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Radiative Tail in Elastic Electron Scattering
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gatiorIal Bureau of Standards, 8'ashirIgtoe, D. C.
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The Bethe-Heitler cross section with arbitrary form factor is integrated over all photon angles, without
approximation. The limit of this integrated cross section for large energies e of the initial and anal electron
is considered in detail. It is shown that the contribution to this cross section from photons emitted in the
direction of either the incoming or the outgoing electron gives the terms of order inc found by Schi8, but
that the contribution from all other photon directions is of relative order 1, and we give explicit expres-
sions for these terms, as well as a numerical evaluation for some typical cases, since for the energies of ex-
perimental interest, viz. , 30—1000 MeV, the logarithm is not very large: inc=4 —8. Furthermore, keeping the
terms of order 1 is of particular importance for electron scattering angles' near 180', since, as is shown,
the terms in inc all have the factor cos'&0, which is not the case for the terms of order 1. It is shown that
all the formulas given are also valid for 8 equal or very close to 180'.

I. INTRODUCTION
'N the last few years, excitation of nuclei by inelastic

- ~ electron scattering has become a very important
tool for the study of nuclear spectroscopy, ' and, as new
linear accelerators which will permit one to obtain very
accurate data are becoming available, it becomes
important to be able to analyze the data with the
greatest possible precision. It is well known' that one of
the limitations in this analysis is the fact that scattered
electrons can also lose energy by means of secondary
processes. These are due to the following facts: First,
nuclear scattering is always accompanied by emission
of photons; second, since the target has a finite thick-
ness ( 1/100 of a radiation length), ionization or
emission of a photon in the field of another nucleus
may occur before or after the nuclear scattering. We
would like to focus our attention on the 6rst process
only, as the other two are much easier to deal with, as
can be seen in the literature. ' '

In 1952 SchiG' performed an integration of the Bethe-
Heitler cross section for bremsstrahlung4 in the Coulomb
field of a point nucleus, assuming that the photon is
emitted in the direction of either the incoming or the
outgoing electron, and retaining only the terms of order
inc, where e is the energy of the electron in units of
mc'.

In this paper we have performed the integration of
the Bethe-Heitler cross section with arbitrary form
factor (whether for the nucleus or for the atom) over
all photon angles without making any approximations,
after which we consider in detail the limit of this
integrated cross section for large energies of the initial
and Gnal electron, e~&)1, e2)&1. We show that the
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Research.

t On leave of absence from Centre National de la Recherche
Scienti6que: Laboratoire de 1'Accelerateur Lineaire, Orsay
(France).' W. C. Barber, Ann. Rev. Nucl. Sci. 12, 1 (1962).

~ H. W. Kendall and Jan Oeser, Phys. Rev. 1N, 245 (1963);
D. B. Isabelle and G. R. Bishop, Nucl. Phys. 45, 209 (1963).

3 L. I. Schiff, Phys. Rev. 87, 750 (1952).
4 H. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146, 83

(1934); W. Heitler, The Quantum Theory of Radiation (Oxford
University Press, London, 1954), third edition, p. 244.

B1

contribution to this cross section from photons emitted.
in the direction of either the incoming or the outgoing
electron gives the terms of order inc found by Schiff,
but that the contribution from all other photon direc-
tions is of relative order 1, and we give explicit
expressions for these terms, as well as numerical
examples for some typical cases, since for the energies
of experimental interest, viz. , 30—1000 MeV, the
logarithm is not very large: in&=4—8. Furthermore,
keeping the terms of order 1 is of particular im-
portance for electron scattering angles 8 near 180',
since, as will be seen, the terms in inc all have the factor
cos'-,'0, which is not the case for the terms of order 1.
We wish to distinguish, in our discussion of the derived
formulas, two aspects of its application to the experi-
mental data: the radiative correction and the radiative
tail. The radiative correction has to do with the emission
and reabsorption of virtual photons and the emission
of real soft photons, and involves an integration over
photon energy. The radiative tail appears because of
the emission of real hard photons, and is an extension
of the scattering peak (elastic or inelastic), differential
in the energy of the scattered electron. The problem of
the radiative correction has been discussed extensively.
(See, e.g. , Ref. 5. This paper contains references to
previous articles on the same subject. ) We therefore
consider here only the radiative tail. Nuclear recoil
corrections are neglected in the calculation, but their
order of magnitude is discussed at the end of the paper.
We will treat the problem in first Born approximation
throughout. The errors introduced thereby may be ex-
pected to be of the same order of magnitude as those
introduced by considering the same approximation in
large angle Coulomb scattering, for which it has been
noticed' recently that the error is of order (Z/137) 2sin-,'t1,

