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Two-Nucleon Interaction in a Common Harmonic Oscillator Potential

B. P. NIGAM

Departrrtertt of Physics, State Urtioersity of ¹toFork at Bgffato, Bgffalo, Pew Fork

(Received 29 July 1963; revised manuscript received 27 September 1963)

The problem of two nucleons moving in a common harmonic oscillator potential modified by the eRective
two-nucleon potential is considered. The two-nucleon potential includes hard core, central, spin-orbit, and
tensor parts. It is found that the appropriate Green's function is factorable and hence the solution of the
relevant Schrodinger equation can be expressed as an expansion in terms of the harmonic oscillator wave
functions whose radial arguments are shifted by an amount equal to the radius of the repulsive core. Numeri-
cal estimates have been made for 0'~. It turns out that for moderate strength of the eRective two-nucleon
potential the expansion coefhcients become vanishingly small after the 6rst few terms so that the procedure
seems to be rapidly convergent.

1. INTRODUCTION

'HE theory of nuclear many-body problem has been
developed by Brueckner et al. ' and Bethe. ' First,

in a series of papers, the properties of nuclear matter
were investigated. Brueckner, Gammel and |A'eitzner'

have considered the case of 6nite nuclei in the approxi-
mation that the reaction matrix for the Gnite nucleus is
approximated by the reaction matrix corresponding to a
local density. A brief review of the methods as applied
to nuclear matter, finite nuclei, and results of numerical
study of the properties of Gnite nuclei has been done by
Brueckner, Lockett, and Rotenberg. 4 In all these calcu-
lations, the starting point is the free two-nucleon
Gammel-Thaler' potential from which the reaction
matrix has been derived. This reaction matrix is then
treated as an effective two-body potential or the residual
two-body interaction. Strictly speaking, the reaction
matrix must. be derived by a self-consistent procedure.
However, since doing this involves computational di%-
culties of enormous magnitudes, it has been argued by
Brueckner et al.' that because of the large energy de-
nominators occurring in the expression for the reaction
matrix, if the nuclear density is slowly varying over
distances of the order of 0.5X10 " cm, the energy de-
nominators in the reaction matrix in the finite nucleus
can be replaced by those corresponding to a uniform
medium at the local density. For nuclear matter,
Brueckner and Gammel' have investigated the effect
of the two-body potential on the wave function describ-
ing the two particle interactions. They find that for dis-
tances )10 "cm, the wave functionfor the two particle
motion approaches its unperturbed values implying
that for distances of the order of 10 "cm the reaction
matrix approaches the two-body potential itself.

An alternative approach for calculating the properties
of finite nuclei suggests the assumption that each of the

nucleons in the nucleus is moving under the inQuence of
a common harmonic oscillator potential and an effec-
tive two-body interaction acting bet, ween the nucleons.
In the case of harmonic oscillator potential it has been
shown by Talmi' that the wave function of the two
nucleons in the nucleus is separable in their relative and
center-of-mass coordinates. If the effective two-body
interaction depends only on the relative coordinates,
the calculations are now considerably simplified. Calcu-
lational models similar to this have been used by several
authors. Terasawa, and Arima and Terasawa' have
estimated the spin-orbit splitting of He', N", and 0"
assuming the average 6eld to be a harmonic oscillator
well and the two-body interaction to be the meson
theoretic potentiaP and the phenomenological tensor
potential of the Serber type. " Dawson, Talrni, and
Walecka" have recently calculated the two-neutron
binding energy and excitation spectrum of 0", using
the free nucleon-nucleon potential of Gammel and
Thaler as the two-body interaction with harmonic
oscillator wave functions as the unperturbed solutions
and have obtained satisfactory agreement with the
experimental results. It is to be expected that the free
nucleon-nucleon interaction would be modified due to
the presence of other nucleons in the nucleus, however
these authors justify the use of the free nucleon-nucleon
interaction on the basis of the good results obtained by
Brueckner et al. and others, for the many-body problem
starting with the free two-nucleon interaction.

