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Generalization of the Runge-Lenz Vector in the Presence of an Electric Field*
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It is well known that the Kepler problem admits two vector constants of the motion, the angular mo-
mentum and the Runge-Lenz vector. In this paper a generalization of the Runge-Lenz vector is found when
a uniform constant electric Geld is present. The component of this vector in the direction of the external
Geld is a constant of the motion.

HE nonrelativistic Kepler problem admits two
vector constants of the motion, the angular

momentum and the Runge-Lenz vector A. With the aid
of these constants of the motion the solution of the
classical problem is trivial and the quantum-mechanical
problem can bc solved by Rlgcb1Rlc methods. ' The
existence of these constants of the motion is related to
the fact that the Schrodinger equation for the hydrogen
atom separates in spherical and parabolic coordinates.
The separation constants correspond to constants of
thc motion and since the equation separates in two
coordinate systems for any orientation of either coordi-
nate system there are 2)&3 constants of the motion
corresponding to the components of L and A.' "

When a uniform electric Geld is present, the Schrod-
inger equation still separates in spherical and parabolic
coordinates if the Z axis is in the direction of the electric
Geld. This is related to the existence of the constants of
the motion L E and C E, where C is a generalization
of the lunge-Lenz vector. It is the purpose of this note
to display the vector C.

The equation of motion for a particle moving in an
inverse square law force with an external electric Geld

present is
Z8~—y= — P+eE.

dt r

The angular momentum L=rXp then satisfies the
equation

—L=erxE.
dh

*This work was supported by U. S, Army Research Once.
'The original classical discussion of the vector A is due to

%. Lenz, Z. Physik 24, 197 {1924).The energy levels of the
hydrogen atom were determined algebraically using A by W. Pauli,
Z. Physik 36, 336 (1926). Pauli also showed that a representation
in which A, and I., are diagonal is a suitable one for calculating
energy level shifts in the presence of unifoxm electric and magnetic
Gelds in the z direction.

~ Only Gve of these constants are independent since I, A=o.
The energy can be expressed in terms of A~ and I~.

~'1Vote added ie proof. If the Schrodinger equation separates,
then it is easily seen that the separation constants are classical
constants of the motion. This is related to the fact that the method
of separation of variable can be used in the classical Hamilton
Jacoby formalism. See, e.g. , L. D. Landau and E. M. Lifshits,
M'echaeics I'Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts), pp. 149—153.They also give an expression (prob-
lem 1, p. 154) in paraboLic coordinates for a constant of the motion
for the Kepler problem plus electric field. This is the analog of
the usual expressions for the Schrodinger equation separation
constants.

The key to the following derivation is the observation
that

(Lxr).
dt mr'

This suggests COIlsldellng

Z8—(LXp) =eLXE— LXr+e(rXE)Xy
dt r2

which ls equivalent to

Le(LXE)+e(rXE)Xyj,
dt Z8 W

where A is the Rungc-Lenz vector given by

A =r+ (LXp)/(Ze'rN) .
Now

—A E= (rXE) (yXE)
dt Zeta

so that

d—(rxE)'2' dt

A E—(rXE)'/(2Ze)

—C= LXE.
dt 2Z85$

The simple relations

and
L C= (r'E.L)/(2Ze)

C r=r (L'/Ze'm)—
are natural generalizations of the corresponding equa-
tions for A. In particular, when the electric Geld is ab-
sent, the last result gives the equation of the orbit
directly.

All the above results and their derivation are valid

is a constant of the motion.
Consider the vector C given by

C=A —E(rXE)Xrj/(2Ze),

then C E is the above constant. The vector C is a suit-
able generalization of A since it satisfi'es the simple
equation of motion
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quantum mechanically, provided care is taken with the
order of the operators. The only change necessary is
that C must be symmetrized so that

C =r"+ (LXp—pXL) — (rXE)Xr.
2ZC 8$ 2'

ACKNOWLEDGMENTS

The author would like to thank Dr. B.A. Lippmann
for erst suggesting that the Runge-Lenz vector might
provide a suitable starting point for the problem of a
hydrogenic atom in an external electric field, and for
his encouragement thereafter.

