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quantum mechanically, provided care is taken with the
order of the operators. The only change necessary is
that C must be symmetrized so that

C =r"+ (LXp—pXL) — (rXE)Xr.
2ZC 8$ 2'
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The Dirac-Coulomb Hamiltonian is shown to contain a "fine structure interaction" which, when re-
moved, defines a new Hamiltonian difFering From the Dirac-Coulomb Hamiltonian in order (nZ) /~ ~ ~. The
solutions of this new Hamiltonian, as well as its complete set of invariant operators, are explicitly given. This
"symmetric Hamiltonian" possesses a larger symmetry group than the E4 group structure of the nonrelativis-
tic Coulomb Hamiltonian. The simplicity of the complete orthonormal set of solutions of the symmetric
Hamiltonian lends itself to several useful applications which are briefIy indicated. The relation between the
solutions of this new Hamiltonian and the Sommerfeld-Maue-Meixner-Furry wave functions is discussed.

I. INTRODUCTION
' 'N a previous paper' the structure of the eigenfunc-
~ - tions for a Dirac electron in a pur'e Coulomb field has
been discussed by means of a new representation that
diagonalizes the operator F. The operator I' is the
analog, for the Dirac-Coulomb problem, of the angular
momentum operator psst in the free Dirac electron prob-
lem. In the new representation the Dirac-Coulomb prob-
lem becomes formally similar in structure to the plane-
wave problem; the nonintegral "angular momentum"
psl' —&y= ~L(j+-', )s—(nZ)'/Is~ is not sharp and
mixes with y —1 analogous to the mixing of angular
momenta l and l—1 in the plane-wave problem. In
both problems there exists a scalar invariant —the
Lippmann-Johnson' operator, which, in a spherical
representation, plays the role of the defining radial
differential operator for the radial functions.

It was noted in the discussion of the Lippmann-
Johnson operator in I Sec. IV that the results presented
there led in a natural way to consideration of a third
problem intermediate in complexity between the Dirac-
Coulomb problem and the plane-wave problem. It is
the purpose of the present paper to discuss this inter-

*Work was supported in part by the U. S. Army Research
Ofhce {Durham) and by the National Science Foundation.

f On leave of absence from the Karnatak University, Dharwar,
India. Present address: Department of Physics, Oklahoma State
University, Stillwater, Oklahoma.

'L. C. Biedenharn, Phys. Rev. 126, 845 (1962). We shall,
hereafter, refer to this as I. References to the very extensive
literature on this problem are contained in paper I.

2M. H. Johnson and 3. A. Lippmann, Phys. Rev. 78, 329
(1950).

mediate problem, the "symmetric Coulomb-field prob-
lem" as we propose to call it.

A basic motivation behind the present work derives
from various physical problems involving the inter-
action of relativistic electrons and radiation in the
presence of (nuclear) Coulomb fields (for example,
bremsstrahlung, internal conversion, nuclear excitation).
Invariably one is led to technically intractable results
involving complicated radial integrals suitable only for
numerical treatment (or by approximations lacking a
critical error assessment). This situation is to be con-
trasted to similar calculations carried out within a non-
relativistic framework: the famous Sommerfeld inte-
gration in closed form of the dipole bremsstrahlung
energy loss is a striking example. The naive question
therefore suggests itself —why should the introduction
of relativistic eGects, even when small, lead to such an
inordinate increase in complications

An immediate answer —but one which requires rather
much amplification —is this: The nonrelativistic Cou-
lomb field possesses the syniInetry' of the four-dimen-
sional rotation group E4. It is well known that relativity
spoils this symmetry. 4 The loss of symmetry thus occurs
at the classical level and is not primarily a property of
the spin. '

' V. Fock, Z. Physik 98, 145 (1935);V. Bargmann, ibid. 99, 576
(1936);W. Pauli, ibid. 36, 336 (1926).