' N. Meister and D. R. Yennie, Phys. Rev. 130, 1210 (1963).
6 J. W. Motz has made a plot of the theoretical ratio of the erst

Born approximation to the exact cross section for elastic scattering
of electrons in a pure Coulomb Geld (Mott scattering) for several
values of the electron energy e, nuclear charge Z, and scattering
angle 8 (private communication). We Qnd that for ~))1, all the
data for 30'&8&120' and 13&Z&79 can be fit by the simple
expression 0 gprn = (1—b)0;„„t, in which, to within. 10%
8=(Z/137)2 sin-,'8=(Z/137)(hp/p), p being the electron mo-
mentum, Ap the momentum transfer.

344



RAD I ATI VE TA I L IN ELASTI C ELECTRON SCATTERING B1345

where 8 is the scattering angle of the electron and Z the
nuclear charge. This is clearly the most serious approxi-
mation in the entire analysis, and is the next point
that must be considered in any refinement of this work.

2k'(PP sin'81+Ps' sin'82)

(e1—p1 cos81) (02—ps cos82)
~ (1)

We assume here that we are dealing with scattering
from a spherically symmetric static charge distribution,
so that P(q), the nuclear form factor, is a function of
the magnitude q of the momentum transfer to the
nucleus, and not of its direction. For a deformed charge
distribution, the form factor depends on the relative
orientation of the charge deformation and the vector q.
(See, e.g., Refs. 7 and 8.) Spin and polarization states
of the final particles have been summed over, and the
average over spin states of the initial electron has been
taken. Here (81,&pt) and (82, 002) are the polar and
azimuthal angles of the initial and final electron,
respectively, in a coordinate system with 2: axis along
the direction of the photon k Further, (ets,ps) and
(et,4t) are the polar and azimuthal angles of the photon
and final electron, respectively, in a coordinate system
with 2 axis along the direction of the initial electron y~.
These angles are related by

~a=1,
cos82 ——costt costts+sint7 sint72 cos($—tt 2),
cost7 =cos81 cos82+s11181 sln82 cos(pt —002) ~

Q pl p2 itq k el 02 ~ (3)

The units of energy and momentum are mc' and mc
throughout.

Since the emitted photon is not observed, we wish to

' U. Meyer-Berkhout, K. W. Ford, and A. E. S. Green, Ann.
Phys. (N. V.) 8, 119 (1956).

'Samuel Penner, Natl. Bur. Std. (U. S.) Internal Report
May 2, 1962 (unpublished).

II. INTEGRATION OF THE CROSS SECTION OVER
PHOTON DIRECTIONS

The Born approximation cross section for the scatter-
ing of an electron of initial energy and momentum ~j,
p~, final energy and momentum c2, p2, and emission of
a photon of energy and momentum k, k (the Bethe-
Heitler cross section) is

(Zc )2
p2 dk $2(q)

da= . —
I I

—— sinlsdt'tsdttts sint'fdtMttt
(22r)2hcEettcsf pt k q4

pp sin281(402' —q') p2' sin'82(401 q )

(et pt COS81) (02 p2 COS82)

2prp2 sin81 sin82 cos (001—y2) (40102—q +2k )

(01—P1 COS81) (02—p2 COS82)

integrate over the angles of the photon direction, I,
and 44. In view of the factor 52(q) in the cross section,
the convenient variables for this integration are clearly
its and. q'. Using (2) and (3) we express the cross section
in terms of t)ts, q', t)t and Q. (In addition, we must
multiply the cross section by two, since the entire range
of q is covered. by letting 44 go from 0 to 2r.) The inte-
gration over 81, is "straightforward but tedious. '" The
integration over q' is not carried out explicitly at this
point, so that we arrive now at the cross section for the
scattering of the electron through an angle 8:

c2 (Zss) 2
p2 dk 0212 d(q2)

da =——
I I

——sinttdes~ 52(q)
2~acktttc2) p, k,„q'

