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Feynman Ru1es for Any Spin*
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DeparrmenI of Physics, Unf'versify of CaHforniu, Berkeley, Cehforniu
(Received 21 October 1963)

The explicit Feynman rules are given for massive particles of any spin j, in both a 2j+1-component and
a 2(2j+1)-component formalism. The propagators involve matrices which transform like symmetric trace-
less tensors of rank 2j; they are the natural generalizations of the 2&(2 four-vector o-t' and 4&4 four-vector
yt' for j=~~. Our calculation uses Geld theory, but only as a convenient instrument for the construction of a
I.orentz-invariant 5 matrix. This approach is also used to prove the spin-statistics theorem, crossing sym-
metry, and to discuss T, C, and P.

L INTRODUCTION

HlS article will develop the relativistic theory of
higher spin, from a point of view midway between

that of the classic Lagrangian field theories and the
more recent 5-Inatrix approach. Our chief aim is to
present the explicit I"eynmao rules for perturbation
calculations, in a formalism that varies as little as
possible from one spin to another. Such a formalism
should be useful if we are to treat particles like the 3—3
resonance as if they were elementary, and is perhaps in-

indispensable if we are ever to construct a relativistic
perturbation theory of Regge poles.

Our treatment' is based on three chief assumptions.
(f) Perturbation theory. We assume that the S matrix

can be calculated from Dyson's formula:

( i)m ao

S=g dt, dt.T{H'(t,) H'(t„)) . (1.1)

Here vie have split the Hamiltonian II into a free-
particle part H p and an interaction H', and define H'(t)
as the interaction in the interaction representation:

H'(t) =—exp (iH pt)H' exp (—iIIst) . (1.2)

(Z) I.orents inttariancc of the S matrix. We require
that 8 be invariant under proper orthochronous Lorentz
transformations. This certainly imposes a much stronger
restriction on Ho and JI' than that they just transform
like energies. A sufEcient and probably necessary con-
dition for the invariance of 5 is:

(b) For (x—y) spacelike,

[X(x),X(y)$=0.

The necessity of (a) is rather obvious if we use (13) to
rewrite (1.1) as

S=Q d4xi d4x„T{X(xi) X(x„)). (1.6)
n=o

But (a) is certainly not su@cient, because the 8 func-
tions 8(x,—x;) implicit in the definition of the time-
ordered product are not scalars unless their argument is
timelike or lightlike. Condition (b) guarantees that no
8 ever appears with a spacelike argument.

(3) Particle interpretation. We require that X(x) be
constructed out of the creation and annihilation opera-
tors for the free particles described by Bo. The only
known way of making sure that such an X(x) will

satisfy the restrictions 2(a) and 2(b), is to form it as a
function of one or more fields lt„(x), which are linear
combinations of the creation and annihilation operators,
and which have the properties:

(a) The fields transform according to

U[h. ,ajlt „(x)U—'[h.,aJ=Q D„„[A '7&„(hx+a), —(1.7)

wllcl'c D $Ajls soIIlc I'cpl'csclltatlo. ll of A.

(b) Foi' (x—y) spRccllkc

[4-(x)4-b)2=0
H'(t) = d'xX(x, t), (1.3)

where [ )+ may be either a commutator or anticom-
vrhere: Illlltatol'. ColldltloI1 3(a) cllablcs us to satisfy 2(R) by

(R,) X(x) ls a scalR1'. T11Rt ls 'to every lnhomogcncous couphng tile 'Ip (x) 111 vallous lllval'lallt combinations
Lorentz transformation xs ~ h.&„x"+a& there corre- while 3(b) guarantees the validity of 2(b), provided
sponds a unitary operator U[A,aj such that that X(x) contains an even number of fermion field

X(& + ) (14) factors. (There are some Sate points about the case
x=y which will be discussed in Sec. V.)

Equations (1.7) and (1.8) will dictate how the 6elds*Research supported in part by the U. S. Air Force Once of
ScientiGc Research, Grant No. AF-AFOSR-232 —63. are to be constructed e have not pretended to

f Alfred P. Sloan Foundation Fellow. these equations as inescapable consequences of assump-'I have recently learned that a similar approach is used by tions (1)—(3) but our discussion suggests strongly thatE. H. %ichmann in the manuscript of his forthcoming book in
quantum Geld theory. they can be understood as necessary to the Lorentz

81318



FKYNMAN RULES FOR ANY SPIN B1319

invariance of the 5 matrix, without any recourse to
separate postulates of causality or analyticity. '

Nowhere have we mentioned Geld equations or La-
grangians, for they will not be needed. In fact, our
refusal to get enmeshed in the canonical formalism has
a number of important physical (and pedagogical)
advantages:

(1) We are able to use a 2j+1-component field for a
massive particle of spin j. This is often thought to be
impossible, because such 6elds do not satisfy any free-
field equations (besides the Klein-Gordon equation).
The absence of 6eld equations is irrelevant in our ap-
proach, because the fields do satisfy (1.7) and (1.8); a
free-field equation is nothing but an invariant record of
vrhich components are superQuous.

