
then it is simpler to consider separately (a) a zero-
range potential and (b) a finite-range interaction, even
though the former can be obtained from the latter by
letting P-+~ in the exponent Lsee Eq. (12b)j.

(it) Zero r/tnge -in/eractiort. If the range of the strip-
ping force is taken to be small compared to the radius
of He', then

arith
da &/df1 =CtiR0'j&2(QR0) Fi (q'), (20) (21)

p VO (IIivk (R0)
Cn =576(62r) i/-'(2)i+1) —(MivR0)'

P Q

XH'(10M, )n i/in2/21 X)
(1+0'-/v') (I+3v'/~')—

At medium energies (10-50 MeV), the angular dis-
tribution is primarily determined by the oscillatory
factor ji,2(QR0) with X equal to the angular momentum
of the final state. However, for higher energy incident
projectiles, where several nuclear states may be excited,
or for experiments which do not resolve several final
states, these oscillations may tend to wash out; for
example, if QR0 is sufficiently large that an asymptotic
expansion is valid, then Pi, j&2(QR0)=constant. 20 The
form factor Fi(q') may then give rise to the dominant
angular distribution. This is the limit described by
Serber stripping, with an angular distribution deter-
mined primarily by the internal structure of He'. The
effect of the modulation is shown in Fig. 1, for 20-MeV
incident He' ions (for X=O) as well as for 200-MeV
He' ions. For illustration, we have taken the magnitude
of the neutron momentum p to be

~ y) =
~
P~/3 and

a nuclear radius of 5 F. We note that at 20 MeV the
half-width of the modulation envelope is of the order
of 65' if P=y=0.36 F '. For a shorter (more reason-
able) range P ' of the interaction, the effect of the
modulation is even smaller. If P and y are taken to be
equal, then they must be as small as 0.13 F 'in order
for the modulation envelope to be 1/10th of its forward
value when the first minimum of the zeroth-order
Bessel function is reached. This is not physically reason-
able. On the other hand, for 200-MeV He' ions, the
form factor (with P= y= 0.36 F ') reaches 1/10th of its
forward value at about 35'. If the measurements at
this energy include excitation of several states (of both
odd and even parity), the form factor is expected to
determine the angular variation.

"However, if primarily collective states, or more generally only
even (odd) spin states, are excited, then the sum involves only
even (odd) integers, and the above conclusion is not valid. In-
stead, the Blair phase rule Lsee J. S. Blair, Proceedings of the
International Conference on Itlnclear Structure, lt/60, edited by
D. A. Bromley and E. W. Vogt (The University of Toronto Press,
Toronto, 1960), p. 11247 tells us that for even spin states, for
example, the angular distribution is ec jo (QRp).

The matrix element 5Rq&'~ becomes

OTIC = 280/l/H grp/t tr(/LrnM
~
Xp)H(n/IVL, ni/irt2/2, X)

ill(R)sip R~ eiP R)

XQ en(r)ei(l/2) 2 rt &i(l/0)P'r& —r r ) (22)

The dominant change from approximation (1) occurs
in the matrix element which involves the structure of
He'. If the major contribution in the second matrix of
(22) comes from values of —,'qr that are small compared
to unity, then the overlap integral will be small if //0.
We thus expect the 1s contribution to be most im-
portant, and neglect all other relative motion diproton
states. At medium incident energies the rapid variation
of the angular distribution is then the same as that
given by Eq. (16) (with the same approximation) but
the modulation envelope is replaced by

F ( 2) —e 0'/2(a'+47')—

The angular dependence of the cross section is thus

do/df) ~j i,2(QR0)F2(qs) (24)

O141 = 2iVHeV0 p/kt H(nO/VL, rti/ins/2, X)

Xbsr „br„/,OIIr,ORt', (25)

The modulation envelopes given by Eq. (23) and Eq.
(17) are compared in Fig. 2 for incident 20-MeV He'
ions, with a/(3)'/'=y=P=0. 36 F '. The half-width of
Eq. (23) is 160' as compared to 65' obtained with
approximation (1). It is thus negligible in the forward
hemisphere. We have used this example to illustrate
the model-sensitivity of the modulation envelope.

(b) Firtite r/tnge interactiort-. Finally, we shall treat
the case of the full interaction (12a) in Born approxi-
mation. The matrix element is then given by Eq. (14).
We shall continue to assume that only relative s states
of the two protons need be taken into consideration,
but will not restrict ourselves to the 1s state. In that
case the matrix element reduces to
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l.o

0.8

The coefFicients C„; are given by an expansion of
Laguerre polynomials.

"The integration over ( is now

readily carried out, and we hand

n 1 — //4rs) & 8& 1 1
Olti' ——m' P (—1)'C., ~

—
~

—e—""". (27)
(r)f')' f' g'

0.6

0.4

With the use of Eq. (16), the differential cross section
becomes

do/dQ= C,Losji,s(QEo)Fs(q'),
with

ps(qs) = e—o'/so'

and
(~~ll' P

C =34/'12s/'(2)t+1)
~

—
~

—(Mr/Ro)'
En'& I'

6tzri, (~o)
Xe"/'" P/r» H (r/01V), riilirisls, )i)

/2

0,2

1

40
Angte (degrees}

!20
I

i60

Fro. 2. Comparison of form factors Fz PEq. (17)j, Fs PEq.
(23)g and Fe LEq. (28)g as a function of scattering angle. F& is
the form factor for a simplified Gaussian stripping interaction,
F2 is that for a point interaction, and F3 corresponds to the full
Qnite range Gaussian interaction. The curves are for 20-MeV
incident He' ions, and P =y=a/(3)'/2=0. 36 F '.

with

3)tr.=Qzr~(R) ~exp(i0 R)),
3)ti' ——Q „,'(r)

X @sr(expL—Ps(g+ r r)sj+ expL —Ps($—sr r)s])
~

Xexp(itl g) exp) —7'(-,'r'+ ts)j).
The matrix Oltr, (evaluated at the nuclear surface) is
again that of Eq. (16), but the second matrix Olti' no
longer separates into a product of two submatrices. The
integrals can be carried out, nevertheless. After inte-
grating over r, we obtain

(ns) ' 8' 1
mti'=n'/' p (-1)/c„,

~

—
(

E2/ (Bf')' f'

./~'2) j g/ ~6 2

X (—1)'
V'"&2& (~f')'fsgs

As shown before, the angular distribution is deter-
mined chiefly by jz (QR&) at medium energies. For 20-
Me& He' ions, if we take p'=y'=n'/3, and keep only
the I=1 term in Eq. (28), the modulation envelope
differs very little from that of Eq. (20) (the magnitude
of the exponent is increased by 7% from its value in
that section), since P'/4f'«1 (see Fig. 2).