(2)1+k')"' ED1't2 D2't2)

fq'+4K' 4q'(e p—+02' 1)—1—60102)
xI

2X—q'

(4022 —q2)
+2k L2X(X—kes) —(X+ker)q'j

D 3/2

(40P—q2)—2k L2X(X+ket) —(X—ke,)q'j . (4)
D 3/2

x= 0102—ptpscostt —1=-,(Ipt —y2I —k'),
D1= (pt(q —

q2 )+2p2X0 COSH) +4k p2 Sill 17
&

D2= jP2(q —
q1 )+2Pt)10 cost)t) +4k PP slntt,

q„=
I P1—P2I —k= (2X+k2)'t2 —k

qsr= I pt —Psl+k= (2)+ks)'ts+k

q2 ——2p2 sins'tt,

q1= 2pt sins@
&

)10 ele2 pips 1 ~

Equation (4) will form the basis for our further consid-
erations. We note at this point, however, that the in-
tegrations performed ingoing from Eq. (1) to Eq. (4), in
the course of which we have made no approximations, are
also applicable to the scattering of an electron, with
emission of a photon, in which the momentum transfer
to the nucleus is "small, " i.e., q O(1). In this case we
must replace F(q) by 1—F(q), where F (q) is the atomic
form factor. We note further that for the case of a pure
Coulomb potential (P(q) =1, F(q) =0), the integration
over q' may be performed explicitly, and was in fact
first carried out by Racah. "We give the result for this

' For details see L. C. Maximon, Natl. Bur. Std. (U. S.) Internal
Report (unpublished)."Giulio Racah, Nuovo Cimento 11,477 (1934).This calculation
was repeated by McCormick, Keiffer, and Parzen LPhys. Rev.
103, 29 (1956)j who correct several misprints in the original
publication of Racah. Barber et af DV. C. Barber, .J. Goldemberg,
G. A. Peterson, and Y. Torizuka, Nucl. Phys. 41, 461 (1963)7
have used the high-energy limit of that formula to calculate the
radiative tail.
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case, presenting it in a somewhat more condensed form than that appearing elsewhere":

1 eu /Zeu)u pu dk k9,+(2eIeu —X)(X+1)
dg =——

~ ~

——sunutdadqb 2 1n(X+1+@(X+2))'lu}
2urhckulcu) p, k X'P, (X+2)1'"

2euPP sin I5I(2eIPu —3keu )—2keupu +3 e(ule+ e)u(pl +pu )+(2eleu X) (eIeu+pu )+ ln(eu+pu)
X2

k 2e,puu sinu@(2eupP+34P)-
2keupP+3eu(eu+eu) —(pP+ pu')+(2eueu —lI) (eueu+pP)+»(eI+ pu)

)up I X2

2k sin 8' k2

+ L2pPpu'(eP+eu' —eIeu)+3&'(eI+eu)'$+ L(pP+ pu') (eueu+1)
l4p up u gap up I

2—&)(p"+p'+ +1)—3(+ ) j——L2 « —&a
g2

III. HIGH-ENERGY LIMIT OP THE CROSS SECTION

We now return to Eq. (4) and perform the high-

energy approximations pertinent to the experiments
we are considering, viz. , e~&&1, ~2&&1. In addition, we
assume throughout all but the last section of the paper
that sin8 is of order 1, by which we mean
1/(e sin@)u(&1, i.e., that 8 is not very close to either 0
or x. At the end of the paper the case in which8 is close
to or equal to Ir, (Ir—8&0(1/e)), is discussed, and it is
shown that all of the formulas derived for sin8 of order
one remain equally valid for Ir—8&0(1/e). With these
assumptions we have, from the expressions (5),

DI eP(qu quu)u+4$ueuu sinus

Du euu(qu gP)u+4$ueP sIn+

X= 2eye2 sln2&8.