P H YS I CAL REVI EW VOLUME 133, NUMBER 5B 9 MARCH 1964

Remarks on the Relativistic Kepler Problem. II. Approximate Dirac-Coulomb
Hamiltonian Possessing Two Vector Invariants*
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The Dirac-Coulomb Hamiltonian is shown to contain a "fine structure interaction" which, when re-
moved, defines a new Hamiltonian difFering From the Dirac-Coulomb Hamiltonian in order (nZ) /~ ~ ~. The
solutions of this new Hamiltonian, as well as its complete set of invariant operators, are explicitly given. This
"symmetric Hamiltonian" possesses a larger symmetry group than the E4 group structure of the nonrelativis-
tic Coulomb Hamiltonian. The simplicity of the complete orthonormal set of solutions of the symmetric
Hamiltonian lends itself to several useful applications which are briefIy indicated. The relation between the
solutions of this new Hamiltonian and the Sommerfeld-Maue-Meixner-Furry wave functions is discussed.

I. INTRODUCTION
' 'N a previous paper' the structure of the eigenfunc-
~ - tions for a Dirac electron in a pur'e Coulomb field has
been discussed by means of a new representation that
diagonalizes the operator F. The operator I' is the
analog, for the Dirac-Coulomb problem, of the angular
momentum operator psst in the free Dirac electron prob-
lem. In the new representation the Dirac-Coulomb prob-
lem becomes formally similar in structure to the plane-
wave problem; the nonintegral "angular momentum"
psl' —&y= ~L(j+-', )s—(nZ)'/Is~ is not sharp and
mixes with y —1 analogous to the mixing of angular
momenta l and l—1 in the plane-wave problem. In
both problems there exists a scalar invariant —the
Lippmann-Johnson' operator, which, in a spherical
representation, plays the role of the defining radial
differential operator for the radial functions.

It was noted in the discussion of the Lippmann-
Johnson operator in I Sec. IV that the results presented
there led in a natural way to consideration of a third
problem intermediate in complexity between the Dirac-
Coulomb problem and the plane-wave problem. It is
the purpose of the present paper to discuss this inter-

*Work was supported in part by the U. S. Army Research
Ofhce {Durham) and by the National Science Foundation.

f On leave of absence from the Karnatak University, Dharwar,
India. Present address: Department of Physics, Oklahoma State
University, Stillwater, Oklahoma.

'L. C. Biedenharn, Phys. Rev. 126, 845 (1962). We shall,
hereafter, refer to this as I. References to the very extensive
literature on this problem are contained in paper I.

2M. H. Johnson and 3. A. Lippmann, Phys. Rev. 78, 329
(1950).

mediate problem, the "symmetric Coulomb-field prob-
lem" as we propose to call it.

A basic motivation behind the present work derives
from various physical problems involving the inter-
action of relativistic electrons and radiation in the
presence of (nuclear) Coulomb fields (for example,
bremsstrahlung, internal conversion, nuclear excitation).
Invariably one is led to technically intractable results
involving complicated radial integrals suitable only for
numerical treatment (or by approximations lacking a
critical error assessment). This situation is to be con-
trasted to similar calculations carried out within a non-
relativistic framework: the famous Sommerfeld inte-
gration in closed form of the dipole bremsstrahlung
energy loss is a striking example. The naive question
therefore suggests itself —why should the introduction
of relativistic eGects, even when small, lead to such an
inordinate increase in complications

An immediate answer —but one which requires rather
much amplification —is this: The nonrelativistic Cou-
lomb field possesses the syniInetry' of the four-dimen-
sional rotation group E4. It is well known that relativity
spoils this symmetry. 4 The loss of symmetry thus occurs
at the classical level and is not primarily a property of
the spin. '

' V. Fock, Z. Physik 98, 145 (1935);V. Bargmann, ibid. 99, 576
(1936);W. Pauli, ibid. 36, 336 (1926).

4 There remains, however, the degeneracy of states having op-
posite signs for the Dirac operator E characterized by the
Lippmann-Johnson operator (see Ref. 2).' That is to say, a spinless charged-particle problem would show
a similar loss of symmetry when subjected to relativistic eGects.
LRelativistic spin-orbit eFFects are, however, not trivial. Indeed the