C. Optical Model (Distorted-Wave
Born Approximation)

We have gone into a fair amount of detail in the
plane-wave Born approximation in Sec. IIB because
many considerations discussed there also apply in a
distorted-wave description of the (Hes, r/) reaction.

In the center-of-mass system, the optical-model wave
function for the initial and final state are (see Eq. (5)j
X+=7fx+(R+-'6)4~ ' "'(1,",A)kn. ((r)

Xt i r/s pi/s '(He)], (29)

A
&r=x~

I (+ R I| i/s""»/s '/s(~)

X~», ,"/ "/(1, , A+2), (30)

n—1 ~2
o g C,

~
~

rsje ia&/4&r&—"See, for example, A. de Shalit and I. Talmi, NNclear Shell
Theory (Academic Press Inc., New York, 1963), pp. 39-41.'

where the initial relative momentum K is related to the
exp( —g'p) exp(iil g)d'$, (26) laboratory momentum P by K= PLA/(A+3)) and the

final relative momentum k to its laboratory counterpart

fs 1 (ps+ 3+s+ s) gs s+ps p4/4f s and y o by k = p (A+ 2)/ (A+3)jp. The antisymmetric wave
functions pg, i,. ' "' and pJ/, 4/

r» are the (space-spin-
isospin) wave functions for the initial and final nuclear
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states, respectively, the subscripts and superscripts re-
ferring to the angular momentum and isospin of the
respective states. " The functions p are isospin wave
functions, and Qi~s"'(He)ft~s"n'7 is the totally anti-

symmetric spin-isospin wave function for He . We shall
immediately generalize our earlier discussion to j-j
coupling, but will continue to use the shell model (with
configuration mixing allowed). The final-state nuclear

wave function can then be written as

(1 ~+2)=Z;;;"," B; (zj J J''JI)
X(J JM,'M~ JrMr)(t 1v 1~ t~vr)+, 4„~"'""(I, ,A)4t4g~(R+sr, R—zr)pi'(1, 2), (31)

where j; refers to the total angular momentum of each
captured proton (principal quantum numbers are
omitted for brevity), and B is related to the usual spec-

troscopic factor. "The two-proton 6nal-state function
4tg need not be antisymmetrized Lsee the discussion
following Eq. (8)7.s4 Thus, we write

O'J(rl rs) = 2 (jijsntltnsl JM)4; (ri)4;."'(rs)
f01tll 2

=Pzs„„.Tt(j ij &JLSJ) ()4Svv'
~
JM)pi" (ri, rs)i s"'(1,2)

Tt (j ij &J LSJ) (XSvv'
~
JM) (/LtnM'

~
Xv)H(n/NL, nilin&4, )I)gl ~'(R)&4 (r)|s"'(1,2) (32)

where the last form is obtained by transforming to I;S coupling, "and then to center-of-mass and relative coordi-
nates. ""The cross section for the stripping process thus becomes Lcompare to Eq. (10)7

do- 1 k 1 I

t4;p4i z piu're;„„„, p B4;4&(j ijsJ,J;Jt)
dQ 4z' E 2J,+1

X (J JM M
~
JtMr) (t 1v;1

~
tfv f)T (jijzJLS1)()4Svt4 ( JM)H (n le nil in&lsd) (1LrnM'

~
Xv)

X ~ i r s"' 1,2 XI ~~2"" e V„~ V„2 X~+ 3 ~f2""' 1,2,e H, ,r, 33
2+2

where p; and p~ are the reduced masses of the initial
and final system, respectively. In Eq. (33), and in the
evaluation thereof, the following assumptions are made:
(a) no spin-orbit coupling occurs in the optical poten-
tials, (b) the stripping interaction is spin- (and isospin-)
independent, (c) the two protons are coupled to spin
zero in He', and (d) the initial nucleus acts as an inert
core; that is except for antisymmetrization effects, all
excited states as well as the ground state of the 6nal
nucleus are assumed to arise from the two added
protons. " In addition, we shall make the assumption
(e) that, in the 6nal nuclear state, the two protons have

almost no overlap with the initial He' internal wave
function unless 4t4„4 (r) is an s state. This last assump-
tion has been discussed in Sec. IIB; we shall not yet
restrict ourselves to the is state. It should be noted
that all of these assumptions can be relaxed, but at the
expense of additional complexity. We believe, further-
rnore, that the premises listed above can be justified on
physical grounds. The neglect of spin-orbit coupling,
for example, is not expected to affect the angular dis-
tribution in the forward hemisphere, which is the region
of primary interest to us. After summing over Anal and
initial magnetic quantum numbers, the cross section

reduces to

do 1 k 2Jf+1 1
f4;fit— (t;1v;1~ trvt)' p I Z B4'4r Uii rJ' J'Jt)

dQ 4a-' E 2J,+1 &iu (2J+1) fu'4

XTt(j ij sJ; JOJ)H(nOXJ, nilin&l&, J)5K+', (34)

"For heavy target nuclei the isospin labels should be omitted. We include them here for completeness.
"See S. Yoshida, Ref. 1; also M. H. Macfarlane and J. B. French, Rev. Mod. Phys. 32, 567 (1960).
'4 However, when summing over j4 and jr, one must remember the normalization factor L2/(1+841, ;,)j'I .
25 M. E. Rose, E/ementary Theory of Angular 3IIomentum (John Wiley R Sons, Inc. , New York, 1957), Chap. XI.
~6 Some experimental evidence for the validity of this approximation in two-particle stripping is given by J. Cerny, B. G.

Harvey, and R. H. Pehl, Nucl. Phys. 29, 120 (1962).
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A
~J Xk R N J n0 r Vnl ~n2 XK 3 He

A+2

After substituting Eqs. (11) and (12a), the r integration can be carried out as for Eq. (25), and we obtain

n ' 8' 1 ( A
ortJ =2VO~''XH. Q(—1)~C„— — e-g'&'xg —

*~ g+ R ~y~g~(R)xx+(R+-', g)d'gd'R.
2 (Bf')' f' 4 A+2 )

(35)

The integration over the relative neutron coordinate
g cannot be carried out in closed form in the distorted-
wave approximation. A reasonable approximation for
the evaluation of the integral appears to be achieved
if we change variables to ( and X=8+)/3 in Eq. (35)
and then only neglect the g dependence of xq (i.e.,
not that of p»~(X —g/3)]. The trouble is that this is
reasonable only if both the expectation value of

~ g~ is
much smaller than that of ~X~ and k&&g.'r Whereas
the former justi6cation obtains, since the radius of He'
is small compared to that of most target nuclei, it is
difficult to justify k&(g. In fact, if P=7 and for 10—15
MeV neutrons, k=g.