Thus, since q2 is, throughout the range of integration,
of order ~2, D~ and D2 will be of order ~', except near
the Points qu= quu (for DI) and q'= qP (for Du), at which

points they are much smaller, of order ~4. Thus at these
points the integrand in expression (4) will be sharply
peaked; a simple calculation shows that for sin8 of
order unity, q &g2(q~&q~, i.e., the peaks lie within
the range of integration in expression (4).

%e now consider in detail the expression in curly
brackets in the cross section (4), the various terms of
which are shown in Fig. 1.%e note 6rst that. the terms
with factor Dq '2 or D2 '/' have peaks of the same

height and width as do the terms with the factor Dg
—3/2

or D2
—'~2. Thus, all the peaked terms should be expected

to give contributions of equal order of magnitude to
the cross section. Further, we note that, for the terms
with the factor Dq or D2, the ratio of the height
of the peaks to that of the background is of order q',

whereas the ratio of the width of the peaks to that of
the total integration region is of order 1/e. Thus, for
these terms the background gives a negligible contri-
bution, of order 1/e' relative to that of the peaks, and

9 + terma

O"& terma

O4 term

Half-wld

I

I

I

I
I
I
I

I

I

I

I

I

I

I
I
I
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e

FIG. 1.Relative order of magnitude representation of the various
terms in the integrand of cross section (4). For detailed explana-
tion see text.

may be neglected. This is not the case, however, for the
terms with factor D~ '~2 or D2 '~2. For these terms the
ratio of peak height to that of the background is only of
order ~, while the ratio of the width of the peaks to the
total integration region is of order 1/e, as before.
Thus the contribution of the background may be
expected to be of the same order of.magnitude as that
of the peaks for these terms. Finally, the one term
without any peaked factor, denoted by Do in Fig. 1, is
of the same order of magnitude as are the terms with
factor D~ '~2 or D2 '2 in the background region, and
hence must also be kept. These order of magnitude
considerations are indeed borne out in the explicit
evaluations which follow, except in that the contri-
bution from the peaks of the terms with factor D~ U2 or
D2 '/2 are actually of order Inc relative to the other
contributions we have mentioned, i.e., these order of
magnitude considerations do not, distinguish between
ln~ and I, but only between diGerent powers of ~.

Noting, however, that even for e= 10' we have ln&= 6.9,
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factor D1 'f' or D~
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S~ J=f(xp) ,„L(x—xp)'+ vp]pip

f(x)dx

,„L(x—xp) p+g']pl'

which we write in t ee form

where

and

We write

I= f(xp)

L(x—xp)'+pt' Jl'

0(g((xp —x0(g(gxm —xo
&

0

[(x xp)'+r—P)'I'

f(x) f(*o). E(x »)'+—n']"

2J=—f(xp) . (14)

s. 5) andfor and g~ in Eqs.
fid f h

p o o g

Eqs. (7)-(14), we n,
expression (4),

f(*) f(*o)—

Dx xp)—'+rp jplp

itha
'

e erst integral, wit
f 1 d

ofod 0 1t' toth
the second integra, as
obtain

1 e' (Zep)' dk sin8sin8d8d

2e.k. ) k

e ri ht-hand side of (10) is theri
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i relative order rP/(x~ xp-neglect term o

2
Q
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1/ '. Th obtrelative order j. e.

I= f(xp) 1n
4(xpr —*p) (*p—x„)-

61
1n (2pp) —r'(qp)

261

—&'(q~), (16)
261

*"f(*)—f(*)
x xo

ion from the background 8 is found,
after somef ome algebraic juggling, o'" or D~ '' we proceed f omeFor the terms wit factor D1—"or

M

eQ1

p cos'-'8] 1n sinp8+2pP p~Slll- t9 +2pyppLk +2pypp cos p

LGg(q) —Gp(q) jb(q)d(q'p,Gg(q) —ppGp(q) ja(q)d(q' —k Lp G (q) —p Gp(q)ja(q)d q'

d(q') 2k'
(1—P(q))

k IP os M pp(pl+ pp)co+—P(qy k 0

p pp cos —, ',' ' pp'+pP cos'-'8] 1n—p sin —
~

' p pp cos'p8g 1n sinp8+2pPLpp' pz co—keg( co —,
'

p sin'-p'8j+2p)ppLk'+2p~pp cos —, ',' '
pp pz co—kp kP cos'-'8 —pl(pi+ pp) sin —,+—P (qp) —kp& co —,

'

(2K+k') "P
p p

(17)
X'
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X= 26y~2 Sill"-,'8

4X'+q —4q'(eP+ell)

We have written the integrals in 8 in such a way that they vanish for P(q) = 1, and that the lack of a singularity in
the integrand at q'=2X=qlql, (qp(2X(qll), is clear.