The 2j+1-component fields are ideally suited to weak
interaction theory, because they transform simply
under T and CP but not under C or P. In order to
discuss theories with parity conservation it is con-
venient to use 2(2j+1)-component fields, like the Dirac
field. These do obey 6eld equations, which can be de-

riMd as incidental consequences of (1.7) and (1.8).
(2) Schwinger' has noticed a serious difhculty in the

quantization of theories of spin j~-, by the canonical
method. This can be taken to imply either that particles
with j~-, cannot be elementary, or it might be inter-
preted as a shortcoming of the Lagrangian approach.

(3) Pauli's proof' of the connection between spin and
statistics is straightforward for integer j, but rather
indirect for half-integer j. We take the particle inter-
pretation of P„(x) as an assumption, and are able to
show almost trivially that (1.8) makes sense only with
the usual choice between commutation and anticom-
mutation relations. Crossing symmetry arises in the
same way.

(4) By avoiding the principle of least action, we are
able to remain somewhat closer throughout our de-
velopment of field theory to ideas of obvious physical
significance.

At any rate the ambiguity in choosing X(x) is no
worse than for Z(x). The one place where the La-
grangian approach does suggest a specific interaction
is in the theory of massless particles like the photon and
graviton. Our work in this paper will be restricted to
massive particles, but we shall come back to this point
in a later article.

The transformation properties of states, creation and
annihilation operators, and 6elds are reviewed in Sec.
II. The 2j+1-component field is constructed in Sec. III
so that it satisfies the transformation rule (1.7). The
"causality" requirement (1.8) is invoked in Sec. IV,
yielding the spin-statistics connection and crossing

' In this connection, it is very interesting that a Hamiltonian
without particle creation and annihilation can yield a Lorentz-
invariant S matrix, but not if we use perturbation theory. See
R. Fong and J. Sucher, University of Maryland (to be published).

3 J. Schwinger, Phys. Rev. 130, 800 (1963).' W. Pauli, Phys. Rev. 58, 716 (1940).

TA&&LE I. The scalar matrix II(q)=( )s&—I&&»"'q„,q» ~ ~ for
spins j&3. In each case 3 is the usual 2j+1-dimensional matrix
representation of the angular momentum. The propagator for a
particle of spin j is S(q) = r'( —r'm—)~&II(q)/q'+ms fa—

li "&(q) = I
II('t2) (q) =q —2(q' J)
li"'(q) =—q'+2(«J)(» J—q')

li&s&s&(q) qa(qo 2». J)+~s[(2«. J)» «2X3qo 2». J
II"'(q) = (—q')' —2q'(0' &) (O' J—q')

+3(» J)L(«J)'—«')L» J—2q'j

Il""'(q) = (—q')'(q' —2» J)—6q'L(2» J)'—«'jPq' —2» Jj
1

+—L(2» J)'—«'X(2«J)' —9«'jL3q' —2» Jj
120

II'"(q) = (—q')'+2( —q') (0 J) (O' J—q')
——:q'(» J)L(» J)'—«'jL» J—2q'j

4
+—(».J)L(» J)' —»'X(» J)'—4»'jL» J—3q'j

45

symmetry. Section V is devoted to a statement of the
I'eynman rules. The inversions T, C, and P are studied
in Sec. VI. They suggest the use of a 2(2j+1)-com-
ponent field whose propagator is calculated in Sec. VII.
More general fields are considered briefly in Sec. VIII.
The propagator for 2j+1- and 2(2j+1)-component
6elds involves a set of matrices which transform like
symmetric traceless tensors of rank 2j, and which form
the natural generalizations of the 2X2 vector {e,1}and
the 4/4 vector y„, respectively. These matrices are
discussed in two appendices, where we also derive the
general formulas for a spin j propagator. The 2j+1
X2j+1 propagators for spin j 3 are listed in Table I,
and the 2(2j+1)X2(2j+1) propagators for j~2 are
listed in Table II.

This article treats a quantum field as a mere artifice
to be used in the construction of an invariant S matrix.
It is therefore not unlikely that most of the work pre-
sented here could be translated into the language of
pure S-matrix theory, with unitarity replacing our
assumptions (1) and (3).