If the phasing remains approximately the same in
Xk and XK+ as for the Born approximation, then one
might think of writing

xg—
~

R+( ~=xg-~ R exp(ik (),
(A+2 I kA+ 2

(36)
(A (A

xx+~ R+—', ( =xx+~ R exp(i-', K ().
(A+2 (A+2

Although we considered the use of Eq. (36), we could
not find any reason for such a separation, and we shall
not employ it below. However, we would like to point
out that with Eq. (36) one obtains the form factor
exp( —g'/2g'), )see Eq. (28)]. As we saw earlier, this
factor is not important in the forward hemisphere and
the "2g"' in the exponent depends on the model of the
stripping interaction.

A better approximation for evaluating 5KJ than the
change of variable discussed earlier appears to be the
neglect of the g dependence of both x~ and xx+. The
reason that we feel this is a better approximation is that
in Born approximation phasing, the criterion that k be
much less than g is replaced by |7/g=

~
K/3 —k

~
/g((1,

and the latter is valid at medium energies, as we argued
earlier. With the described optical-model approxima-
tion, no form factor occurs in the cross section; we
obtain for 5KJ

n—1

ORJ ——2VOFH.~' Q (—1)'C;

with

R ~e»"*(R)xx+(R)d'&.
&Ay2 1

By comparison, if we make the approximation suggested
first (of changing variables to X and () we obtain

( A
mg' ——27 xg-'( X )xx+(X)e—'g'x'

gi (9g2X)J
Xg Cwi ~8104x&llPd3+ (38)

(Bk') ' 7i'~+'

with h'= 9g'+n'. Since 9g'))n', we can expand to obtain
in leading order, the same expression as Eq. (37b) with
R replaced by X. To the next order, for N= 1, for ex-
ample, we find the same expression as (38), except that
the integrand is multiplied by exp/(u'I')(n'/9g')].
Thus, to leading order, the same result is found with
either approximation. The correction term for /=1
intimates that perhaps a smaller value of 0. should be
used than that suggested by pure shell-model considera-
tions. This is a further reason to keep the harmonic
oscillator energy spacing variable.

The evaluation of the matrix element is now complete
except for an integration over R (or X), which is carried
out numerically. We want to point out that we have
reduced the evaluation of the matrix element to that
which we would have obtained for a stripping inter-
action of the simple form V=C'P(g). However, our
derivation allows one to obtain the value of O'. Further-
more, we note that we did not assume a point inter-
action, nor a point He' particle, although we did have
to neglect some of the structure effects in the distorted
scattered wave functions. One reason for our extensive
derivation was to make clear under what conditions
one can expect Eq. (37) to be valid. In particular, it
requires the radius of the incident particle (He') to be
small compared to that of the target (nucleus) and also
a relevant momentum (k or q) to be small compared to
the average momentum of a nucleon in the incident
particle.

j=o

(n'i' 8' 1 1
(37a)

(2P (gf2); fata

III. RESULTS OF THE DISTORTED-WAVE
CALCULATIONS

A. Calculation Procedure
' This assumes that the dominant Fourier components of xk

are those with momenta close to h, because the main contribution
&o 5K' comes from outside the nucleus.

The matrix 5K+', Eq. (37b), is evaluated by expanding
the distorted wave functions into partial waves and
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Xx+(R)=g iz'$44r(2L'+1)$'t'
L' ER

)& Uxz.+(R)Yz'(R), (39b)

where 8, P are the scattering angles and R is the variable
of integration. The radial wave izUsz+/kR satisfies
outgoing (+) or ingoing (—) boundary conditions and

Ug, z *(R)= Usz+(R); (40)

this follows directly from time reversal. 's With PNz~(R)
= Siv~(R) Yg (R), we thus obtain for 5RJ',

4n A+2
KJ'=

Ek

XEr.z
/AR)

64rg(R) Usz+i
i
Utrz. +(R)dR

(A+2i

&&)(2J+1)(2L+1)]'t'

)& (JLM iV
~

L'0) (JL0—0
~

L'0)i ~z' Yz~(e, re) .
(41)

The numerical program used on the IBM 709 performs
the integration in Eq. (41) and calculates a quantity Dz,

first performing the trivial angular integrations. We
choose K as the axis of quantization, so that

A+2 4~
X;~ R (=g sz—U„- R

~(A+2 I zm A kR A+2

X Yz"(R) Yz"'(H,y), (39a)

The oscillator radial functions (Rivq(R) are generated
by a subroutine. This makes it easy to generalize the
program for other direct reactions. The distorted waves
are computed with the UCLA SCAT-4code, "which is
slightly altered to give normalized wave functions as
output. This program solves the following Schrodinger
radial equation

d' l(I+1) 2rtk—k'+ +2t V(r) Ukt(r) =o, (44)
dr r' r

where p is the reduced mass of the projectile. It should
be noted that the code includes the Coulomb potential;
rt=ttZse'/k is the relevant Coulomb parameter in Eq.
(44). The complex nuclear optical potential V can take
on a number of forms and can include a spin-orbit
term. As stated earlier, we have put this term equal to
zero for several reasons. The erst of these is that even
the optical parameters of the central potential for He'
elastic scattering are not well known, and the second one
is that the spin-orbit e8ects are most important for
large momentum transfers or in the back hemisphere.
On the basis of elastic scattering and reaction cross-
section analyses made to date, we have chosen the
Saxon form for both the real and imaginary parts' of
the optical potential of He',

VH (r) = —(Vi+i Vs) (&+exp/(r —Ri)/tti&} ' (45)

The same radial dependence (but with different con-
stants) was chosen for the real part of the neutron
potential, but the imaginary part was taken to be a
Gaussian concentrated at the nuclear surface, "

Dg pfmzJ'f'——.
M=J

(42) V„(r)= —Vs(1+expL(r —Rs)/aj} '
—iV4 exp( —L(r—Rs)/b7'}. (46)

Wg ——
~ g J3(j,j,J,J Jt)2'(j,j,J JOJ)

2122

and
)&H(tt01VJ, tsilimsls, J) ~', (43b)

t'cr')& 8' 1 1 '
2(—1)'C-t~ —

I .
—— (43c)

&» (~f')'f'a'

For m= 1, G reduces to

G= (~'/2~)" (I/f'g') (43d)

'4 G. Breit and H. A. Bethe, Phys. Rev. 98, 888 (1954); E. M.
Henley and B. A. Jacobsohn, Phys. Rev. 115, 225 (1959); L. C.
Biedenharn, Nucl. Phvs. 10. 620 (1959).