4 There remains, however, the degeneracy of states having op-
posite signs for the Dirac operator E characterized by the
Lippmann-Johnson operator (see Ref. 2).' That is to say, a spinless charged-particle problem would show
a similar loss of symmetry when subjected to relativistic eGects.
LRelativistic spin-orbit eFFects are, however, not trivial. Indeed the
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In the classical problem it is quite possible to re-
introduce the degeneracy (closed orbits) by considering
an appropriately rotating coordinate system. The trans-
formation, called S in paper I, which diagonalized F,
was shown to be in a qualitative sense the analog, in the
classical limit, of the classical rotating coordinate
system. One is thus led purely formally to investigate
the meaning of closed orbits (orbits of nonrelativistic
form) in the frame of reference deaned by the trans-
formation S. In this way one is led to define a new type
of Coulomb problem —the syrrunetric Coulomb problem—which has the Hamiltonian H given in Sec. III.As we
shall prove later, the symmetry group of this Hamil-
tonian is characterized by the two vector invariants J
and K which are the analogs of I and A of the spinless
nonrelativistic problem. '

As will be demonstrated in Sec. III the syxrunetric
Hamiltonian, H.~, is an approximation to the Dirac-
Coulomb Hamiltonian, in which the approximation
consists in "turning off" the fine structure. (It seems
remarkable that this "turning oG" has such a simple
form. ) One already knows the existence of several
approximations to the Dirac-Coulomb wave fInc
tions —these are the Sommerfeld-Maue-Meixner-Furry
(S-M-M-F) functions. r It is probably no surprise that
the solutions of the syxrunetric Hamiltonian are closely
related to the S-M-M-F functions, since both are (nZ)'
approximations to the exact Dirac-Coulomb functions.
This relationship will be discussed in Sec. III.

The fact that a Hamiltonian basis (in Dirac four-
component form) exists for the solutions to H,r —in
contrast to the S-M-M-F functions —is of considerable
value. Not only are these functions now seen to be
complete and orthonormal and possessing bound states,
but a systematic expansion of these, directly in the one
structure splitting (aZ)'/~, is now possible.

The usefulness of H,„ is further enhanced by the fact
that the integration of the syxnmetric Coulomb problem
is completely expressed in terms of the operators J and

K, precisely as in the nonrelativistic case. In conse-
quence matrix elements ower these basis fgrzctions are
pgrely geometric irz churacter. This is especially clear for
the bound states.

In Sec. II we shall, as a preliminary, discuss the case
of the nonrelativistic spin-2 particle in a Coulomb 6eld,
and introduce the syrnlnetric Hamiltonian in Sec. III.
Sections IV and V will be devoted to the investigation of
the eigenfunctions and eigenvalues of this Hamiltonian.
In the concluding section, Sec. VI, we shall present ex-
plicit invariant operators of this Hamiltonian and ex-
amine its group structure. Ke hope to discuss in a
future paper questions related to the separation of the

adjunction of a Pauli spin in the nonrelativistic problem is a great
convenience in solving the nonrelativistic Coulomb problem
(see Sec. II).j' L. C. Biedenharn, J. Math. Phys. 2, 433 (1961).

7 A. Sommerfeld and A. W. Maue, Ann. Physik 22, 629 (1935);
W. Furry, Phys. Rev. 36, 391 (1934);J. Meixner, Z. Physik 90, 312
(&934).

differential equation in parabolic coordinates, the mo-
mentum-space wave functions, the Hartree-Pock wave
functions, and other applications.

and these satisfy the equations:

(e I.+1)y„~=

e rP„I'=iS( a)P,", —
(2)

(3)

where r is the unit vector r/r, S(a) denotes the sign of ~,
and

J'~."=j(j+1)~.", (4)

(~)

(6)

(7)7'y„s= ( )i+my„

where T is the time reversal operator.
In Eq. (6) the scalar product involves sununation

over spin coordinates in addition to integration over the
angles. For each ~ there are 2~a~ eigenfunctions having
the projection quantum numbers tz= —j, —j+1, +j
because ~lt~ = j+-', . 2' in Eq. (7) stands for the time
reversal operator io„EO with Eo being complex conjuga-
tion. The choice of (—)s+" rather than (—)s—& is

motivated by the fact thatf or X&~2
'I'= and

1

XI~2'I'= the @„& obey this choice using i 0.„0

=(-' ')
Consider next the NR problem which has the

Hamiltonian
1

BNR= — V'—
2'

We shall refer to this problem hereafter as the NRS problem
for brevity and indicate by NR the nonrelativistic problem with-
out spin.