TABLE II. The scalar matrix (P(q) = —i Jp»»" '»jq„,q„, ~ q»,.
for spins j~2. In each case

J(n
&= 0 J&&

The propagator for a particle of spin j is

S(q) = im~iL(P(q—)+m"j/q'+m' r'e—
(P«)(q) =1

ty""&(q) =q'P 2(» 8)vsP—
g "&(q) = q'P+2(» 8)—(«8P q'v~P)—

tf'""'(q) = q'(q'P 2»@v—sP)+6'L—(2«8)' «'X3q'P=-2«—8vÃj
6'"'(q) = (—q')'P —2q'(» 8)L»' lP —q'v i)

+3(» 8)L(» 8)'—«'T» 8P—2A P3
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u. I.OREmZ TRAmaroRMM'IOUS

In our noncanonical approach it is essential to begin
with a description of the Lorentz transformation prop-
erties of free-particle states, or equivalently, of creation
and B,nnihilation operators. The transformation rules
are simple and unambiguous, and have been well
understood for many years, ' but it will be useful to
review them once again here.

The proper homogeneous orthochronous Lorentz
transformatlons Rrc de6Dcd by

x~~A~ x"

g~.~"~~".—g~. &

detA= 1. ; .Aoo&0.

(2.1)

These will be referred to simply as "Lorentz transforma-
tions" from now on. Our metric is

g'i=8''i g»= 1i g&o=go&=0 (2 2)

To each i1 there corresponds a unitary operator UEA],
which acts on the Hilbert space of physical states, and
has the group property

U[hg]UEAi]= U[A2Ai]. (2.3)

Of particular importance for us is the "boost" L(y),
which takes a particle of mass m from rest to mo-
men. um y:

L' (y) = 8 +p p [cosh8 —1],
L'0(y)=L'(y)=p sinh8,

L'0(y) =cosh8.

(2.4)

Here p is the unit vector y/I yl, and

sinh8=
I y I /m, cosb8= &0/m = Ey'+m'7'I'/m (2.5).

Strictly speaking, this should be called L(y/m).
We can use L(y) to define the one-particle state of

momentum y, mass ns, spin j, and s-component of spin r
(~=i j »" j)by— —

I y ~)=[~/~(y)7"'UEL(y)]l~& (26)

where
I &r& is the state of the particle at rest with J,=o.

Our normalization is conventional,

&y,~ I
y', ~'& =8'(y —y') 8-" (2.7)

The CBect of an arbitrary Lorentz transformation A&,

on these one-particle states is

UE~]ly, )=E~/~(y)]"'UE~]UEL(y)]l &

= C~/~(y)]"'UEL(~y)]UCL '(~y)~L(y)7 I ~&

=C~/~(y)7" 2"UEL(~y)] l~'&

x& 'IUCL-'(~y)~L(y)]l~&,
and 6nally

UE~] I y ~&= E~(&y)/~(y)]"' 2"l&y,~')

&&D"."'EL-'(~y)~L(y)]. {2.8)

t' E. P. signer, Ann. Math. 40, 149 (1939).

The COefBClenfs Dg~rr ~ RIC

D...& i[a]=&~'I UEz] I ~&. (2.9)

In (2.8), R is the pure rotation L, '(Ay)AL, {y) (the
so-called "Wigner rotation") so that D&»[R] here is
nothing but the familiar 2j+1-dimensional unitary
matrix representation' of the rotation group.

A general state containing several free particles mill
transform like (2.8), with a factor P~'/ru]'I'D for each
particle. These states can be built up by acting on the
bare vacuum with creation operators u*(y,&r) which
satisfy either the usual Bose or Fermi rules':

[a(y,~),a*(y',~')7~=8- 8'(y —y'), (2 1o)

so the general transformation law can be summarized

by replacing (2.8) with

UP]a*(y ~)U-'EA]
= L (~y)/ (y)]"'Z. D"-"'EL '(~y)~L(y)]a*(~y ~')

{2.11)

Taking the adjoint and using the unitarity of D&»EE]
glVCS

U[A]a(y, ~)U '[&]
=I ~(~y)/~(y)7"'2"D- &»CL '(y)~ 'L(~y)7~(i1y ~')

(2.12)

It will be convenient to rewrite (2.11) in a form
closer to that of (2.12). Note that the ordinary complex
conjugate of the rotation-representation D is given by
a unitary transformations

D&»CR]*=CD&&'CRJC—',

where C is a 2j+1X2j+1 matrix with

C*C= (—)" Ctc=1

(2.13)

(2.14)

' See, for example, M. E, Rose, Elemeritury Theory of Angular

~onym (John %iley and Sons, Inc., ¹vrVork, 1957), p. 48 Q.
' ~e use an asterisk to denote the adjoint of an operator on

the physica1 Hilbert space, or the ordinary complex conjugate of
a c number or a c-number matrix. A dagger is used to indicate the
adjoint of a c-number matrix. Other possible statistics than
allowed by (2.10) v+11 not be considered here.