In terms of D~, the cross section for the (Hes, n) reac-
tion becomes )see Eqs. (34) and (37)j
do k 2Jt+1—=m4VP'XH, 'P;P,f—
dQ E 2J~+1

DJFJ
y (t,lo;1

~
tt pf)'GP, (43a)

J 2J+1

We have not attempted to adjust the real parameters
of Eqs. (45) and (46), but have used "best-fit parain-
eters" obtained heretofore. The actual values chosen
and references are detailed in Table II.

Numerical results are obtained for p'=0.4 F ' and
Vp=70 MeV, which are consistent with the deuteron
binding energy. The cross section depends on these
parameters primarily through the combination (Ve/Ps)';
thus, roughly the same cross section is found for dif-
ferent Ve and p if Vs/p' is kept constant.

The only free parameter that now appears in DJ is
the natural frequency of the harmonic oscillator co

that we have kept as a variable. The value of M obtained
from binding energy and nuclear size considerations is

"M. A. MelkanoG, J. S. Nodvik, D. S. Saxon, and D. G.
Cantor, A Iiortran Program for Elastic Scattering Analyses with
the Xgctear Optecat Model (University of California Press, Berkeley,
California, 1961).

30For a strongly absorbed particle, we have found that the
choice between surface and volume absorption is not as important
as for weakly absorbed ones."F.Bjorklund and S. Fernbach, Phys. Rev. 109, 1295 (1958).
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TABLE III. Energy-level spin assignments and spectroscopic factors for O' . Spin assignments and energies of the low-lyjng T'= 1
states of N' are given in columns 1 and 2. Experimentally determined or approximate theoretical energies of the corresponding levels
in 0' appear in column 3. In columns 4 and 5 are listed the pure shell con6gurations and their corresponding spectroscopic weights,
II/'$. The configuration assigned by True (Ref. 36) and the corresponding 8'$ appear in columns 6 and 7. Principal quantum numbers
are omitted for the sake of brevity in these last columns.

0+

0
3
2+
2

8.06 (6.99)

8.63 (7.91)

8.71 (8.12)
8.91 (7.43)
9.17 (7)
9.51 (8.99)

10.42 (9.57)

5.91

6.30

(6.40)
6.59

(6.86)
(7.20)

11.23 (10.49)
(?)
12 (11.95)

(8.92)

~12.8 (11.94) ( 10.5)

Energy (MeV) (Approximate)
State spin in N" exper. energy in 0'
and parity (theor. ) (MeV)

0+ 2.31 (2.72) 0

Pure shell
configuration

(IPus)'

(1pi/$2$//$)

(2$//$)'

(1P//$2$//$)
(I Pl /2 M 5/$)

(1p/. /$1A/$)

(2$1/$1ds/$)

(Ids/$)'

(I/gs/. )'

0.167

0.138

0.208

0
0.250

0.1750

0.100

0.0400

0.0750

True con6guration

—0 9501pl/22+0. 1219sl/22
+0.2635'/2'+0. 1139da/2'—o.9945pl/2sl/2
+0 1050pl/2d3/2—0.2056pl/22 —0.936sl/2'—0.2754'/22 —0.076d3/2'

Pl/2Sl/2
pl/2d5/2

core excitation—0.9997pl/2ds/210.0260pl/2d3/2—0.8981sl/2d5/2+0. 1003d3/2d5/2—0.3599d~/2' —0.2219sl/2d3/2—0.0675da/22
-0.2262pl/2'+0. 3278sl/2—0.9063d5/2' —0.1414d3/22—0.3857sl/2d5/2+0. 9163d5/2'
+0.0171sl/2d3/2 0.0920d3/2d5/2
+0.0535d3/2—0.9636dg/22
+0.2674d3/2d5/2

Wg

0.048

0.164

0.382

0
0.250

0.300

0.071

0.0024

0.168

an inert core; the exceptional low-lying level of 0'
that appears to require core excitation is the 2+ state
at approximately 6.9 MeV. In addition, it is expected
that the ground state has some admixture of core ex-
citations, because of its (1pt/s)' configuration. In our
work, core excitation has been neglected because we
anticipate that the cross section to such states, and
thus to the 2+ state at 6.9 MeV, is small. In the 4th
and 5th columns of Table III we list the pure shell
assignments of the various levels of 0'4 and the relevant
weighting factors t/t/ g. In the last two columns we give
the assignment suggested by True" (calculated with
inclusion of particle-particle forces), together with the
spectroscopic weighting factors. In this case t/t/'g in-
volves a sum over j& and j2 before squaring. It should
be noted that considerable configuration mixing is
present. This has the effect of reducing the expected
single-particle transition rate to the ground state by a
factor of almost three, but also enhancing that of the
0+ excited states by roughly the same factor. Of the
three 2+ states in 0'4 below 10 MeU, only the one at

8 MeV has an associated large weighting factor.
In order to obtain absolute magnitudes for the cross

sections to various final states of 0' we also need to
evaluate the overlap integral over the relative coordi-
nate of the two captured protons, represented by 6,
Eq. (43c). This overlap depends on the choice of the
harmonic oscillator frequency. For the "normal" value"
of o/=41/2'/ (=17—18 MeV for C") we note that
cP=3y'. As pointed out earlier, the overlap of the
nl= e0 state of the harmonic oscillator with the internal
He' wave function is then equal to zero unless as= 1;

thus only the j=0 term contributes and 6 is given by
Eq. (43d). Although we have adjusted the frequency o/

to correspond roughly to the single-particle wave func-
tion at the nuclear surface, we shall assume that only
the v= 1 state contributes to the cross section.

The calculated absolute differential cross sections to
the ground state, to the 1,0+ (=6.32 MeV), 3 and
2+ (=8.11 MeV) states are plotted in Fig. 3 for o/=3
MeV and in Fig. 4 for co=5 MeV. The comparison of
the harmonic oscillator wave functions of a 1p state for
different or with that of a single particle bound in a
finite well with an energy of 3.5 MeV is made in Fig. 5.
Examination of this Ggure shows why we used 3 and 5
MeV for the determination of absolute cross sections.
Comparisons of Figs. 3 and 4 shows that although the
angular distributions are quite insensitive to the change
of or, the absolute Inagnitudes of the cross sections and
the ratios of these to various final states are quite sensi-
tive to this change. Note, in particular, the enhance-
ment of the highest angular momentum (3 ) state when
or is reduced. This appears to be a fairly general feature,
which we also noted for other target nuclei.