The derivation of the effective interaction in finite
nuclei has not yet been accomplished except that one
may accept the reaction matrix derived from the free
two-nucleon interaction under suitable assumptions' '
as the effective (or residual) in.teraction. In many cases
the effective interaction in nuclei has been determined
from the experimental energies. In a review article

' K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958) and list of references quoted therein.

s H. A. Bethe, Phys. Rev. 103, 1353 (1956);H. A. Bethe, B. H.
Brandwo, and A. G. Petschek, Phys. Rev. 129, 225 (1963).' K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys. Rev.
110, 431 (1958).

4 K. A. Brueckner, A. M. Lockett, and M. Rotenberg, Phys.
Rev. 121, 255 (1961).' J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 1337 (1957).

8

' I. Talmi, Helv. Phys. Acta 25, 185 (1952).' T. Terasawa, Progr. Theoret. Phys. (Kyoto) 23, 87 (1960).
e A. Arima and T. Terasawa, Progr. Theoret. Phys. (Kyoto) 23,

115 (1960).
9 M. Taketani, S. Nakamura and M. Sasaki, Progr. Theoret.

Phys. (Kyoto), Suppl. 3, 169 (1956).
~e Kalos, Biedenharn and J.M. Blatt, Nucl. Phys. 1, 233 (1956)."J.F. Dawson, I.Talmi, J.D. Walecka, Ann. Phys. (N. V.) 18,

339 (1962).
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Talmi" has presented the information obtained from
nuclei about the effective interaction.

In the nuclear model discussed above, it is necessary
to solve the two-nucleon problem, each nucleon moving
in a common harmonic oscillator potential modified by
the effective two-nucleon potential which has also a hard
core. Bethe and Goldstone" have treated the problem
when only a repulsive core potential acts and the nucleus
is infinite. Mosbinsky and Bauer, " and Moshinsky"
have calculated the interaction energy for the case of a
common harmonic oscillator potential plus a central
Yukawa potential with a hard core in a perturbation
expansion, taking the core radius as the expansion
parameter. Dawson, Talmi, and Walecka, " using the
Gammel-Thaler free two-nucleon interaction for the
effective two-body interaction solve the S-wave Schro-
dinger equation numerically. In this paper we have
treated the problem without specifying the effective
two-body nuclear interaction, but assuming that it has
the general form which consists of hard core, central,
spin-orbit, and tensor parts. It is shown that the solution
of the relevant Schrodinger equation can easily be ob-
tained by exploiting the fact that the appropriate
Green's function is factorable. It is hoped that this
method of solution may be useful in the calculations of
nuclear problems based on this model.

the Hamiltonian is transformed to

B' 12—
1

(P2+~2~2R2)+ (P2+~2~sr2)2' 2p
where

M=2m p, = gm)

and the Schrodinger equation for the system (A= 1)

(
&@(r)= I

—~'+kr' ~4(r) =&~(r),
2p )

where k=-,'poP= ~men'. The solutions are given by

R.i(r)
4.("(r)= I'("(r), (6)

is separable in the center of mass and relative coordi-
nates. From now on we shall conhne ourselves only to
the relative motion, since the perturbing two-body
potential will be assumed to be a function of only the
relative coordinate r. The Schrodinger equation for
relative motion is then

2. TWO NUCLEONS IN A COMMON HARMONIC
OSCILLATOR POTENTIAL

The problem of two nucleons each moving in a
common harmonic oscillator has been discussed in detail
by Talmi' and applied to the nucleons in the nucleus.
The main advantage of using the harmonic oscillator
potential is that the product wave function of the two
nucleons (t (, (rt)(p~, (rs), where rt and rs are the coordi-
nates of the two nucleons and l~ and l2 the corresponding
angular momentum, can be expressed as linear combina-
tions of the product wave function P((r)gr, (R) where
r and E are the relative and the center-of-mass coordi-
nates and l and 1.are the relative and the center-of-mass
angular momenta. The Hamiltonian for the two-nucleon
system in the common harmonic oscillator potential of
frequency co is given by

and X„& determined by the normalization condition

R„(s(r)dr = 1, (6c)

where F( (r) are the usual spherical harmonics,
(r) = (9,(t). The radial wave function R„&(r) is given by