IV. DISCUSSION OF THE FORMULAS

It is worth noting, from Eqs. (16) and (17), that the terms in I' are of order Inc and. order 1, and that, as our
order of magnitude considerations showed, those in 8 are all of order 1 since we consider el/~l, the argument of
the logarithm in 8, to be of order 1.However, these terms will add to those in I' and hence change the argument
of the logarithmic terms in I'. Thus, if one retains only the contribution from the peaks, the coeKeients of terms
in In& are given correctly, but not the argument of the logarithm. For example, for the case F(q) =1 we have

Gl(q) =Gl(q) =0 and

(6I + t'2 ) cosp- Lel' In(2el)+ el' In(2&i) —ales],
2&g'e2' scn4-,'

and substituting these in Eq. (15) we find the cross section for the case of a point charge:

1 e Zsl) dk sln8d8dy (el'+el') cos'-', 8 (el'+el') cos'-,'6 k'+2elel cos'-', 6
do= —— In(2~, ) + ln(2~, ) ln sin-', 6

2K Ac tsar~) k 61 262 sin'~8 2~g' sin g8 eje2 sin z8

1 Ik'(op+el') (sin'-,'8' —cos'-', 8)+4elelfk'+2elel cos'-,'III] ln sin-,'8—2(cl'—el') cos'-,'8 ln—,(19)
46y 62 sin g8'

+ Lk' sin'M —(el'+el') cos'-,'8) . (20)
4ey e2 sin &8.

Comparing the logarithmic terms in Eq. (20) with those
in Eq. (16), we note that the result of adding the
background terms has been the interchange of the
arguments of these terms, for the case F(q)=1. The
fact that Eq. (20) may be obtained directly by taking
the high energy limit of Eq. (6) provides a check on
these calculations.

The idea employed in the evaluation of the high-

energy limit of the cross section, namely the separation
of the contribution of the peaks from the background
contribution in the integral over. the momentum
transfer, has been described clearly by Schiff. ' He
notes that the differential cross section will have peaks
when the photon is emitted very nearly in the direction
of either the incident or Anal electron. That these two
cases correspond, respectively, to our peaks at q'=q2'
and q'=q~' may be seen quite simply: H k is in the
dll'ection of pl tllell pl k —(pl ~)pl pl/i and

=pl —p2 —k pl(pl —pl)) so 'tlla't q 4pl sill &2=ql .
If k is in the direction of y2, then pl+ k = (pl+ &)pl =plpl
and II=pl —yl —k~pl(pl —pl) &

so thatq'=4pl' sin'-,'8=ql'.
Schiff, however, keeps only the contributions of

relative order inc, as he states explicitly, and these

come, as we have seen, only from the peaks. He has
done the calculation with S(q) =1, but it is very easy,
following his derivation, to introduce the factors P(ql)
and F(ql) which appear in expression (15), and this is in
fact what is done by experimentalists'" using his
formula. Thus we conclude that the results of Schi6
are valid to the approximation which he claims,
namely, keeping only the contribution of order inc. .

The principal difference between our high-energy cross
section and that of Sehift is thus that he neglects terms
of relative order 1/Ine, whereas we neglect only terms
of order 1/e'. We see, moreover, that to achieve this
we must keep contributions from the background as
well as from the peaks. %e may note that for the case
P(q)=1, one can obtain Schiff's result directly from
the high energy approximation to Racah's" cross
section, expression (17). However, without Schiff's
analysis of the peaks, it would not be clear how to
generalize to the case F(q)01.