II. NONRELATIVISTIC SPIN 2 PARTICLE
IN A COULOMB FIELD

It is an interesting fact that it is considerably easier to
discuss the motion in a Coulomb 6eld of a Pauli particle
(nonrelativistic spin--, particle with dynamically inde-
pendent spin) than the motion of a spinless particle. ' lt
is particularly important that we avail ourselves of this
simplicity since the detailed considerations of Sec. IV
are based directly upon introducing such wave functions
for the "big" and "little" spinors in p space. The spin-
angular part of the wave functions are easily handled by
the methods of signer algebra. The coupled spin-angle
functions are dehned by'

y~„=z'&+'&X~„=P C(t(+a), -„~~
~

—„tzvr, +r, tz)

yTrzl(+s)X +r (1)
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with eigenvalue

I ~»l = l&»l/~='(~/&)' (9)

the sign of K.

e.A'I E»t2) =iS(»)
~

$ —» t2), (21)

As has been shown by Pauli' —and others —this
Hamiltonian has two vector invariants L and A, which
is de6ned (with suitable normalization) as:

A= [—221HNa] 'I'(nzr222+22(L x p —p x L)),
A L=L A=o,

A xA=iL; L x L=iL,

AxL+LxA=2iA.

(10)

(11)

(12)

(13)

These relations are the generator relations for the E4
group.

The spin vector e commutes with the Runge-Lenz
vector A. The scalar product e A defines the "Coulomb
Helicity Operator" for the NRS system as follows:

e A'=[¹—(o L+1)']—"'[—2222HNa]-'I'

)&(n rnZm —i(e L+1)e p)=[¹—(e L+1)2]-'12m A (14)

This pseudoscalar operator anticommutes with e L+1
as can be verihed directly. By means of this anti-
commutation property one can formally factorize the
operator X' of the NR problem. That is

S'= (nZ)2m'[ —2222HNa] '=22+22+1 (15)

(16)=(e A+e L+1)'

A new linear operator can, therefore, be dined by

g=nz21[ —2222H&a]
—'I'= (e A+e L+1). (17)

Like the Acyl equation, to which it is formally similar,
this eigenvalue system S'-+1V is 220t acceptable as a
factorization of the NR Hamiltonian.

The eigenfunctions of the NR Hamiltonian are well
known to be (apart from a normalization constant)

(re ~
Eb12)=F i(r) i'F2"(tt, y), (18)

where the radial function is given in terms of the con-
Quent hypergeometric function

F&&(r)—Cs—1/2i22NRr) (2/Mar)i

XiFi(—(N —t—1), 21+1;2kNar), (19)
k» ——(nZ/N)m,

and is normalized as

Iig )'r'dr = 1.

It follows that the eigenfunctions for the NRS system
are of the form

(rgyo,
~
X»t2) =Fbi(r)y„. (20)

The operator 0 A when expressed in this representation,
as was done in Eq. (14), has the property of reversing

a result which can be easily established by means of
the two operator relations

(g A+g L+1)2=+2+I2+1=¹ (16)

(22)[o A, e L+1]+=0,
and also the fact that A and e commute with¹.

From the formal point of view the NRS system has
the abstract group structure SU~XSU2XSU2. In order
to see this let us note that the NRS system has, as
generators, the three commuting "angular-momentum
operators"

with

ii= 2 (L+A),

j2———,'(L—A),

3&=ra'
~

1

~ 0

; x3;=q3

(23)

(24)

(25)

III. THE INTRODUCTION OF THE
SYMMETRIC HAMILTONIAN

The symmetric Hamiltonian, to be introduced in this
section, constitutes a Dirac Hamiltonian which approxi-
mates, with an error of the order of (nZ)2/», the exact
Dirac Hamiltonian with the Coulomb potential. It is
logically correct simply to de6ne the sytzunetric Hamil-
tonian —out of thin air as it wer- — and demonstrate
that the assertions to be made are correct. Such a
procedure, even though valid, is not very satisfying if
physical insight is desired and we will accordingly
attempt to present the actual motivation that led to the
introduction of this synnnetric Halniltonian. Our point

To complete the synopsis of the NRS system, let us
obtain explicit operators which raise and lower the
value of K.