R„((r)=E„(exp(——',rr')r'+'s„~(r), (6a)

where v=(op/h and v„((r) is the associated Laguerre
polynomial:

c-((r) =L-++ +'*(rr')

its) (2t+1)!!= 2 (—1)"2'I
~

(vr')" (6b)
kk) (21+2k+1)!!

1
12

p 2+ p 2+ 1~2r 2+ 1yg(osr s

2m 2m

are
2' "+'(2l+2rs+1)!!p'+I

vr'~'n! P (2l+ 1)!!j' (6d)

Introducing now the canonical coordinate transforma-
tion The energy eigenvalue corresponding to the eigen-

function g„( (r) is Es"'=A(o(2e+l+ss). Also
1'= f2—I'y

~ p=l(p —p )

s (r2+rl), P= ps+pl
(2) R„,(r)R„,(r)dr= &„„,,

"s L Tal(ni, Rev. Mod. Phys. 34, 704 (1962).
"H. A. Bethe and J. Goldstone, Proc. Roy Soc. (London) A258,

551 (1957)."M. Bauer and M. Moshinsky, Nucl. Phys. 4, 615 (195/).
"M. Moshinsky, Rev. Mex. Fis. 6, 185 (1957).

i.e.,

R„)(r)R„.p (r)dr =0,

only if l= t,
' and m/e'.

(6e)
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3. COMMON HARMONIC OSCILLATOR POTENTIAL
WITH THE EFFECTIVE TWO

NUCLEON INTERACTION

We erst consider the case when the effective two-
nucleon potential v(r) does not involve a repulsive core.
To be general, we assume that the potential includes
central, spin-orbit, and tensor parts and is given by

R„i(r)—E ai ct/ M(r) (12)

where E„«Jsare the perturbed energy eigenvalues, and

R„i(r) 1 1 8'
Hs JJisJ (i)=- —— +Vi(r) R i(r) tJisJ (P)

r 5Z Bf

v(r)=v, (r)+g S)vis(r)+Sisvs (r), (7) where

where

S Si+Ss Sis =3L(ei r) (es r)/r' j—(ei es) . (8)

The unperturbed wave function (including spin) for
an orbital angular momentum state I is given by

l(l+1)
Vi(r) = +lcr', k = -',mme',

and Es"' Ace(——2rc+/+as) . (13)

y.i"'(r)Xs"' Multiplying Eq. (11) by 'JJv sz~*(i') on the left and
R.i(r) intergrating over the solid angle dr", we obtain (after

(/Smims
~
&~) 't/isz (r), (9) interchanging l' and l")

J,M mg+nsg

where (/Smims
~
JM) is the Clebsch-Gordan coefficient"

and 'JJis~~(r) is an eigenstate corresponding to orbital
angular momentum l and total angular momentum J.
The perturbed wave function cannot be written so
simply because of the tensor interaction which is
diagonal in / only for J=l, but for l= J&1 states has
both diagonal and nondiagonal elements so that the
l= J&1 state is coupled to the /'= J&1and the 1'=J&1
states. Following Brueckner and Gammel' we write the
perturbed wave function as follows:

1 d
E-iv"——— +Vi (r)

~
N.iv" (r)

m c/r' j
=P vvv~ (r)N~rv~ (r) (14)

vi. i (r) = dr'"tJi sq (r)v(r)'tJi ss (r) . (15)