The corrections to the Bethe-Heitler diGerential cross
section due to the recoil of the nucleus, of charge Z and

"J.I. Friedman, Phys. Rev. 116, 1257 (1959).
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IO-
8-
6"

e a aO.OI
4 a ~ 0.40
~ a ~ 0.70

~p+

pt

.8-

.6—

ik

PO-INCIDENT ELECTRON KNf RGY 100 MeV
mental interest (30-1000 MeV), smaller than those
introduced by using the Born approximation, we do not
include them in this calculation.

To show the importance of the corrections due to the
fact that we have done the integrations taking into
account the contribution from the background as well
as from the peaks, we have plotted in Figs. 2 and 3
the ratio of the complete expression, I'+8 fEqs. (16)
and (17)], to the sum of the logarithmic terms in I'
fthe first two terms in Eq. (16)], which are the ones
given by Schiff's calculation. We have done this for
the case of oxygen j.6 using for the form factor the
expression which gives the best experimental 6t ":

.4
Cf 30' 60' 95' 120 150' I80

SCATTERING ANGLE 4
F(q) = (1—2.58X10 'q') exp( —5.55X10 'q') (18)

Fio. 2. The ratio (P+73)/Pq as a function of the scattering
angle for ditferent values of n=k/e~, and for 100-MeV incident
electron energy, P1 being the sum of the logarithmic terms in P
Lthe erst two terms in Eq. (16)g and representing the terms
calculated by Schift.

20 —INCIDENT ELECTRON ENERGY 200 MeV

IO—
8-

o g *005
& +a0.5
ts a 08

Pe8
pt

.8—

.6—

0' 30 60' SO I20 150 18K
SCATTERING ANGLE 4

FIG. 3. The ratio (P+J3)/P~ as a function of the scattering
angle for diiferent values of n=k/e&, and for 200-MeV incident
electron energy, P& being the sum of the logarithmic terms in P
Lthe tirst two terms in Eq. (16)g and representing the terms
calculated by SchiQ'.

"S. D. Drell, Phys. Rev. 87, 753 (1952).

mass M, have been calculated by Drell. "He shows that
there are kinematic correction terms of order qm/M
which modify the peaked terms (of order lne), and
dynamic corrections (due to emission of the brems-
strahlung gamma ray by the nucleus) of order Zpn/M.
These latter terms do not, however, correlate strongly
the direction of the emitted photon with the direction
of the incident or 6nal electron, and hence have a
factor of order 1 only, as we have shown. Thus,
relative to the cross section we have computed, the
kinematic corrections are estimated to be of order
em/M for large scattering angles, whereas the dynamic
corrections should be of relative order (e/lne)(Zm/3f)
We note that this last term is roughly independent of Z.
Since these corrections are, for the energies of experi-

where q is expressed in mc units. The ratio has been
calculated for two diGerent primary electron energies,
100 and 200 MeV, and for several values of the energy
loss k as a function of the scattering angle. In Figs. 4
and 5, also using the form factor given in (18), we plot

12 gIC .

INCIDENT ELECTRON ENERGY' IOO Mev

I I I
I

I I I

T~
ai
X

C0

N ~ 60'
A THIS CALCULATION
0 SCHIFF CALCULATION

bC

0 i I i I i l i I T I i r
0 20 40 60. 80

ENERGY OF SCATTEfKQ ELECTRONS IN M eV
IOO

V. THE CASE OF 180' SCATTERING ANGLE

Finally, we consider the case in which the scattering
angle 8 is very close or equal to 180'. x —B=sin8
&O(1/e). We will see at the end of our considerations
that in fact all of the high-energy formulas fin particular
expressions (15)—(20)] derived for large sinosf1/(e sint7)'
«1]are equally valid for 8 very close or equal to 180'.
However, many of the statements leading to these
formulas must be modi6ed. We return, therefore, to the
exact Born approximation cross section given by Eqs.
(4) and (5), where we observe, from the expressions for
Dj and D~, that the peaks actually occur at q2"

» I".Lacoste and G. R. Bishop, Nucl. Phys. 26, 511 (1961).