Let us first notice that the vector operator exL,
which acts on the spin-angle functions $„&, is perpen-
dicular to the angular momentum vector J. It therefore
cannot connect states of the same

~

» ~. Since L'conunutes
with L we see readily that e x L commutes with L'; thus
it leaves l(l+1)=»(»+1) invariant. Since e x L cannot
change the "t"value of the spinors P,&, it must therefore
connect either» or (—»—1). The first possibility is
already removed by the perpendicularity, hence
0 x ~K —K—i. Since we already know that the
Coulomb helicity operator reverses the sign K, we can
then readily verify the following explicit relations;

e A'(e xL), ~1V»ti)

=iS(—»—1)C(j(»), 1, j(»+1); ti, g, t2+g)
[»(2»+1))'t'i 1' »+1 t2+g), (27)

(g x L),n A'~Ã»t2)

=i~(»)C(j(»), 1,j (» 1);i, 5 t +9)—
&( [»(2»—1)]'I')X »—1 t2+q). (28)
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of view will be qualitative and interpretive, for we
recognize that a really precise treatment would be
excessively involved. Every critical result will be proved
directly in succeeding sections.

In order to do this, we need 6rst to summarize
some of the main viewpoints and results of paper I.
In that paper we demonstrated that there existed a
new frame of reference (defined by the transformation
S=expL ——', pse r tanh '(crZ/E)]) in which the new
"big" and "little" spinors ussgrrted precisely the form of
the (two compo-rtertt) wave fttttctiotts, il u spherical
representation, of the EE5 system, with the single dis-
tinction that the imteger angular momentum I (of the
Pauli particle) now became the Nortirtteger angular
momentum y=

~

1»'—(crZ)'lit'~. The definition of the
transformation consisted, in fact, of requiring that this
occur. Let us next recall that Sommerfeld obtained his
famous energy levels of the hydrogen atom by trans-
forming to a rotating coordinate system in which the
relativistic precession (the familiar "rosette" motion)
was eliminated and closed orbits occur. The transforma-
tion 5 was shown to be a Lorentz transformation in some
sense analogous to the Solninerfeld's transformation. 9 '0

The coordinate system de6ned by 5 is thus that
frame of reference in which the relativistic Kepler
motion appears most closely similar to the non-
relativistic Kepler motion. It is a very natural step then
to ask: 'tA'hat are the consequences of assuming that in
this special frame the motion is precisely nonrelativistic P

The symmetric Hamiltonian is found to emerge as an
answer.

In order to obtain this Hamiltonian it suKces to recall
that there exists, for the relativistic Kepler problem, a
scalar constant of the motion —the Lippmann-Johnson
invariant —which (in the coordinate frame S) con-
stitutes the defining differential operator for the radial
Coulomb functions, and thus de6nes radial functions
for all limiting cases (NR case and plane-wave case). To
define the symmetric Hamiltonian, therefore, one would

need only to use the (Lippmann-Johnson) operator in
nonrelativistic form —that is, l(y) ~ l(a) or
The desired Hamiltonian then results from Eq. (24a) of
I with ~yi ~ [ and rrt~ —rrt."

This leads to the Hamiltonian

8=Sts8' —= (expL —pre r sinh '(crZ/E)$}
&&(. - p-" .) (»)

The Hamiltonian is not Hermitian and is, of course,

' A. Sommerfeld, Atomic Structgre and Spectra/ Lines (E. P.
Dutton 4r Company inc. , New York, 1931),p. 254.

'OA transformation to a rotating coordinate frame does not
belong to special relativity and the statement made here is not to
imply a genuine equivalence but only to mean that the Lorentz
transformation S appears to transform to a coordinate system
agreeing instantaneously with the rotating system. The total
angular momentum in fact commutes with S; see, for instance,
I Sec. B.