In order to solve this equation we need the Green's
function G„ives(r, r') satisfying the equation

i/r„i~'(r)xs s P(/Smim—s
~
JM) (E- "-H.)G. "(,")=~( -") (16)

where for I=/, l'=l and for J=/&1, l' takes the two
values l'=l and l~2. Since both J and its s component
3f are constants of motion, the Schrodinger equation
for the perturbed system is

sc„ii ~s(r)
LH+ ()jZ X - (')

R„,v(r)R„, t (r')
g-« "(r,r') =2 JSnl ~n l l', nl lr

(18)

Multiplying through on the left by Fv"'*(r) and inte-
grating over the solid angle dr, we obtain

jr 1 d'
E.iv"

I
——+Vi (r) ( g.iv"(r, r')

m dr' )
= /i(r r'), (17)—

where

g, . JS Q, JS g nlllN„ives(r)
=Z E-iv" 'tJvsz (r) ) (11)

l r Hence from Eqs. (14) and (17) it follows that

N„ii ~s(r) =p dr'g„ii (r,r')vi i ~s(r')I„« ~s(r') (20)

R., i (r)
«'R-rv(r')vi v "(r')ss-« "(r')

nl g, ,JS l
(20a)

is the solution for the perturbed radial wave function. To this, in general, we should add a solution of the equation
(E„,v —He)X„ives(r) =0. However since He has eigenvalues Ee"' and eigenfunctions P„s corresponding to the
harmonic oscillator, and since E„iv~sWEp', the equation (E ives —H)X„ i~v(sr) =0 has no solution. Hence it is
not necessary to add a particular solution to the solution Eq. (20a).

'e J. M. Blatt and V. F. Weisskopf, Theore)ica/ 1VNclear Physics (John Wiley @ Sons, Inc.„pe York, 1952),
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The equation satisfied by R„,p(r) is

(21)

Multiplying Eqs. (14) and (21) on the left by R„,i. (r) and I„« ~s(r), respectively, substracting and integrating
over r, we obtain

E.«" Eo""—'= 8.« ., i "=g ipp ", +2~(ri N—i)

drR„„(r)vp p "(r)N„„„~&(r) (22)

where we have used the boundary condition e(0) =0, in order that the wave function f(r) be finite at the origin.
The result [Fq. (22)), is in agreement with Eq. (20a) as can be seen by multiplying Eq. (20a) by R„,i (r) and
integrating over r.

Equations (20) and (20a) represent an integral equation for the perturbed wave function u„ip~s(r); a single
integral equation for the states 1=l, S=0 or 1, and coupled integral equations in N„J+& z~&~s(r) and u„&+i z+&~s(r)
for l= J&1.However the kernel is factorable in functions of r and r', because the Green's function g„i~ (r,r') is
factorable. The main difhculty in obtaining the solution arises from the summation over n& extending from n&=0
to infinity. This procedure of solving for I„« ~s(r) will be useful provided the first few terms are suKcient in deter-
mining the solution. We will solve an actual case in the next section when we will include a hard core in the two-
nucleon interaction.

4. TREATMENT OF THE PROBLEM WITH A HARD CORE AND AN ATTRACTIVE
TWO-NUCLEON POTENTIAL

for 0&~r(r„
(23)= v, (r)+(1 S)vis(r)+Si2vr(r) for r, &r~& ~ .

Bauer and Moshinsky" and Moshinsky" have worked out the interaction energy for an attractive central
Yukawa potential with a hard core in terms of an expansion in powers of the core radius. We shall apply their
procedure in order to obtain the perturbed wave functions and the perturbation in the energy (energy shift) using
the technique of Green's function.