8 Reference 6, Kq. (4.22).

[With the usual phase conventions, C can be taken as
the matrix

C..=(-)'8. . .,

but we won't need this here. I Since D&"ER] is unitary,

(2.13) can be written

D„.& 'i[8]= {cD&'i[z-']c-'}..
so (2.11) becomes

UE~]"{y, )U-'E&7
= [~(i1y)/~(y)]"'2" {CD&»EL '(y)~ 'L(~y)]c '}-

Xa*(Ay,~') . (2.16)
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We speak of one particle as being the an. tiparticle
of another if their masses and spins are equal, and all
their charges, baryon numbers, etc., are opposite. %e
won't assume that every particle has an antiparticle,
since this is a well-known consequence of field theory,
which will be proved from our standpoint in Sec. IV.
But if an antiparticle exists then its states will trans-
form like those of the corresponding particle. In par-
ticular, the operator b*(p,o) which creates the anti-
particle of the particle destroyed by a(p, o) transforms
by the same rule (2.16) as &&.*(p,o):

U(~]b*(p, )U-P]
=L~(~p)/~(p)]"'r. "(&=D"&LL '(p)~ 'L(~p)]&- ')-

Xb'(&p, ~'). (2.17)

To some extent this is a convention, but it has the ad-
vantage of not forcing us to use diferent notation for
purely neutral particles and for particles with distinct
antiparticles.

It cannot be stressed too strongly that the trans-
formation rules (2.12) and (2.17) have nothing to do
with representations of the homogeneous Lorentz group,
but only involve the familiar representations of the
ordinary rotation group. If a stranger asks how the spin
states of a moving particle with j= 1 transform under
some Lorentz transformation, it is not necessary to ask
him whether he is thinking of a four-vector, a skew
symmetric tensor, a self-dual skew symmetric tensor,
or something else. One need only refer him to (2.16) or
(2.8), and hope that he knows the j=1 rotation
matrices.

The complexities of higher spin enter only when we
try to use a(p, o) and b~(p, o) to construct a &&&end which
transforms simply under the homogeneous Lorentz
group. We will need to use only a little of the classic
theory of the representations of this group, but it will
be convenient to recall its vocabulary. Any representa-
tion is specihed by a representation of the infinitesimal
Lorentz transformations. Th,ese are of the form

(2.18)

where the cv's form an infinitesimal "six-vector"

It follows from (2.3) that

(2.24)

(2.25)

(2.26)

The J generate rotations and the K generate boosts.
In particular, the unitary operator for the finite boost
(2.4) is

UP (p)]=exp( —ip K8). (2.27)

The co.zmutation rules (2.24)—(2.26) can be de-
coupled by defining a new pair of non-Hermitian
generators:

(2.28)

(2.29)

A=-', LJ+iK],
B=-',PJ—iK],

with commutation rules

AxA=iA,

B xB=iB,
LA;,8;]=0.

(2.30)

(2.31)

(2.32)

The (2A+1) (28+1)-dimensional irreducible repre-
sentation (A,B) is defined for any integer values of
2A and 28 by

(~,b~ A~a', b')=b, b. J...&»,

(u&b~ B~ a'&b')= i&.;J&,&,
&s&

(2.33)

(2.34)

The representations (A,B) exhaust all 6n&ite dimen-
sional irreducible representations of the homogeneous
Lorentz group. None of them are unitary, except for
(0,0).

We will be particularly concerned with the simplest
irreducible representations (j,0) and (0,j), These are
respectively characterized by

where a and b run by unit steps from —A to +A and
from 8 to +8, —respectively, and J&» is the usual
2j+1-dimensional representation of the rotation group:

(2.19) J —+ J&&', K & —i J&», for (j,0) (2.36)

The corresponding unitary operators are of the form and
J-+ J&'&, K & +i J&'&, for (0,j), (2.37)

UL1+or] = 1+(i/2) J„~&",

~Pv~= Jl .= —J.P.