Fzo. 4. The cross section calculated from Eq. (15) (this calcu-
lation) and the cross section calculated by including only the
logarithmic terms in P (Schiff calculation) for incident electron
energy 100 MeV and scattering angle 60'.

the cross section as given by Eq. (15) as well as the one
obtained by including only the logarithmic terms in I'
fthe first two terms in Eq. (16)], as a function of the
6nal electron energy for 6xed initial energy and 6xed
scattering angle.
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=q,'—2(p, /pi)Xpcostt and qi"—=qi' —2(p,/p, )hpcos8,
i.e., they are displaced by quantities of order I from
qs' and qi' (which are of order c'). More significant is
the fact that as sin8 —+0, the peak width, of order
hsing, goes to zero, and the peak height becomes
infinite. However, from Eqs. (5) we find that as tt

approaches x, the end points of the integration region,

q
' and q~', move in toward the peaks at q2" and qq",

and that for n —0 of order 1/e we find

qs"—q„'= (keps/ (pi+ e&))$»n'tt —(ei+ ep) /(clop) 7 =0(1)
and

qse —qi
= (hei'/(et+ e&))(sin'8 —(ei+ es)'/(e] e,)7=0 (1).

Thus, for sintt&(et+op)/(eies)=0(1/e), the peaks at
q2" and q~" lie outside the integration region.

We now reconsider the expression in curly brackets
in the cross section (4) for sr —8&0(1/e). The back-
ground terms are unaGected by the order of magnitude
of sin8. Thus, as shown in Fig. 1, the background
height is of order one for the terms with factors Dj ' ',
D2 '' or D', and must be kept. Terms with factor
Di "or Ds "have background height of order 1/e'
and may be neglected. However, the width of the peak
within the integration region is, for sr —8&0(1/e), of
order one rather than of order e, and the peak height
(taken at the limits of the integration region if the
peaks lie outside these limits) is of order 1 rather than
of order e as before, because of the factors of Dj ' ',
D2 ' ' D~ '/' and D2 ' ' Thus, the contribution from
the peaks is now of order 1/e' relative to the background,
and may be neglected. The important point is that
although the contribution from the peaks is smaller for
3 —8&0(1/e) than for sin@=0(1) by a factor of order
1/e', the contribution from the background is of the
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FiG. 5. The cross section calculated from Eq; (15) (this calcu-
lation) and the cross section calculated by including only the
logarithmic terms in P (Schiff calculation) for incident electron
energy 100 MeV and scattering angle 160'.

same order of magnitude for both cases, and that, our
calculation having already included the background
contribution, it thus remains valid for both cases. The
background terms may now be simplified as was done
before in going from Eq. (10) to Eq. (11), where we
neglected the q' in the denominator of the integrand,
with error of relative order 1/e'. With similar error we
may now replace q2" and q&" by q2~ and g&', respectively,
since we noted that qp's —qps=O(1), qi's —qis=O(1).
Thus, for sintt) (et+op)/(eies), we arrive at precisely
those background. terms given in expression (17). For
isntt& ( e+ie)s/( pie)p, i.e., q ')q&" and qsr'&qi", the

first two integrals in Eq. (17) do not appear, and the
third integral should be modi6ed so that the limits of
integration are q

' and qQ. However, in this case the
first two integrals are in fact of order 1/e' relative to 8
itself and the change of limits on the third integral
would again introduce errors of order 1/e' relative to B
Thus we can in fact leave the expression (17) for 8 just
as it stands. Likewise, expression (16)for the peak terms
may be left without modification, since it is manifestly
of order 1/c' relative to 8 for pr —et&0(1/e). Equations
(15)—(20) thus need no modification for the case in
which sr —8 &0(1/e).

We may mention that a calculation of the cross
section for high-energy bremsstrahlung in electron-
proton collisions, integrated over the directions of the
hnal proton and photon, has been performed by Berg
and Lindner. '4 However, in their calculation the inte-
gration is carried out numerically for specific values of
the energies and scattering angle and a particular form
factor, so that the errors involved in the SchiG approxi-
mation are not investigated. Our goal here is a general
discussion of the approximations involved in the
calculation of Schiff.

After completion of this work, it was brought to our
attention that the general problem of the radiation tail
has been considered recently by another author, "but
both the techniques and the goals of his calculation
diGer from ours.
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