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the 6rst (Ire) time box. In calculating P, the spectra in
Table I were summed only to channel 68, thus omitting
the xe peak. Assuming that the fraction of accidentals
was strictly proportional to the width of the time gate,
we have

&Lowo'= &x,oNG —Acc
~

D =D/(1+0.978(ACC/Ã oNo')) .

Similarly, in the me box,

=E „0.978(D—'/lVLoNo')ACC. (&4)

Using only the data from channels 78—120, E,' is
given by

+ee =+elec P+LONG ~

Now from the data in Table I we find

«=0.952, P=0.113,
1 067eD' —PXLoNo'= 16404—8130=8274.

Taking g=1.091 and f= 1.037, we obtain

If.= (1.33+0.17))& 10 '.
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W'e have extended the pion-pion calculation of Smith and Uretsky by including the third-order perturba-
tion theoretic terms for the discontinuity across the left-hand cut in the complex energy plane. The right-
hand cut is still given by elastic unitarity. Numerical calculations for the S- and I'-wave amplitudes show
that the 5 waves are not much different than they were in the second-order calculation. The I'-wave ampli-
tude is substantially modified, and the trends are such as to make it plausible that a fourth-order calculation
could reproduce the p resonance. It was also interesting to Gnd that the E-wave interaction can be strongly
attractive (to this order) only if the 5-wave interactions are repulsive.

I. INTRODUCTION

N an attempt to formulate a theory of pion-pion
~ ~ scattering it was shown, in an earlier paper, ' how
one could dehne a sort of generalized potential to de-
scribe the x-7r interaction and then make use of
dispersion-theoretic methods to obtain the scattering
from this "potential. " The generalized potential is
calculated by means of 6eld-theoretic perturbation
theory as a power-series expansion in a "renormalized"
coupling constant ) that specifies the strength of a X@4

interaction among the pions. In paper I the potential
was calculated to order )' and the solutions were
described and discussed. The present paper is devoted
to a discussion of the consequences of including the X'

term in the "potential. "We hope to be able to discuss
the fourth-order corrections in the near future.

It seems appropriate to recount the conditions that
should be ful61led by the calculations we are doing in
order that they may correspond to a sensible theory.
Relativistic invariance and unitarity of the scattering
amplitude require no discussion, of course, since these
are built into the computational method. One also
desires to impose crossing symmetry, and it was

*Work performed under the auspices of the U. S. Atomic
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' K. Smith and J. L. Uretsky, Phys. Rev. 131, 86j. (1963).This
will be referred to as paper I.
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FIG. 1. Sketch of the ex-
pected regions of applicability
of the diferent orders of
approximation. For explana-
tion see text, The units are,
of course, arbitrary.

pointed out in I that this cannot be precisely deGned in
a calculation such as ours of partial-wave amphtudes.
It was found that an approximate crossing symmetry
was quite well maintained for not too large values of
the coupling constant X.

One other important condition having to do with the
convergence of the method was given passing mention
in paper I.The hope was expressed there that the eGect
of including higher order terms in the potential would
correspond to working one's way "outward" in both
angular momentum / and energy E. This notion is
expressed graphically in Fig. 1 which is a sketch of the
7 Eplane. There —is a point in this plane (labeled "A")
where the lowest order expression (proportional to ) )
for the scattering amplitude is exact. Around this must
be a zone (labeled "3")where the second-order calcula-
tion contained in paper I is a good approximation. In
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zone "C" the second-order results will be modified
substantially by the third-order calculation but not by
higher orders, and so on. Clearly, the size of the zones
will decrease with increasing X; and it is likely that for
some suSciently large value of X, the perturbation
approach will make no sense whatever. It is the major
purpose of the present paper to see how well this
convergence condition is satisfied up to third order.

II. PROCEDURE
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A perturbation expansion of the scattering amplitudes
for isotopic spins 0, 1, and 2 is obtained in the manner
described in Appendix A of I. The expansion is termi-
nated at the third order in the coupling constant ), and
S- and P-wave projections are then made. The resultant
perturbation amplitudes may be considered as functions
of a complex variable v, the square of the barycentric
momentum of one of the incident pions. One 6nds the
amplitudes to be analytic functions of v in a plane cut
along the two segments

0~& v& ~ and —~ &&~& —1,
in units in which fi, c, and the pion mass are all equal to
unity. The calculated discontinuity across the "right-
hand" cut is then replaced by the elastic unitarity
condition (there is no inelastic contribution to the
elastic amplitude in third order). This leads to nonlinear
integral equations. These are solved by the familiar
E/D techniques. ' The resultant E/D solutions are then
fed back into the original nonlinear equations in order
to verify that they are indeed solutions of the original
problem. Expressions for the discontinuities across the
left-hand cut are contained in the Appendix.

Before we discuss the results of the calculations, let
us examine the third-order "potentials. "The quantities
of interest are the imaginary parts, for negative v, of
the partial-wave scattering amplitudes' ' f~r(p), where f
denotes the angular momentum (zero or one) and I the
isotopic spin. The second- and third-order contributions
are plotted in Fig. 2 with X set equal to unity.