"This latter step is required since Eq. (24a) of I is the Dirac-
Coulomb operator in the frame S having negative mass, i.e.,
SO S ' of paper I.

not required to be. In order to obtain a Hermitean
Hamiltonian we transform H by the operator Sq and
obtain

II,r =Si 'SSt=StHrrSt

=&Dirae+We i

where" the 6ne structure interaction

(30)

(3&)

&h—=ps(~ p/r)&(L&+ («/&)'j"' —&&. (3&)

The first point to note is that the transformation Sl
is not the same as the one which takes the Dirac equation
into its "most nonrelativistic" form. The two trans-
formations diBer by terms 8(crZ)' Th.e fact that the
two frames S and Si differ in 6(crZ)e has a consequence
that urty struightforwurd upproociritutiort of the Dirac-
Collorrtb flrtctiorts, us un eecpurtsiortirt ceZ (the Sommer-
feld-Maue definition, for example) inevitubLy confuses two

dQferertt effects: the effect of nonrational l(y) and the
effect of the different coordinate frames. The result
would be literally impossible to untangle.

As was pointed out in the introduction, the S-M-M-F
wave functions were 6rst obtained as approximations to
the exact Dirac-Coulomb functions. Later Sommerfeld"
presented a systematic view which is brieRy as follows:
The iterated Dirac-Coulomb Hamiltonian contains
three terms in crZ crZ//r crZpt—(e P/r') (nZ/r)' of-
which the 6rst (Coulomb) term is considered to belong
to the zeroth-order operator, D. Sommerfeld and Maue
expressed the solution 0' to the itevufed equation as a
power series in O,Z

O'= C s+ (crZ)C i+ (nZ)'C s+
and the projected component D 0 (in their notation)
was the solution to the linear (Dirac) equation. Apart
from the fact that even the 6rst approximation Cj
contains a factor which has to be determined differently
for diferent applications, the projected component
D N, accurate only up to f)(crZ), is not of particular
simplicity. The function Ce+nZCt is usually referred
to as the "Sommerfeld-Maue function. " For such a
function, defined as Purt of a series expansion, the
question of a Hamiltonian basis is not relevant. This is
ln sharp contrast to the solutions of IrsxTf1, which cleal
are also solutions of the iterated equation. In point of
fact Ce+crZCt fails Pin order (aZ)'j to satisfy the
iterated Dirac-Coulomb equation, either in the zeroth
order (D of Sommerfeld) or even when the "spin-
correction term" ceZpi(rr r'/r') is included. The origin
of this behavior may be traced to the fact that the spin-
dependent perturbation in the S-M method really
belongs to the zeroth-order system irt the uppropriute
frume of referelce, as does a part of the (ceZ/r)s term.
The essential "perturbation" in the Dirac-Coulomb
Hamiltonian is the "6ne structure interaction" as shown

"I.C. Biedenharn, Bull. Am, Phys. Soc. 7, 3j.4 (I962).
'3A. Sommerfeld, Atombau swd Spektrallimen (F. Vieweg L

Sohn, Braunschweig, 1960},p. 408.
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above. This distinguishes our approach from that of
Sommerfeld-Maue.

It should be noted that the fine structure interaction
is of order (nZ)s/iKi, which indicates that the S-M
series in powers of eZ is unduly restrictive, as noted
Grst by Bethe and Maximon. " It is clear that the
spherical solutions of B,y differ from the exact
spherical Dirac-Coulomb functions in the same order""

(nZ)s/i K i.

IV. SOLUTIONS OF H AND NORMALIZATION

relativistic case, but are functions dependent on E and
~ obeying the condition that their ratio is fixed. It is this
dynamical coupling of the relativistic particle to the
Coulomb field that makes the representation space of
the eigenfunctions O'N„„not a mere doubling of the
space of imp). Since Js, J, and E conunute with
H, these solutions have sharp j=

i
K

i

—
s and p =j, and K.

Their parity is (—)'&"&.

The transformation S1 introduces some new features.
It is not a unitary operator and, as we have noted earlier,
8 is not Hermitean although H,„ is. In fact we have

(41)Out of the spherical spinors of Eq. (1) one can easily —P3 1P3
build the simultaneous eigenvectors of the confuting

In order to make the charge of the particle invariant it
is necessary to normalize the eigenfunctions such that

Ei
kg~i ysi '

/4 —.'&
p,a ri i=S(—K)i y„~i y„si

(33) (+Nzs)S1 +Ngp) 1 ~ (42)

This ensures the invariance of the eigenvalue EN.
Remembering that FI is a transform of the Hermi-
tean Hamiltonian H,r we see readily

In order to solve the eigenvalue equation

HC'Nlli/i, =~N+Nlrp y

let us rewrite the above equation as

[ipsrr p+mo+ESr 'ps]4=0.