A comparison of our calculated angular distribution
for the ground state transition with that measured by
J. H. Manley' is shown in Fig. 6. It is only for o/&5
MeV that a reasonable fit to the measured differential
cross section obtains; for or=5 MeV the calculated
cross section at 0' is 1.3 mb/sr, and for o/= 3 MeV it is
2.7 mb/sr. These compare favorably with the 3.4 mb
measured by Manley. ' It should be noted that it is not
only the angular distribution that requires or&5
MeV, but the absolute magnitude of the differential
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TAnLE IV. Energy-level spin assignments and spectroscopic factors for ¹'2.The spin assignments (where known) and energies of
low-lying levels of 0' are given in columns 1 and 2. The corresponding energies of known levels in Ne" are given in column 3. In the
4th column are listed pure-shell model configurations, based on the N" studies of Table I. In column 6 appear the configurations pre-
dicted by Elliott (Ref. 39) on the basis of the U'2 class16cation scheme (principal quantum numbers have been omitted). Correspond1ng
spectroscopic weights are listed in columns 5 and 7.

0+
2+
4+
0+
2+

4+
1
1
2+
3

0
1.98
3.55
3.63
3.92
4.45
5.01
5.17
5.31
5.46
6.19
6.33
7.13
7.63
8.05
8.22
8.29
8.41
8.83
8.97

Energy in
State spin 0'8 '

and parity~ (MeV)

Energy in
Ne18 b

(MeV)

0
1.88
3.36
3.61

Possible
shell-model
assignment

(»1/2)"'
(2$1/21d6/2)
(id512id5/2)
(Idp/2)'

0.208
0.175
0.075
0.100

Elliott' U3 scheme
(LS coupling)

(5/9) 1 2$2+ (4/9)1 2d2

(7/9) '/'ds —(2/9) '/'d'
d2

(4/9)1 2$2 (5/9)1 2d2

(2/9) 1/2$2+ (7/9) 1/2d2

0.374
0.404
0.374
0
0.112

a See Ref. 37. b See Ref 35 o See Ref. 39.

~.8—
I-
C3

M .7
U)
M

ik
a
ia

I-a' 5—
bJ
K
LLl
Lj
LL

bl

I-

hl
CL

~2

' C (He, n) 0 g.s.

eV

j (Q R ), R =4.8F

tion, based on the 2=14 study of True."The effects
of particle-particle residual forces have been studied by
Redlich, " by Klliott, " and by Elliott and Flowers"
mainly in I;5 coupling; 0' is argued to be close to
this limit. According to Elliott and Flowers inter-
mediate coupling study, " the ground-state configura-
tion in L Scoupling is-(see Ref. 40 for notation)

fp= 0 84(d')"S—0.38 (ds)228+0 39(s')"S; (47)

for j-j coupling they obtain

tpp= 0.89(ds/2) +0.24(dp/2) +0.39(sr/2) ~ (48)

In both cases W$ is 0.272. In a further paper, "Klliott
discusses the U3 scheme of classifying the 0' levels.
In that case the configurations (in L Scoupling) and-
their spectroscopic weights are given in columns 6 and
7 of Table IV. It should be noted that intermediate
coupling predicts a predominantly d' configuration for
the ground state of Ne', whereas the U3 scheme slightly
prefers the s' configuration. In Fig. 9 we plot the pre-
dicted absolute differential cross section to the ground
state and to the first excited 2+ and 4+ states for co= 3
MeV. This choice of ~ is determined as for C".Again we
use Eq. (43d) for G. The spectroscopic weights of the last
column of Table IV are employed.

20 40 60 80 90 l20 IO0
CE @TER -OF- MWSS WHOLE (degrees)

FIG. 6. Comparison of experimental and theoretical diGerential
cross sections for the C12(He2, 22)O'4 g.s. reaction. The experi-
mental points (0, A, +, 0, e) are those of J. H. Manley (see
Ref. 3). Theoretical curves are shown for both co=3 MeV and
co=5 MeV, as well as for the plane-wave Born approximation,
@rbjtrarily normaI ized.

3. 1Vi's(He, 22)Z22PP

The target nucleus Nips has a closed 1fr/2 proton
shell. The level structure of the final nucleus has not

'2 M. G. Redlich, Phys. Rev. 95, 448 (1954)."J.P. Elliott, Proc. Roy. Soc. (London) A245, 128, 562 (1958)."J.P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)
A229, 536 (1955).
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1000 TABLE VI. Spectroscopic weights for excitation of even-parity
single-particle states with a Sn target.

500 0"(He n) Ne
~2)=A MeV State

Pure shell
assignment

Pure shell
8'g

200—

4' {~26 MeV)

100—

50—

L.
~ lo—
D ~2'(L88 MeV)

I-

2
C3

p+
p+
0+
p+
2+
2+
2+
2+
2+
2+
2+
2+
4+
4+
4+
4+
4+
4+

2d5/22dg/2
1gv/21gv/2

2d3/22'/2
3$l./23$j. /2

2d5/22d5/2

1gv/21gv/2
1gz/22d5/2

1gv/22d3/2
2d5/22d3/2
2d5/23$1 /2

2d3/22d3/2
2d3/23$I /2

2d5/22d5/2

1gv/21g7/2
1gz/22d5/q

1g7/22d3/2
1gz/23$i/2
2d5/22d3/2

0.096
0.006
0.064
0.099
0.030
0.002
0.002
0.020
0.015
0.093
0.018
0.062
0.027
0.002
0.011
0.014
0.033
0.109

55

ment of the spectroscopic factor for this transition.
Figure 11 shows the differential cross section to the
ground state of Te'" for 20-MeV He' ions; the un-
normalized Born approximation cross section also ap-

0
J

20 40 60 80 100 120
CENTER -OF—MASS ANGLE (degrees)

140
IOO

FIG. 9. Calculated diiferential cross sections for the 0"(He2, e)-
Ne' transition at 20 MeV for various anal states. Spectroscopic
weights are given in the last column of Table IV.

80-

Ni (He, n) Zn g.s.
cu=5 MeV

S'g for the ground-state transition is 0.22; comparison
with Table V brings out the enhancement due to the
con6guration mixing. In Fig. 10 we plot the diGerential
cross section for 20-MeV He' ions to the ground state,
based on the above spectroscopic factor, and compare it
to the Born approximation. For simplicity, we have
again dropped all but the j=0 term in the sum of Eq.
(43c). Our criterion for 10 yields, with a binding energy
of 6.9 MeV, a value between 3 and 4 MeV. We have
used or=3 MeV in computing the cross section.