Let the two-nucleon potential be given by

v(r)= +~

The radial functions I„ip~s(r) should satisfy the boundary condition

N„ip~s(r, )=0.
Now the Schrodinger equation (11) is defined only for r&~ r,. We therefore make use of the transformation

r ~ r+r, .
Then Eq. (14) transforms as follows:

(24)

(25)

1 d'
E„« ~8

~

—— +Vi (r)
~
I « ~8(r+r.)=[Vi (r,r,)N„« ~s(r+r, )+g vi i ~s(r+r. )N, ip ~s(r+r,)] (26)

which is now valid for 0~&r ~&~, and where

(27)

The energy shifts are now given by

,JS g ngl' g, ,JS

drR„, p(r)[Vp(rr, )8i i.+vi i (r+r,)]cc„ip (r+r, )
)I I

drR„, i (r)u„«.~s(r+r, )

(28)
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Using Eq. (19), the solul, ion is now given by

I„«~8(r+r, ) =Q dr'g„« ~e(r r')[V p(r', r,)bv t +vp~ ~s(r'+r, )7N„« ~8(r'+r, )

R , (r)

n1=0 nil', nI l' l 0

dr'R„, v(r')[V~ (r', r, )br & +vi v (r'+r, )7«„&p. (r'+r, ). (29)

This solution obviously satisfies the boundary condition, viz. [N„gp (r+r, )7, e ——0, so that the radial wave function
f„«.~s(r+r, ) (r+r,) 'u„&& ~s(r+r, ) [refer to Eq. (25)7 vanishes at the hard core radius.

In order to solve the integral equation (29) we note that the kernel is factorable in functions of r and r'. This
suggests writing

where
ng~0

(30)

E„~v,»~ ~8= P drR»t (r)[Vv(r, r,)bt v +et &
~8(r+r, ))e„« ~e(r+r, ).

0

(31)

From Eqs. (30) and (31) it follows that

&~iv, ~» = 2 2 &~ii",»i ~ drR»~ (r)[V~ (r,r,)bvp +v~ v (r+r, )7R»v (r).
gn«i nIlr n2=0 l" (32)

Since nt is to be taken from 0 to infinity, Eq. (32)
represents an infinite set of simultaneous homogeneous
algebraic equations in E «, ,l . The consistency of
these equations imposes the condition of the vanishing
of the determinant formed from the coefficients of
E «,„,l ~~. This condition determines the eigenvalues
of the energy shift g„«,~& ~B=E«&.~s Re"v. The-
corresponding eigenvectors when substituted in Kq. (30)
determine the perturbed radial function I,„« ~s(r+r, ).

We now take a specific example. We consider two
nucleons in 0" in the relative angular momentum state
I=O with J=/. According to Noya, Arima and Horie, '
for Kqs. (5) and (21)

A v

Aced = =40A '~' MeV= 15.556 MeV,
p

Eqs. (32), (27), (6d), and (6e),

a+1» +» + 2 a»» R»
n2/ng

(33)

a„,„,"=—2kr, rR„,(r)R„,(r)dr+a»»",

X„,S„,
[4(et—rc,)'—17 v'

kr,
+n„,»", [Ref. 187 (34)

where Nt, n2=0, 1, 2, , the index e has been written
as a superscript for convenience, and

kr.q
~n] nI ~nn] ~'rc +n1 O'ngny

v2

+co
v= —=0.4813X10"A 'I' cm '=0.1872X10"cm '

where

Q n1 n2 drR„, (r)e(r+r, )R., (r) . (34)

(tv)' (hv)'
k= = =1.4559X1026 MeV cm '.

2p 5$

I.et us take the core radius' r, =0.4X10 " cm and the
effective two-nucleon potential in the singlet S state
mM"(r')= Ve(e v"/pr'), for r'&~r„with p=1.45)&10t3
cm '. Dropping the indices l, J, and S we obtain" from

"H. Noya, A. Arima, and H. Horie, Progr. Theoret. Phys.
(Kyoto) Suppl. 8, 33 (1958).

' Tables of Integral Transforms, Bateman Manuscript Project
(McGraw-Hill Book Company, Inc., New York, 1954), VoL II,
p. 293, formula (4).