(35)

(36)

H= S1LLsymS1

+N/tII, S1+Sj +sym+S ~N+S p

(+Sp+S) (+NcsyS1 +N~s)

(+Sy+srm+S) —(+Nxs, ~+Nap) EN ~

(43)

(44)

(45)

(46)

If we now iterate this equation by multiplying on the
left with (—ps' p+ms —ESt 'ps), we get a second-
order equation which, when we use the relation

We thus have a situation similar to the Pauli adjoint
in the Dirac theory. For expanding an arbitrary vector
in this complete orthonormal set we use the projection
operator

[ipse y, St 'ps]+ ——2nZ/r,
reduces to

[V'+ (E'—ms')+2nZE/r]C =0;
a solution of which is easily written down

(37)

(38)

(39)

(PNas +Nas) (+NaKS1

(PN„„V.
Nxfi,

Introducing the dimensionless functions

eN = [1+(nZ/N)s]r/s

i ( )KseN[1+ (nZ/K)s]lis

(47)

(48)

(49)

(50)

' [i(K')—1]eN "'
i
X—KP)

2(2i-s —1)

+N—~I
=

k
i [(/V /K ) 1] / i[% Kp)—

I. (40)—(EN[1+ (nZ/K)']'/'+ms)
i
/1'/Kp)i

[l (K')+ 1]eN
i XKP)

2(2i-s —1)

Here we have put k'=ma' —E' in the radial function.
the normalized eigenfunctions are

Now by a procedure exactly similar to that
adopted in paper I Sec. III, one arrives at the solution
(unnormalized)

(51)

We notice that the factors multiplying the spinors
i/t/Kp) and iX—Kp) are not constants, as in the non-

"H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768 (1953)."In discussing the inaccuracy in the S-M-M-F functions Bethe
and Maximon initially asserted that the error was of the order of
(nZ/1)'. A note added in proof (p. "//3) corrects this to (nZ)'/1—
although one may be misled by the fact that the abstract and
introductory discussion of their paper have not been corrected
accordingly.

-1 a~ a 2nZE r(r —1)-——
i

r' ++(E'—mps—)—
r' r)r( r)r r r'

C=O. (52)

I et us next consider the second-order differential
equation satisfied by the solutions of H. It is easiest to
work in the frame S wherein, after iterating SOW ',
we get
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Transforming this into the frame of the symmetric
Hamiltonian we have

F~ psK~K, I ~K .
Using the relation

this gives
z(~+1)=l(l+1),

[V2+ (2nZE/r)+E' mo—']C =0

This second order d-Qferential operator is precisely the
Klein Gordon-operator for the Coulomb foeld with the
single exception that the term (nZ/r)' has been discarded.
H is thus an exact factorization of the Klein-Gordon
equation given in Kq. (55).

This, in fact, occurs since for x= —E, both h. and E are
simultaneously sharp and, therefore, A. —+0. Since h.
expresses the degeneracy with respect to the direction
of rotation of an ellipse (about a perpendicular axis)
one sees that for z = —X the lack of degeneracy (A ~ 0)
expresses the fact that the ellipse degenerates to a
circular orbit and the rotation of the "major" axis has,
therefore, no meaning.

VI. SYMMETRY AND INVARIANT OPERATORS

We have already mentioned that the angular momen-
tum J and the Dirac operator E commute with the
syrrunetric Hamiltonian. A Hermitean operator which
also commutes with this Hamiltonian is the "relativistic
Coulomb helicity operator" deined as follows:

V. BOUND STATES A=[mo' —V2] '~'{ponZe r'8' —iK'e y}. (60)
The energies of the bound states, the wave functions

for which have already been given in Kq. (51), are
given by

(56)Epr moc2/[1+——(nZ/X)'7'"

if .=+(j+-',), or i=I~I, (57)

= —(l+ 1) if K= —(j+'2) y
or l+1= ~K~. (58)