(2.20)

(2.21)

(2.22)

It is very convenient to group the six operators J„„into
two Hermitian three-vectors

where J&&'& is given as always by (2.35). We denote the
2j+1-dimensional matrix representing a finite Lorentz
transformation A. by D"&/A] and D&&&LA] in the (j,0)
and (0,j) representations, respectively. The two repre-
sentations are related by

(2.38)

(2.23) In particular the boost 1.(p) is represented according to
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(2.27) and (2.36) or (2.37) by

D"'[L(y)]=exp(—P J"'8), (2 39)

D"'I L(p)]=exp(+r' J"'~) (2 4o)

with sinhe—=
I pl/m. For pure rotations both D&&'&[8]

and D&&'&[8] reduce to the usual rotation matrices.

III. 2j+1-COMPONENT FIELDS

Ke want to form the free Geld by taking linear com-
binations of creation and annihilation operators. The
transformation property under translations required by
(1.7) forces us to do this by setting the field equal to
some sort of Fourier transform of these operators. But
(2.12) and (2.1'7) show that each u(p, o) and b*(p,o)
behaves under Lorentz transformations in a way that
depends on the individual momentum p, so that the
ordinary Fourier transform would not have a covariant
character. In order to construct fields with simple
transformation properties, it is necessary to extend
D&'&[X] to a representation of the homogeneous Lorentz
group, so that the y-dependent factors in (2.12) and

(2.17) can be grouped' with the a(p, o) and b*(p,o).
There are as many ways of doing this as there are
representations of the Lorentz group, but for the present
we shall use the (j,0) representation defmed by (2.36)
and (2.35). [The (0,j) representation will be considered
in Sec. VI, the (j,0) 0+ (0,j) in Sec. VII, and the general
case in Sec. VIII.]

Having extended the definition of the 2j+1X2j+1
matrix D&» in this way, we can split the rotation matrix
appearing in (2.12) and (2.17) into three factors

D &&'& [L—'(p)A —'L (Ap) ]
=D&'&-'[L(p)]Di &PL-']D&'&[L(AP)]. (3.1)

This allows us to write (2.12) and (2.17) as'

UP] (p, )U 'P]=Z" D- "'[i1 '7 (~p, '), (3 2)

U[A]P(y, )U—'[A]=g. D... [A.
—')P(AP, '), (3.3)

with

~(pp)—=[2~(p)]"'Z- D- "'[L(p)]o(p~') (34)

P(pp) = [2~(p)7'"2"{D"'[L(p)]c')- b*(p,~') (3 3)

The operators n and p transform simply, so the field

can be constructed now by a Lorentz invariant Fourier
transform

y. (x) = (2s) 31'
d3p

2~(p)

X[~ (y,.).' '+~p(y, ).-' '], (3.6)

with constants ] and if to be determined in the next

' This step corresponds to Stapp's replacement of the S matrix
by the "M-functions. "See H. Stapp, Phys. Rev. 125, 2139 (1962)
for j=~; and A. 0. Sarut, I. Muzinich, D. N. Williams, Phys.
Rev. 130, 442 (1963) for general j.

v. (x)=(2~) "' d p

[2~(p)]"'

XP [$D.."'[L(p)] (p, ') '"'

+~(D"'[L(p)]C ')- b*(p, ')e '"'] (3 8)

We have already derived a formula [Kq. (2.39)] for
the wave function appearing in (3.8):

D.."'I L(p)]=(exp( —P J"'tl)&-"

The fmld obeys the Klein-Gordon equation

(a'—m') q. (x)=0, (3.9)

but it does not obey any other 6eld equations. As dis-
cussed in the introduction, we consider this to be a
distinct advantage of the (j,0) representation, because
any 6eld equation [except (3.9)] is nothing but a con-
fession that the field contains superfluous components.

If a particle has no antiparticle (including itself)
then we have to set g=0 in (3.6) and (3.8). In the
other extreme, a theory with full crossing symmetry
would have lg = I)l. We will now show that the choice
of $ and p is dictated by requirement (1.8), and hence
essentially by the Lorentz invariance of the S matrix.

IV. CROSSING AND STATISTICS

We are assuming, on the basis of their particle in-

terpretation, that the u's and b's satisfy either the usual
Bose commutation or Fermi anticommutation rules:

L (p, ), *(p, ')] =b(p —p')3-,
[b(p,~) b*(p,~')2= ~(p—p') ~-, (4.1)

with all others vanishing. It is then easy to work out
the commutation or anticommutation rule for the 6eld
defined by (3.8):

[V.(x) ~"'(y)]+

51 2 dp
11- "'(p,~(p))

(2e)' 2oi(p)

X(I &I'exp[iP (*—3)7+ l~l'exp[ —eP (*—3)]&
(4 2)

section. It is clear that this is the most general linear
combination of the u's and the b*'s which has the simple
Lorentz transformation property

U[A,u]q. (x)U—'[i1,a]
=P.. D...oi[il,"]&..(i1x+o). (3.7)

[We choose to combine a and b*, so that p, (x) also
behave- simply under gauge transformations. ]

In terms of the original creation and annihilation
operators, the fMld is
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where the matrix II(p) is given by The Geld is now in its anal form:

m 'II(p, M) =D ' [L(p)]D ' [I,(p)]t (4 3)

=exp( —2p JH)

[cosh8= p'/m =~(p)/m].