50$22120(+es I)527'e122

Tin has a closed proton 1gv/~ state, but several iso-
topes are known to be stable. The pure shell spectro-
scopic factors for even parity final states of J&4 are
listed in Table VI. We shall not use these for the
ground-state transition, but rather consider the Kiss-
linger-Sorenson" pairing model, neglecting neutron
excitations. For two nucleons in the 2d5~~, 1g7/2, 3s~/2,

2d~/2, 1k~~/2 shells, their tables suggest ~=0.80 MeV,
) = —0.80 MeV. With these values and use of Eq.
(49), we find 0.129 for the spectroscopic factor Wg to
the 0+ ground state (of any even isotope of Te). Com-
parison with Table Vl again brings out the enhance-

60—
O

c3
Ld
V)

V)
O
IX

40-
I—'

20— j (QR), R =6PF
/

00
1

20 40 60 80 100 120 140
CENTER-OF- MASS ANGLE (degrees)

Fio. 10. Calculated diiferential cross section for the Ni" (Hes, e)-
Zn" g.s. reaction at 20 MeV. The dashed curve is the plane-wave
Qorn approxjmatjon aggu)ar distribution, arbi&rariIy gorxgatized.
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50 '-

eo-
E

0
CL
C3

K
bJ
LL
LL

Q
10-

Sn" (He', n) Te'" g.s.

cu=2 MeV

+ (Q Rp), R=8.25 F

target nuclei discussed in Sec. IIIB show a strong
forward peaking.

In order to relate our distorted-wave calculation with
threshold detector experiments, we assume that all
states corresponding to both particles being captured
into the next major oscillator shell can be reached. To
minimize the computational time, we have taken all
of these energies to be identical; that is, we assume that
all final states that can be reached are degenerate. In
order to test the sensitivity of the results to the energy
used, the cross sections for an average excitation energy
of 3 MeV and of 7—10 MeV were compared.

The spectroscopic weights to the available Anal

states are computed by summing over all single-particle
states that can lead to the given states; that is 8'q
=P;„,I BTVI1', where the sum is over all the accessible
single-particle states that lead to the spin J. Thus, the
sum is over the single-particle states listed in Tables
III—VI for C, 0, Ni, and Sn targets, respectively. ~ The
results of this summation are given in Table VII.

60

( 12(H 3 )(p

20 40 60 80 100 120 140
CENTER -OF- MASS ANGLE (degrees)

Fro. 11. Calculated differential cross section for Sn"'(He', n)-
Te'" g.s. transition at 20 MeV for both co=2 and 3 MeV. The
dashed curve is the plane-wave Born approximation angular dis-
tribution, arbitrarily normalized.

pears. Cross sections are presented for both +=3 MeV
and co=2 MeV; these values are justified as before. The
0' cross section is enhanced, and the width of the major
peak in the angular distribution is reduced by decreas-
ing co from 3 to 2 MeV.

C. Comparison to Threshold
Detector Exyeriments

%hen a threshold detector is used to detect the final
neutrons, the measured cross section is that to the
ground state and all excited states up to a maximum
excitation energy. It is thus the sum of the cross sec-
tions to the low-lying final states discussed in Sec.
III B. One possible advantage of such measurements is
that the differential cross section should be less de-
pendent on the nuclear angular momenta and more so
on other features involved, such as the distortion of the
incident He' and outgoing neutron wave. A semi-
classical model, based on these considerations, is de-
veloped in Sec. IV. As remarked earlier, in Born ap-
proximation, a sum of the type gr, jr,'(QR) gives a
relatively Rat angular distribution. By comparison,
angular distributions measured by Manley4' for all the

"j.H. Manley (private communication); and Ref. 3.

400
(3

V)

o50
O

Z',
Ld .
fL 20
hl
U
LI

Cl

10

oo
I I I I I I

20 40 60 80 IO0 120 140
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44 A different and considerably more complicated treatment has
been suggested by S. Yoshida, Nucl. Phys. (to be published), but
we chal], no& gee it herc,

FIG. 12.Summed differential cross sections for the C"(He', N)0'
reaction. The solid curve is that computed by summing the dif-
ferential cross sections shown in Fig. 3. The curve labeled "de-
generate" is the calculated sum of the diQ'erential cross sections,
for 20-MeV incident He' ions, to 0+, 2+, 4+ states assumed to all
lie at 6 MeV excitation. The dashed curve is that obtained by
Manley with a Si threshold detector.
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TA&LE VIII. Half-widths of angular distributions for poor-resolution-type experiments, based on a distoi'ted-wave calculation.

Target C12 016 Ni
Sn

co=3 MeV co=2 MeV

Half-width (low-excitation energy)
Half-width (high-excitation energy)
Half-width (summed cross sections)

34'

34'

34'
36'

33
30'

45'
58'

34'
39'

optical potentials (especially the absorptive parts
thereof) for the incoming He' and emerging neutron
tend to peak all cross sections at 0', particularly those
to 0+ states. (b) As the atomic weight of the target
increases, the larger radii tend to shrink the width of
the forward peak, but the Coulomb potential partially
offsets this decrease. Furthermore, for the fixed co that
our prescription dictates, the relative cross section for
the excitation of higher spin states increases with target
weight. Because the angular distribution of these higher
Jq states (2+ and 4+) becomes wider as A increases, the
summed cross section also is broadened. In fact, it is
the cross section to these higher states which causes the
structure near forward angles in Figs. 14 and 15. We
shall see in the next section how these features are
reproduced by a simple model. 4'

The tendency to excite higher angular momentum
states in two-particle stripping reactions has also been
noted in (n,d) stripping at higher energies (47 MeV).
For p-shell target nuclei, Harvey et a/. 4' found that the
highest possible spin state L(ds~s)s coupling to Jr ——5$
is the most strongly populated one. For the (He', I)
reaction the correspondingly strongly excited final state
would be the Jy=4 state. For a C" target, the first 4+
state lies close to the limit of the silicon counters used
by Manley. ' Furthermore, the spectroscopic weighting
factors to this state are small (see Tables III and VII)
so that no strong excitation of it is predicted. However,
Fig. 3 shows that the cross section of the 3—state indeed
dominates over all others. For 0' the 4+ lies lower and
the cross section to this state is about 2-,'times that to
the 2+ and 0 states, even though its spectroscopic
weight is not large if ds~s states are omitted (see Table
VII).