If we set f{:=—j——,
' or I{:=—l—1, we see that f{: can take

all possible values z= —X, —1V+1, +X. On the
other hand, when s= j+2 or i=s, we see that s=+X
does not give an acceptable wave function as X)a+1.
Thus each ~~~ occurs twice, except for 2=+%, and
there are 2~ s

~
eigenfunctions for each value of s corre-

sponding to p= —(~~~ —2), &+(~~~ —2). The total
number of eigenfunctions belonging to a given value of
S is therefore

In contrast to the usual Dirac equation it is here seen
that the energy is dependent only on the "principal
quantum number E"just as in the nonrelativistic case.
The system is therefore again degenerate, or, as stated
earlier, the fine structure is "turned oft." From the
usual boundary condition on the wave function we see
that the radial part of the wave function satisdes the
requirement that X—l—1 is 0 or a positive integer. We
have, however,

This can be conceived of as the nonrelativistic operator
e A generalized by po doubling to the four-component
form and m (i.e., mc') replaced by the relativistic energy
operator 8; A obeys the commutation relations

[8;A]=0,
[J,A]=0,

[E,A]p 0. ——

(61)

(62)

(63)

The following operator relations are used in establishing
the vanishing of the commutator [A,8]

[E, poe y]=0, (64)

A = [mo' —62] "{p2Kmo+i pgE{} (69)

po[e r, e y]+Sp=S~ 'p2[e r", e y]+, (65)

[poe t', 8]=iS22p2[e P, e y]~, (66)

[e y, 8]=nZE—'p2[e y, e r]~„. (67)

A reverses the sign of 2: in%&„„and the analog of Kq. (21)
is obtained by straightforward computation,

A yugo= 2S( K) [1P IP] A% +gp yol' —go (68)

Deining an operator {=8[1+(nZ/E)']'", if we rewrite
has

P 2{21.
~

—X}=21&2, (59) and square both sides we get

corresponding to the 1P eigenstates, each having the
energy ENa/m =—,

' (nZ/E)2 in the nonrelativistic theory.
While we have noted that for f{:=Xthere is no solu-

tion, it is important also to note that for ~= —S, 0 has
but a single component in p space. An interesting way
of interpeting these results is provided by a relativistic
Coulomb helicity operator A (to be presently introduced
in the next section) which anticonunutes with the Dirac
operator E. These two operators cannot be simultane-
ously sharp, Nnless one operator has the eigenoalle sero.

A2+ K2 (nZ) 282[m 2 82)—1 g2

One can also define an operator

+AK={( )nZ82[ mo8'] '}'",

(72)

o
—8 ]X = K{imo[po,pg]+—(pg) +mo }~ (7—0)

Using the following relation

[pg8, p2]p= —2ipo[1+ (nZ/E)2]~~2Sg 28, (71)

Kq. (70) reduces to
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which has the eigenfunction

C~;„D——N+K)/2N]'1%k' „„

+ I 1/2N (N+ K)]212L+kl,„
a —Xjp

bl+Nj~)

a and b being the functions multiplying the spinors in
Eq. (51).The eigenvalues of Narc &'N, for all j&N——',,
while for j=Ã——', only —N occurs. The C~;„are
"helicity" eigenstates and do not have a sharp parity
except for j=N —~.

While the operator that reverses the sign of I(: is easily
obtained from a generalization of the corresponding
operator in the NRS system, it is unfortunate that the
"raising" and "lowering" operators are not so simply
obtained. The basic structure of the operator is given
below:

(Kll),e~ „„=DC(.—-'„1,.——,'; —',, 0, —,')

XC(j, 1, j;p, q, p+q)%' .„,. (81)

In other words, the three parts commute with the sym-
metric Hamiltonian and, therefore, the vector operator
K= K++K +Kll is an invariant. In spite of the occur-
rence of operators in the denominators of K it is impor-
tant to note that the circumstances are such that the
operators are always well de6ned. i for instance cannot
assume the value 1, and by restriction of the values
which K can take relative to a given N, f'2 can never
assume the value —,'. By construction t' is positive and
hence (+1 cannot be singular. The operators E&1 do
not operate before the conunutator Lir x L, FTJ and this
ensures that they do not contribute any singularity.
The factor L(E—2)(E+—,')]'"is just I j(j+1)]'i'.Thus,
though very complicated in structure, K is always well
deined. The following relations are easily established by
direct computation:

(ir x L (1+ps)
p,s;2

I I I, 8 e~„„=(o),e~„„
2 i'

= ie C(j (K), 1, j(K—1);p, q, fk+q)%& „,~„(73)

[EipEj]+Ncs= 2eij kj k+iiay y

2J K+i2„„——(522)%~„„,
' —-

((J+K)2+1}%N„„=g2@N„„.