(o, (x) = (2') 3('
dap

[2~(p)]'"

This matrix is evaluated explicitly in the Appendix
and given for j~3 in Table I. For our present purposes,
the important point is that

XP CD.. [L(p)]o(p, ')e"

+(D[L(p)]C ')- &*(p o')e '"']
'(P) = ( ) 't ~'"'"'"""P»P»' ' 'P»~ ~ (4 5) The commutator or anticommutator is

where t is a constant symmetric traceless tensor. It [&p.(x),&p. t(y)]~
follows then from (4.2) that = i( im—)-'it..»» »~8"»8'„, .8».&(x—y), (4.12)

[(o.(*),v "'(y)]+
= (2n) '(—zm) 'it...»~~" »~88 '8

dap
x {I

(I' exp[ip (x—y)]
2~(p)

~(—)"Ill' expL —ip (x—y)]) (4 6)

It is well known4 that such an integral will vanish
outside the light-cone if, and only if, the coeScients of
exp[ip (x—y)] and exp[—ip (x—y)] are equal and
opposite, i.e.,

lkl'=~( —)"l~l'. (4.7)

Thus the requirement of causality leads immediately
to the two most important consequences of Geld theory:

(a) Statistics: Kq. (4.7) makes sense only if

(4.8)

where 6 is the usual causal function

d3p
a(x) = [eip (x—y) e

—iy (x—y)] (4 13)
(2n)' 2(o(p)

V. THE FEYNMAN RULES

Suppose now that the interaction Hamiltonian is
given as some invariant polynomial in the q, (x) and
their adjoints. For example, the only possible non-

derivative interaction among three particles of spin j~,
j2, and j3 would be

&& (t „(')(x) q.,(') (x) (o.,(» (x)+H.c., (5.1)

so a particle with integer spin must be a boson, with a
(—) sign in (4.1), while a particle with half-integer spin
must be a fermion, with a (+) sign in (4.1).'0

(b) Crossing: Kq. (4.7) also requires that

(4 9)

Thus every particle must have an antiparticle (perhaps
itself) which enters into interactions with equal coupling
strength. There is no reason why we cannot redeGne
the phase of a(p, )aond b*(p,o) and the phase and
normalization of (o,(x) as we like, so Kq. (4.9) allows
us to take

fj i j2 js)
!Zg

0] o2 03
(5.2)

the "vertex function" being given here by the usual
3j symbol.

The S matrix can be calculated from (1.1) by using
Quick's theorem as usual to derive the Feynman rules:

(a) For each vertex include a factor (—i) times
whatever coeflicients appear with the fields in X(x).
For example, each vertex arising from (5.1) will con-

tribute a factor

without any loss of generality.

(4.10) (b) For each internal line running from a vertex at
x to a vertex at y include a propagator

'0 As a demonstration that the causality requirement cannot be
satished with the wrong statistics, this is certainly inferior to the
more modern proof of P. N. Surgoyne, Nuovo Cimento 8, 607
(1958). Our purpose in this section is to show that causality can
be satisfied, but only with the right statistics and with crossing
symmetry.

&2'&(.(*)(t "'(y)}&o= ()(x—y)(~.(x) ( "'(y))o
+(—)"()(y—x)&() "'(y)v. (x))o (5 3)

(c) For an external line corresponding to a particle
of spin j, J,=p,, and momentum p, include."a wg, ve
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function

D""'LL(P)]exp(ip *)
L2 (P)]'"(2 )"'

1
D""'*LL(P)]exp( —ip *)

[2(g (p) ]i&~ (24r)»2

[particle destroyed],

[particle created],

(5.4)

[D"'[L(p)]C '] „exp( ip—x).[antiparticle created],
[2~(p)]'I'(2')'&'

[D"'[L(p)]C '].„*exp(ip x) [antiparticle destroyed).
[2~(p)]'"(2~)'"

These wave functions can be calculated from Eq.
(2.39). In conjunction with (4.4), this tells us that

D&n[L(P)]=m "11&&'&(p'), (5.5)

=(2ir) '4&i "
(~"'(y) v.(*))0

II (p) exp[ip (x—y)]
2~(p)

= (24r)
—

'4&4
—'& II„(p) exp[ —ip (x—y)].