The 6rst thing to be noticed about the third-order
contributions is that they have a qualitatively different
behavior from the second-order terms. The second-order
imaginary parts never change sign as their argument is
varied. This has the mathematical consequence that
the fear calculated from them belong to the class of
Herglotz functions —an important point if one wishes
to discuss the uniqueness of the solutions. ' This is no
longer true in third order where the corresponding
(third-order) potentials have a complicated structure
in that they are attractive at some distances and
repulsive at others.

2 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
3 The kinship between the imaginary part of the amplitude for

negative energy and the potential of a Schrodinger equation is
discussed by G. F. Chew, S-Matrix Theory of Strong Interactions
(W. A. Benjamin, Inc. , New York, 1961), p. 31.

Our f~(v) are de6ned to be $(v+1)/vj'~' exp(Qg) sining.
I' We refer to the C.D.D. ambiguity. See footnote 5 of Ref. 1.
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FIG. 2. The imaginary parts of the partial-wave scattering
amplitudes on the negative v axis. The dashed curves are the third-
order contributions and the solid curves the second-order ones.I spins 0 and 1 are in panels e and b. The coupling constant ) is
unit&. The I=2 plots are quite similar to those for I=0.

A second point, one of considerable importance, may
be made by observing that the value of j v~ at which
the third-order contributions become important are
larger than those for the second-order quantities. Thus,
it is correct to say that the higher order calculation
gives a better~estimate of the singularities (of the f~r)
more distant from the physical region (for X not too
large). We expect that the more distant singularities
will have their most important effect upon the higher
energy parts of the scattering amplitudes. Hence, it
appears that the convergence condition discussed in
the preceding section has a chance of being satisfied. It
should also be noticed in this connection that the
modification of the P-wave imaginary part at moderate
values of

~
v~ (a few pion masses) is relatively much

greater than the modi6cation of the S waves.

III. RESULTS

We solved the X/D equations for the two S-wave
(5=0,2) amplitudes and the P-wave (I= 1) amplitude
on Argonne's IBM-704 computer using a modification
of a program previously written by K. Smith. ' Solutions
were obtained for values of P between +0.5. The S-wave
solutions were found to have "ghost" singularities at
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Fzo. 3. Scattering
lengths. Solid curves
represent the results
of the second-order
calculations (from
paper I) and dashed
curves those from
the present calcu-
lation. The I=2
curves are not sufB-
ciently different to
warrant showing.

6 This is a somewhat liberal interpretation of the fact that the
scattering length becomes infinite at this value of X. The difBculty
is that a "ghost" pole has moved very close to the physical region
so that the solution cannot be taken seriously near ) =0.4.

negative energy at about the same position as in the
second-order calculation (see paper I). The position of
the ghost was far enough from the physical region that
one could consider the X/D solutions to be meaningful

provided that ~X~ was less than about 0.3. In this

respect there was no essential change from the results
of paper I.

The behavior of the S-wave scattering lengths

(Fig. 3) are very readily understood in terms of ele-

mentary potential-scattering arguments. In the second-

order calculations of paper I, the results of which are
also reproduced in Fig. 3, it was found that an I=O
bound state was predicted' for some 'A greater than
about 0.4. On the other hand, the addition of the third-

order potential would be expected to result in a slight
shift of the value of X at which the bound state occurs.
Since the scattering length is in6nite if there is a zero-

energy bound state, it is clear that a slight X-dependent

shift in the position of the infinity will give a substantial
modi6cation of those scattering lengths near the pre-
dicted bound state. For values of X far from the bound-

state value, however, the third-order corrections give

little change. The I=2 scattering lengths are less

modi6ed by the third-order corrections because the
potential is far from being attractive enough (for our

range of X) to bind the two mesons. It is quite clear,

then, that the third-order corrections have only a small

effect upon the S-wave scattering, and our perturbation
procedure is, so far, eminently reasonable for the range
of ) 's that are considered meaningful.

The antics of the P-wave amplitude when the third-

order corrections are included are considerably more

interesting. It will be recalled that the second-order

P-wave potential is a purely attractive one regardless

of the sign of ). The third-order correction, which is

only important at short ranges for not too large values

of
~
X~, is attractive for negative X (repulsive S wave)

and repulsive for positive X. These properties are some-

what apparent in the dependence (Fig. 3) of the P-wave
"scattering length" (defned as the limit of tan5/q')

upon the coupling constant. For example, the third-

order potential is suKciently attractive to give a P-wave

bound state when X is about —0.45. The second-order

potential could not do this until ~X~ reached the
magnitude of about 1.7.