(82)

(83)

(84)

D=S' ', —& D=N—- (75)

we build the following three parts of a vector operator
and indicate what they do to an eigenfunction of the
symmetric Hamiltonian H.

=DL' —(K ) ] C(K 2)1~K—2)2 0 ', )

XC(j(K), 1, j(K 1);I, q—, I +q)

X+N -ia—2) M2 ~ (77)

(K').= LD' —(E—2)']"'

XX'(2(2P—1)(t'—1) '8' '}'12.

(K+) Q~ „=LD2 (K+ 2)2]1/2

XC(K—-'„1,K+-'„-,', 0, -', )

XC(j, 1,j (K+1) f, q I+q)

(78)

where co is a function of ~' and N. Making use of the
operators

ZBPm, ' Fr']-'&'= g—~N,

Since the 4 ~,„form a complete orthonormal set, we con-
clude that the operator relations are themselves valid.
From J and K we can form the commuting pair of
vectors

jr=-2, (J+K),
js= 2(J—K),

Ljt,js]=o,

(85)

(86)

(87)

a= —ee;

K=+M~

jt+js=N —2'
I jt—jsl=2

j,=N/2; js——(N —1)/2,
number of states=N(N+1)

j2+j 2=N 2; I jt—jsl =2;—
jt= (N/2) 1' js= (N 1)/2

number of states=N(N —1).
Thus the total number of states is ZP, a result which
has been established earlier from the wave functions. In
view of Eqs. (76)—(87) we conclude that the group of
the symxnetric Harniltonian is at least as large as the
four dimensional rotation group E4.'

which guide us in the computation of the total number
of independent vectors in the subspace of a given E
(degree of degeneracy, in the case of bound states).
Since J=jt+js we have, by the vector addition theorem,

jt+ js~»&~ I jt—jsl

We have the following assignment dictated by the
admissible values of ~:

X+N -(fr+1) y+q ~

(KII).= lDL(E—l) (E+-')?'12(J)

(79)

(80)
'6 The complete symmetry group is, however, larger and appears

to be a factor group of a semidirect product of ($U2l'.
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This is to be contrasted with the generator of the
inhomogeneous I orentz group corresponding to the
"Iorentz rotation" discussed by Foldy'~

However, unlike the latter, 2 does not satisfy the
requirement

(91)$2;,P„(=ip;.
'7 L F01dy, Phys. Rev. 102, 5N (1956).

It is interesting to note in passing that there exists for
the plane-wave free-particle Dirac Hamiltonian a
vectol 4'sM t"bcsf opel atol wh1ch can be obtained by
letting (nZ) —+ 0 in Eq. P3) and after slight modi6ca-
tron, as

0/i= p2[H~, i e x I/2][H„' —mo'] 'I'.

If we multiply this vector operator by i we see that it
obeys the relation

R~R= —iJ. (89)
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Note added iri, proof. We would like to call attention to
the work of Egil Hylleraas [Z. Physik 164, 493 (1961)g,
which —in addition to the work of P. C, Martin and
R. J. Glauber (cited in I)—also obtained earlier some
of the results given in I. [Let us note, too, that K. A.
Johnson's suggestion of the importance of the operator
P is, by mistake, cited (in I) wrongly in footnote 3
and not footnote 2 where it belonged!)

The earliest work along these lines is contained in the
book of G. Temple EThe Gerieru/I'«Nri ples of QNo+~um

Mechatncs, (Methuen, and Company, Ltd. , New York,
1948), p. 92 ff]. We are indebted to Professor E. Guth,
Professor S. Bludman, and Professor C. Schwartz for
calling Temple's work to our attention, too late to be
included in paper I, however. Unfortunately Temple's
treatment is not wholly correct.