240(p)

Formula (4.5) for II(p) lets us write this as

=i( im) ~t.;»» —»~8»-a„8 ."a+'(x—y) (5.7)

(—)"(4 "'b) 4». (x))o

=i ( im) '&t.;»»—»~8„-,4t 8 ".6+ (y—x)

where
d8p

ia+(x) = exp(ip x).
(2~)' 2~(p)

At this point we encounter an infamous difficulty.
If the 8 function in (5.3) could be commuted past the
derivatives in (5.7), then the propagator (5.3) would be

S...(x y) = 4, ( 4m) —'4t..'~—* —»~-"
XB„A, 4&»,.d,o(x—y), (5.8)

where the 4-vector p' is defined to have t&'=0/2, i.e.,

p'= fp[2m((o —m)]'" Pm (co+m)]'t') . (5.6)

The matrix II&&'& is calculated in the Appendix; see also
Table I.

(d) Integrate over all vertex positions x, y, etc. and
sum over all dummy indices r, 0', etc.

(e) Supply a (—) sign for each fermion loop.
The problem still remaining is to calculate the pro-

pagator (5.3). An elementary calculation using (4.11)
and (4.3) gives

e(x) —=e(x) —t&(—x),
~ (*)-=[~.(*)+&.(-*)],
A(x) =—6+(x)—6+(—x) .

(5.10)

It is well known that ho(x) is scalar, because e(x) is
.scalar unless x is spacelike, in which case &(x)=0.
Using the tensor transformation rule (A.5) for the
t"" we find that

DU&[A]S(x)D "&[A]t=S(Ax) . (5.11)

This is just the right behavior to guarantee a Lorentz-
invariant 5 matrix.

But unfortunately the propagator (5.3) arising from
Wick's theorem is rot equal to the covariant propagator
S(x) defined by (5.8), except for j=0 and j=~i. The
trouble is that the derivatives in (5.8) act on the e

function in ho(x) as well as on the functions 6 and Ai.
This gives rise to extra terms proportional to equal-
time 8 functions and their derivatives. These extra
terms are not covariant by themselves, but are needed
to make S(x) covariant; we must conclude then that
(5.3) is not covariant.

For example, for spin 1 Eq. (5.3) gives

(2{ .(*) "'()/) =-'
X [tl„4t„t& i(x y)+i&(x —y)8„8„6(x—y)], —

while (5.8) gives

S„.(x y) = ,'i4N '—t„&"4l—„tl,-
XP, (x—y) yi. (x—y) ~(x—y)].

The difference can be readily calculated by using the
familiar properties of A(x). We 6nd that

(Tf .(*)4 "'(y)))o
=S„.(x—y) —24&4 't„~54(x—y), (5.12)

and the second term is definitely not covariant in the

where —id'(x —y) is the usual spin-zero propagator:

—ia'(x) =H(x) z, (x)+to(—x)~(—x)
=-', [t4(x)+i&(x)h(x)] (5.9)

and, as usual,
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sense of Eq. (5.11).(This problem does not arise for spin
0, where there are no derivatives, nor for spin —,', where
there is just one derivative and the extra term is pro-
portional to

t&t(. (x y)—B„e(x y)—= 2t'h(x y)—b(x' y'—)=0.
But it does occur for any j~ 1.7

This problem has nothing to do with our noncanonical
approach or our use of 2j+1-component fields. For ex-
ample, in the conventional theory of spin 1 (using the
four-component (-,',—',) representation) the propagator is

(T(~.(x)~ (y)))o
(i—l2) L(g" m—'~.~.)&i(x y)—

+ie(x—y) (g„„—m—'c)„ct„)h(x—y)]
i(g—» m—'8„8„)ho(x y)—2m—'i)„blab'(x y)—;

so here also there appears a noncovariant term like
that in (5.12). The general reason why the S matrix
turns out to be noncovariant is that condition (1.5) is
not really satisfied by an interaction like (5.1) if any of
the spins are higher than 2, because the commutators
(4.12) of such fields are too singular at the apex of the
light cone.

The cure is well known. We must add noncovariant
"contact" terms to X(x) in such a way as to cancel out
the noncovariant terms in the propagator. If we used a
Lagrangian formalism, then such noncovariant contact
terms would be generated automatically in the transi-
tion from Z(x) to X(x), although the proof" of this
general Matthews theorem is very complicated. For
our purposes it is only necessary to remark that we take
the invariance of the S matrix as a postulate and not a
theorem, so that we have no choice but to add contact
terms to X(x) which will just cancel the noncovariant
parts of the propagator, such as the second term in
(5.12).