We are, of course, free to ignore the ghost difhculties
in the S-wave amplitudes and increase the magnitude
of —X to "force" the onset of a P-wave resonance. One
then sees another consequence of the added inner
attraction of the third-order term in Fig. 4. In this 6gure
we plot t v'/(v+1) j'"cot8 for the value of X at which
the phase shift just touches 90' at 6nite energy in the
third-order calculation. The corresponding quantity for
the second-order calculation is also depicted for com-
parison. We see that in third order the energy at which
the resonance can 6rst occur has increased by a sizeable
amount over what it was before. To summarize, then,
the effect of the third-order "potential" is to produce
the P-wave resonances at higher energies with smaller
coupling constants. If one happens to be interested in
producing a narrow resonance near v=6, the prospects
for doing this in fourth order would seem to be
favorable.

V. CONCLUSIONS

In brief summary, the effects of including the third-
order contributions to the "potential" are: (1) No
appreciable change in the S-wave amplitudes over a
large energy range, except near the values of X for
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Fxe. 4. "Onset" of
the t'-wave reso-
nance in second
(solid) and third
(dashed) order.

30 I I I I I I I I

0 I 2 3 4 5 6 7 8

IV. CROSSING SYMMETRY

Just as in I, we now ask whether we have maintained
an approximate crossing symmetry in the course of the
third-order calculation. We do this by taking the S- and
P-wave solutions that have been obtained and using
them to calculate a new approximation for the imagi-
nary part of the f~r on the left-hand cut in the v plane.
This imaginary part should not be very different from
the perturbation expression for the left-hand cut,
provided that —v is small enough so that the partial-
wave expansion converges rapidly. We recall that the
partial-wave expansion does not converge at all if —v

is greater than 9.
The comparison for a moderate value of X is shown

in Fig. 5. We note that the agreement over a range of
about two pion masses from threshold is, in fact, very
good. We also remark that the general trend of agree-
ment is much better in the third-order calculation than
in the second-order one.
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to facilitate comparison. It is, of course, required that
v& —1.

In second order, then,

»0,2- ImAsz(+v) =Pre'(v+1/v)'/si 1+Iz(+v)/27, (A1)
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ImAt'(+r)= —S)%.'(v+1/v)'" 1—1+—)'s(+v) v ',

2v
(A2)

where

and

(
&1S) ~ 2)

(A3)

( v i'" L /(+1)7'"+1
/s(v) =! ! 1n

(v+1~
i v/(v+1)7'/' —1)

( v I/2

1nX(v) . (A4)
(v+1

The third-order terms may be written

Cg
ImA'(v) =—W z Sz cz ——+L—s!—,(AS)

Ãv 12 k X(v)
FxG. 5. Comparison of imaginary parts of the fgI on the left-

hand cut as calculated by third-order perturbation theory (dashed)
and by crossing symmetry (solid).

which a zero-energy bound state is predicted. (2) A
substantial change in the I'-wave amplitude, ' especially
in the moderate to high-energy range. (3) An attractive
I'-wave potential when the S-wave potential is repul-
sive, and vice versa. Here we refer to the behavior of
the I'-wave amplitude a pion mass, or so, above thresh-
old. The scattering length tends to remain positive
(attractive) for both signs of ) (Fig. 3). (4) A I' wave-
resonance can be obtained at higher energies and for
smaller coupling constants than in the second-order
calculation. The coupling constant needed is, however,
still too large to give believable S-wave amplitudes.

It would appear reasonable to conclude, on the basis
of our results, that the kind of perturbation theory that
is being used is eminently reasonable. Further, there
seems to be good reason to hope that a fourth-order
calculation will reproduce the most important experi-
mental feature of pion-pion scattering, namely, the
p resonance.

APPENDIX

The N and D equations are identical to those of
Appendix B of paper I, except that the D equations are
modified by including the third-order imaginary parts.
We also give the second-order imaginary parts in order

7 It should be noted that our results are in qgalitatiee agreement
@faith those of M. Baker and F. Zachariasen, Phys. Rev. 118, 1659
(1960). They carried out a third-order calculation using Baker' s
determinantal method.

where I2 is the function djlog, s and

Sz= T'z+ &z+Vz hz 1n
i 4v i-, (A6)

If z=i (+1)7'"lb.+5z/(4. )7,
&z= /fz ezv f/z/(4—v), —
&z= $fz+(v (v+1))'/'yz/v7 1nX(v),
&z= $gz+yz/v7 1n'X(v);

55 '2 1
r=4~' 5, cr= 14, hr —— 7

.86. .43.
3o/+S

'
0

br= 11/2, fzz= —22a —47, (A7).99a+ 155. . p

(3/2)u —1/2
/fz= (11/2)rr+29/2.(99/2)n —43/2.

1/2
'

8z= —11cr 47/2, fz= 7/—2 (AS).99. . p . 43/2
0' 1/6

' 0
4 z= 2, gz= 1/3 ) vz= 1/3.0. .14/3. . p

The above formulas (AS)-(AS) were checked against
the imaginary parts of the perturbation amplitudes
given by Baker and Zachariassen"; no discrepancies
were found.

' L Lemin, Dilogarithms and Associated' Furlctions (McDonald
and Sons, Ltd. , London, 1958).