IV. A SIMPLE DIFFRACTION MODEL

When strong nuclear absorption is present, many of
the features exhibited by the distorted-wave calcula-
tions of stripping reactions can be understood in terms
of a simple diffraction model. The reason for considering
an idealized model is twofold. First, it should help us
gain clear physical, or intuitive, insights into the pro-
nounced aspects of the situation of interest, such as the
angular distribution. Secondly, it may yield simple

45 See also the comment made by G. R. Satchler, quoted by
A. G. Blair and H. E. Wegner, Phys. Rev. 127, 1233 (1962).

4'B. G. Harvey, J. Cerny, R. H. Pehl, and E. Rivet, Nucl.
Phys. 39, 160 (1962).

analytical results which can be readily compared with
experiments.

We first point out that in our distorted-wave calcula-
tions, the imaginary parts of the optical potentials (see
Table II), especially that for the incoming but also
that for the emerging particle, are large. Physically,
this means that the projectile on entering the nucleus
(after passing through or over the Coulomb barrier) is
not likely to re-emerge in the same channel. Such a
situation is easily visualized for compound projectiles,
e.g., d, He', or H'. Because of the strong nuclear ab-
sorption, it seems likely that the most important con-
tributions to the stripping matrix elements arise from
limited regions close to and particularly outside the
nuclear surface. "This is especially valid if the captured
particle(s) is(are) loosely bound. Thus, it can be argued
that for such cases, only a limited band of angular
momenta will contribute to the reaction matrix ele-
ment. "Indeed, Goldfarb and Hooper" found that the
main contribution to the overlap integral for deuteron
stripping comes from a small band of angular momenta
centered about a critical value L,. The latter is related
to an "interaction radius, "R, by R,= (L,+1)K, where
A. is the reduced wavelength of the projectile. They
attempt to understand the validity of the plane-wave
Born approximation from this point of view. Similar
conclusions have been drawn by Blair" for elastic and
inelastic scatterings from deformed nuclei. We believe
that these findings are not peculiar to the processes con-
sidered; they are rather expected to be characteristic
of direct nuclear reactions initiated by compound par-
ticles in the intermediate energy region (10-50 MeV)
if the emerging particle is also strongly absorbed.

There is another feature common to medium-energy
nuclear reactions, namely, that a wave picture applies
rather than a particle one. It is this property which
allows one to draw on analogies to physical optics, and
which leads one to expect interference and diffraction
phenomena. The role of nuclear structure is to provide
selection rules (e.g. , angular momentum, parity) which
are of particular interest for spectroscopic studies.
These rules determine the shape and oscillations of the
angular distribution superimposed on the gross diffrac-

4~N. Austern, in Proceedhngs of the Rutherford Jubilee Inter-
national Conference, 3IIanchester, 1961 (Academic Press Inc. , New
York, 1961), p. 462.

48L. J. B. Goldfarb and M. B. Hooper, Phys. Letters 4, 148
(1963).

4e I. S. Blair, Phys. Rev. 115, 928 (1962).
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Assumption (a) refers to an "intrinsic radiation pat-
tern" of neutrons. We have given it this name because
it corresponds to an assumption in the classical radiator
model of Eq. (52). In this classical model a nonspherical
radiation pattern would arise from the conservation of
linear momentum and the internal structure of the He'
nucleus. Its effect (if the radiation pattern is p inde-
pendent) is to simply multiply the angular distribution,
Eq. (52), by a "form-factor envelope. " The radiation
pattern is then limited by the momenta available to the
neutron and the modulation would be expected to be
given by the Serber stripping angular distribution, i.e.,
by the form factors discussed in Sec. IIA. As argued in
that sectio~ and in Sec. IIC this form factor is almost
constant, and therefore essentially irrelevant, in the
region of scattering angles where the present model is
applicable. How does such an "intrinsic radiation pat-
tern" arise in the quantum-mechanical formulation that
leads to Eq. (51)?It would appear if we used Eq. (36)
for the distorted waves in the matrix 5K~ of Eq. (34).
However, it is no easier to justify the use of this equa-
tion here than in the optical-model description. Since

the form-factor effect is small in any case, we shall not
consider it further.

The relaxation of assumptions (b), (c), and (d)
which we carry out in the shadow model described
below, leads to a fuzzy, rather than to a sharp, ring.
This has also been examined in the classical picture
where the primary effect is to (slightly) fill in the
minima of the angular distributions.

Since He' is a charged nucleus, its Coulomb inter-
action with the target may indirectly change the angular
distribution of the neutrons. This has been neglected in
the above model /assumption (e)j. Classically, the
Coulomb trajectory of the He' preferentially tends to
send off neutrons at angles other than O'."Since only a
few angular momenta close to L, are of importance, the
classical picture may not be far amiss. If the intrinsic
radiation pattern of the outgoing neutrons were sharp
(i.e., of half-width &20'), then the deflection of the
incident He' by the Coulomb 6eld of the target might
indeed shift or change the angular distribution of neu-
trons at small angles. The effect is expected to be of
order V, (R,)/E=Zse'/R„where R is the energy of the
incident projectile, of charge s, and V, is the Coulomb
energy at the critical radius E, However, we have
already seen that the intrinsic radiation pattern is
broad and that its effects are negligible for the energies
and scattering angles we consider. We thus expect
Coulomb effects to be small.

A similar argument can be made in a wave picture.
The Coulomb potential causes a distortion of the wave
and a reduction of the incident wave number. These
both influence the neutron emission, but if V,(R,)/E«1
(or if no intrinsic radiation pattern limitation is im-
posed) then the changes in the angular distribution are
expected to be small. Ke are presently investigating
Coulomb effects in more detail.

B. Cylindrical Shadow Model

The ring model is still rather crude, even though it
qualitatively describes, for example, the (He', m) process.
We now extend the model by removing some of the
drastic assumptions in (A) and using a slightly more
complicated, but also more realistic, description of the
stripping reaction.

Again, we assume that for distances smaller than
some critical radius R, (not necessarily the same as for
the ring model) of the target nucleus, the He' and
neutron waves are completely absorbed. For 0' neutron
emission an in6nitely long cylindrical region of radius
R, is then cut out of the integration needed to And D~
(see Fig. 18). We still make this approximation for
nonforward angles, but relax assumptions (b), (c), and
(d) of the ring model; that is we no longer assume that
the contribution to the matrix element comes from the
nuclear surface. The integral to be evaluated is given by

"D.R. Inglis, Nucl. Phys. 44, 460 (1963).
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present model is inapplicable in this region. A generali-
zation of it to such angles is presently being investigated.