The values of the first few elements of the symmetric
matrices [a»»"=e7„e and a»»"='/( —Ve) are given in
Tables I and II, respectively. 80——800——E0'"'—E0' is the
energy shift of the m=0, l=0 level. In order to see the
convergence of the procedure we consider three cases.

t(r') =0, for r'&r, .
In Table III, we have given the eigenvalues and the

corresponding eigenvectors as obtained by solving from
matrices of orders 1X1; 2X2 and 3X3. The lowest
eigenvalue and its corresponding eigenvector evidently
gives the solution which has the correct asymptotic be-
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TAnLE I. First 6X6 elements of the symmetric matrix pa„„pc 0$„0.

gp —3.27072 1.24016
Gp —35.9024

0.27731.
1.69816

So—68.1544

0.12837
0.36685
2.05073

Bp ——100,216

0.07564
0.16676
0.43503
2.34940

Gp —132.160

0.05049
0.09716
0.19554
0.49282
2.61354

Gp —164.020

havior. Further, since the procedure is very rapidly
convergent, the erst few terms arising from values of e~
near I in the summation in Eq. (30) are sufficient to
determine the perturbed radial function N„~~ ~8 and the
corresponding energy shift 8„&p,„& . Thus for 0', the
radial function for two-nucleons in the m=0, /= J=S=0
state, as obtained from the 3X3 matrix is given by

Noooo(r+r, )=Eoo(Ro(r)+0.038Rt(r)+0.005R2(r)], (35)

where Eo should be obtained from the normalization
condition

82=2.499 MeV (as compared to 80 ——2.504 MeV from
the 2&&2 matrix) and the following radial function:

goo (r+r, ) =Eo LRo(r)+0.058Rt(r)+0.005R2(r)]. (37)

Again the above procedure is found to be rapidly
convergent; the coeKcient of Rt(r) from the 2&&2 matrix
being 0.057.

ti(r) = Voe &"/(fir), Vo= —434 MeV,

@=1.45X10~' cm ~

drr'[iirooo'(r+r, )$'= 1

TABLE II. First 4X4 elements of the
symmetric matrix cc„,cp"- /( —Vp).

With this large value of Vo (equal to the free two-

(36) nucleon potentiaP ') the above procedure is not quickly
convergent. The results of calculations are listed in
Table IV in which we have quoted only the lowest eigen-
value and the coefficients of the eigenvectors as obtained
by solving from matrices of orders 1X1 up to 4X4. In
order to obtain the correct eigenvalue and eigenvector
we would need a matrix of larger dimensions than 4X4.

Finally, we write Eq. (30) fully for the triplet case
0.01521 0.01459

0.01540
0.01315
0.01474
0.01478

0.01173
0.01364
0.01419
0.01407

TABLE XV. Lowest eigenvalue and coefficients of corresponding
eigenvector for the case o(r) = Vp(e /0r)lcwith Vp= —434 MeV,
p, =1.45X10'3 cm. '.

using Eqs. (10) and (25). Matrix
order

Eigenvalue
Gp MeV ffyp/+00 Qpp/Qpp l'fpp/+ pc

TABLE III. Kigenvalues and coefficients of corresponding
eigenvectors for the case o(r) =0.

Matrix
order

Eigenvalue
80 MeV Ep/Kpp Xpp/If'00

v(r) = Voe ""/(fear), Vo= —43.4 MeV,

@=1.45X10" cm '.
Here, for the purpose of illustration, we have taken

the values of the parameters of the effective two-nucleon
potential with a strength Vp equal to one-tenth that
used for Gammel-Thaler' and the same' inverse range fl.
The matrix a„y g can be obtained from Tables I and
II. The solution of the 3X3 matrix gives an eigenvalue

1X1
2X2
3X3
4X4

—3.329—5.004—6.01—6.43

0
0.22
0.246
0.256

0
0
0.138
0.128

0
0
0
0.078

(38)

For J=/+1, Eq. (30) represents two equations with
I'=l and 1'=l&2. These are

S= 1. For I= i, l' takes the value P= l and we have the
following single equation

ixi
2X2

3X3

3.2707
3.2236

35.9494
3.2218

35.85
68.25

0
0.03795—26.351
0.03822—25.961

16.025

0
0
0
0.00527—1.4092—306.0

Nell + (r+rc) = 2 &cllral + Rcil, (r),
n1 0

seel i+2 (r+rc) p Ral l+2, ail+2 Rail+2(r) ~

nfl
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The eigenvalue and the eigenvector problem can be
solved as explained earlier.