In Figs. 19(a) and 19(b) relative differential cross sec-
tions to various final states are presented for n'= 1 F '
and n'=3 F ', respectively. The other parameters are
chosen to be typical for medium-energy reactions on a
targetnucleus thatisnot, too heavy: 8'z= 1, E= 1.5 F ',
k=1 F ' for all final states, and 8=5 F. For these
parameters the angular variation is almost identical
with that of the ring model if n'=6F '. With the
method of normalization described in Eq. (53), the 0'
cross section for the Jr=0 state is 3.8 mb/sr with
cr'=1 F ' and 0.3 mb/sr with n'=3 F ' These cross
sections are of the right order of magnitude. As n'

decreases from 6 F ' to 1 F—', the relative cross section
to the 4+ state appears to increase. However, with the
above parameters, the excitation of the 4+ state domi-
nates for all n' larger than 1 F '. Comparison of Figs.
19(a) and 19(b) with Fig. 9 shows that our model is
able to qualitatively reproduce the distorted-wave
results. In particular, the sharp forward maximum of
the J;=0 to J~=0 transition and the less strong forward
peaking of the J;=0 to Jy=2 transition is obtained.
For the excitation of 4+ states, the forward peaking is
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FIG. 21. Sums of differential cross sections shown in Fig. 19;
equal spectroscopic weights are assumed for all states. The solid
curve is for J=O only, the dot-dash curve for the J=O+J=2
states, and the short dash curve for J=0+J=2+J=4 states.

J=0

~+0.6—
UJ

IJJ

—0.4 —'

0.2—

0

I l J
/

\
l

l

l

20 40 60 80 90 20 40 60 80 90
0

CENTER-OF- MASS ANGLE (degrees)

Fro. 20. Variation of diiferentiai cross sections with )Z—k (

predicted by the shadow model. For notation, see Fig. 19.

diminished by decreasing a'. The shadow model pre-
dicts deeper minima than the distorted-wave model;
this undoubtedly arises from the use of our sharp cutoff.

The dependence of the differential cross section on
tE—k~ can be deduced by comparing Figs. 19(a),
20(a), and 20(b). As this difference increases, the cross
section to higher spin states is enhanced. A qualitative
argument for this behavior is as follows. " Since the
angular distribution tends to be peaked forward, the
dominant angular momentum transfer is just

~
E—0

~
8„.

for then the incoming and outgoing wave oscillations
tend to be in phase and thus have maximum overlap.
A further feature to be noted is that for a fixed k, the
diffraction minima tend to disappear as E increases.

In Figs. 21(a) and 21(b) appear the differential cross
section predicted by Eq. (55) for the sum of various
final states assumed to have (approximately) the same
energy. The spectroscopic weight 8 J is taken to be 1
for all of the relevant final states, and the sums of
cross sections to the 0+ and 2+ as well as to the 0+, 2+,
and 4+ states are compared to the 0+ states alone. Com-
parison with Figs. 12—15 again shows that the dominant



B1470 E. M. HENLEV AN D D. U. L. YU

features of the distorted-wave theory and of experi-
ment4' are reproduced by our simple model. Ke believe
(furthermore) that if one does not take all fina states
to be degenerate in summing cross sections, then the
secondary maxima of Fig. 2i would tend to wash out.

Although we have not carried out a detailed investi-
gation of the predictions of the cylindrical shadow
model for the dependence of the differential cross sec-
tion on the atomic weight of the target, we believe that
the essential features of the distorted-wave theory will

reappear here. That is, the angular distribution is ex-
pected to be relatively insensitive to A. The reasons
are as follows. As the nuclear radius increases, so does
the difference ~E'—k~R, . The former sharpens the
angular distribution for a given 6nal state; this is also
observed in the distorted-wave calculations (compare
Figs. 9, 10, 11). In contrast, the increase of ~E—k

~
E,

tends to increase the magnitudes of the less forward
peak. ed cross sections for the excitations of higher spin
states. Although there is a broadening effect due to
Coulomb distortions, we expect this to be small; this
is also in agreement with our optical model calculations
for which turning off the Coulomb interaction only
causes a slight narrowing of the forward peak. Thus,
when differential cross sections are summed over many
final states, we anticipate its half-width at forward
angles to be almost independent of A. This qualitative
argument is not in disagreement with the results ob-
served by Manley. 4'

V. CONCLUSIONS

We have used three approaches to discuss double
stripping, with particular application to the (He', I)
reaction.

The first of these is a plane-wave Born treatment. It
predicts that the rapid angular variation of the dif-
ferential cross section (characterized by the square of
spherical Bessel functions) is modulated by a slowly

varying form factor which decreases the back.-angle
yields. We have shown that, contrary to previous treat-
ments, this form factor depends not only on the He'
structure (e.g. , radius), but also on the range and form
of the stripping interaction. At medium energies,
furthermore, the form factor is unimportant for for-
ward angles (8&60'). This approximation, with reason-
able nuclear radii, is unable to explain the observed
rapid variation of the differential cross sections at
forward angles. Thus, two-nucleon stripping differs from

deuteron stripping, in that the plane-wave Born ap-
proximation appears not to be useful for nuclear
spectroscopic studies.

The second approach consists of a distorted-wave
Born treatment. The reaction matrix element is derived
without any zero-range approximations, by making use
of in6nite harmonic oscillator wave functions for the
captured nucleons. However, in the actual numerical
evaluation of this matrix, some range effects are neg-
lected. Agreement with available experimental data is
found to be excellent, without adjusting the optical-
model parameters, but 6xing the harmonic oscillator
energy spacing so as to reproduce as closely as possible
single-particle wave functions in a finite well outside
the nucleus. For the energy chosen, it is shown that
excitation of higher spin states (J~=3 or 4) is favored.
When cross sections are summed over states obtained
by filling the lowest available major shells, the angular
distribution turns out to be strongly peaked at forward
angles and has a half-width that is insensitive to the
atomic weight A of the target. These characteristics
can be understood qualitatively as follows: The nuclear
distortion and absorption of the incident and outgoing
waves cause the forward peaking; for a given final spin,
the angular distribution becomes narrower with in-
creasing A; however, differential cross sections for the
excitation of higher spin states of the 6nal nucleus are
less peaked forwards than those of lower spin states,
and these higher spin states increase in importance as
A increases. Thus, the angular distribution for the sum
of low-lying 6nal states remains almost independent
of A.

Finally, we have proposed a simple diffraction model
which gives insight into the above features. This model
presupposes strong absorption of the incident and out-
going particles by the respective nuclei. It is indeed
able to reproduce the salient points of the distorted-
wave theory and of experiment.
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