5. SUMMARY

A method is given for solving the Schrodinger equa-
tion of two interacting nucleons moving in a common
harmonic oscillator potential when the two-nucleon
potential includes hard core, central, spin-orbit, and
tensor parts. The eGect of the hard core can be easily
taken into account by means of a transformation
r ~ r+r„where r, is the radius of the hard core. Since
the Green's function is found to be factorable in func-
tions of r and r', the integral equation (29) for the radial
wave function u « ~s(r+r, ) can be solved readily. The
solution u„« ~s(r+r, ) is then an expansion in terms of
R„,p(r), Eq. (30), where'| is to be summed from 0 to ~.
In order to test the usefulness of the procedure, the

specific example of 0" is taken when the two nucleons
are in the singlet S state and the effective two-nucleon
potential is given by v(r)=VO(e I"'/pr) with «=1.45
10"cm ' r, =0.4&(10 "cm. For thepurposeof illustra-
tion, the numerical work has been carried out for three
arbitrarily chosen values of Vo, (i) Vo ——0, (ii) Vo ———43.4
MeV, and (iii) Vo ———434 MeV, the last one correspond-
ing to the Gammel-Thaler potential in the singlet-even
state. In cases (i) and (ii) the expansion coeKcients be-
come vanishingly small as e increases beyond the second
and the third terms in the expansion so that the
procedure is rapidly convergent. With the higher
strength of case (iii), the convergence is much slower.
The advantage of the method is that when the eR'ective
two-nucleon interaction is of moderate strength an
analytic expression for the radial wave function
u„&p~s(r+r, ) can be obtained easily.

rc

X +
0

dr'R„ i(r')w«'s(r')u„«'s(r'), (A3)

where we have included the inhomogeneous term R„i(r)
for the sake of generality of discussion. Applying condi-
tion of Eq. (A2), we obtain

C, , LS

X= —R„,(r,)yP R„,,(.,)
~nLL, n'le LS

so that

I R„")(r,) }2-

nLL, n-LLS—
(A4)

u„~i'8(r) =S„~"(r,r,)+ P E„i„'sS„i"(r,r,), (A5)
n'=0

where

g-«(r, r.)
S„("(r,r,) =R„ i(r) — R„.,(r,),

g.«(r, r.)
(A6)

LSC„ ln drR„ i(r)v„,'8 (r)u„«'s(r)

~nil, n' l LSg LS
(A7)

For convenience, we consider only the J=/ state; the
general case can be considered similarly. The integral
equation to be solved is

R„)(r)
u.«"(r) =R.i(r)+2

n' nil, nl
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} u(r)$„„.=0. (A2)

APPENDIX

An alternative procedure of treating the hard core is
to specify' that

e(r)u(r) =M(r —r,), r ~&r„(A1)
where X is determined by the boundary condition

R„,p (r)R„,p (r')g, JS
nl ~nLL', nl Lr

JS (A9)

The calculation of g «' is very tedious. Besides, conin-
ing to 1=0, we note that for large ui, X,o' (ui)"' and
8 e&, so that the terms in the series for g„&&' asymp-
totically behave as 1/(ui)"' and the series sum would
be divergent unless an extra factor of ei ' i'i is provided
by the other factors. This seems to be doubtful. So
even if the ratio of the Green's function occurring in the
expression for S„L"may be 6nite, its evaluation would
be hard to carry out without ambiguity. We therefore
conclude that this method of taking into account of the
hard core is not suitable for our present problem.