In summary, we are to construct the S matrix ac-
cording to the Feynman rules (a)—(e), but with the
slight modifications:

(a') Pay no attention to the noncovariant contact
interactions; compute the vertex factors using only the
original covariant part of X(x).

(b') Do not use (5.3) for internal lines; instead use

the covariant propagator

S...(x y—) = i—( im—) 'it-...»» »"~

Xa„,())» tt„„.5o(x—y) . (5.8)

Similar modifications are required when X(x) includes
derivative interactions.

The Feynman rules could also be stated in momentum
space. The propagator (5.8) would then become

S.. (q) = d4xe-"'S (x)

i (—m—) "11;(q)/q'+m' ie— (.5.13)

The monomials II(q) are calculated in the Appendix,
and presented explicitly for j~3 in Table I.

VI. T, C, ANDP

The eRect of time-reversal (T), charge-conjunction
(C), and space-inversion (P) on the free-particle states
is well known. It can be summarized by specifying the
transformation properties of the annihilation operators:

Ta(y, o) T-'= ttr P.. C., a(—p, o'),

Tb(p,.)T-i= „-,P., C...b(—y, o'),

Ca(y, o) C '=ttob(p, o),

Cb(p, o) C—'= ttoa(p, a),

Pa(y, o)P '= tt pa( —p, o),

Pb(y, o) P '=)ti b(—p, o) .

(6 1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

The g's and g's are phase factors" representing a degree
of freedom in the definition of these inversions. The
operator T is antiunitary, while C and P are unitary.
The matrix C„was defined in Sec. II, and has the
properties

CJ(i)C i J(i)a- —

C*C= (—)'& CtC=1
(6.7)

(6.8)

where J"' are the usual 2j+1- dimensional angular-
momentum matrices.

In order to describe the effect that C and P have on
the field (o (x), it will be necessary to introduce a
second 2j+1-component field:

X,(x)= (2a.) '(s
d3 p

D„''LL(—p)] (y, ') '"'+(—)"P(D"'(I-(—p)]C ')., b*(y, ')
L»(p)]'" "— a'

(6.9)

This is the field that we would have constructed in-
stead of q (x) had we chosen to represent the "boost"
generators by

K(s) —+sJ(s) (2.37)

"See, for example, H. Umezawa, QNuntlm Field Theory (North-
Holland Publishing Company, Amsterdam, 1956), Chap. X.

instead of Eq. (2.36). The field X,(x) transforms under

the (0,j) representation of the Lorentz group:

ULA]X. (x)U—'LA) = P.. D...(i)(A.—']X. (Ax), (6.10)

D(i)LA]=D(i) tLA—i] (6.11)

'2 For a general discussion of these phases, see G. Feinberg and
S. steinberg, Nuovo Cimento 14, 571 (1959).The discussion there
was limited to (0,0), (-'„-',), and (-', ,0)Q+(0,—',) zelda, but can be
easily adapted to the general case.



81326 STEVEN WEIN BERG

Pq, (x)P-'=pi X.(—x, xo),

PX.(x)P-'=g~(. (—x, x'),

(6.17)

(6.18)

provided that the antiparticle inversion phases are
chosen as

t)i = ttp ( )'& —(6.19.)

Any other choice of the q would result in the creation
and annihilation parts of q and I transforming with
diQ'erent phases, destroying the possibility of simple
transformation laws. '3

If a particle is its own antiparticle then we call it
"purely neutral, "and set

a(l,o)=b(1, ). (6.20)

In this special case the (j0) and (0 j) fields are related
by

X.t(x) =P..C...(O. (x), (6.21)

the matrix D appearing instead of D because we use
(2.40) instead of (2.39). Like e,(x), the 6eld X (x)
obeys the Klein-Gordon equation (and no other field
equation) and commutes with its adjoint outside the
light-cone. It also has causal commutation relations
with q, (x), but only because of our choice of the sigu
(—)'&iu Eg. (6.9).

The effect of T, C, and P on q, (x) an.d X,(x) can be
readily calculated by use of the formula:

D"'[L (p)]*=CD"'[I(—p)]c ' (612)

We find that:

&e.(x)T '=Br Z" C" t "(x, —*'), (6 13)

TX,(x)T '=)tz Q, C„X, (x, —x'), (6.14)

C(o.(x) C-'=)to P, C„.-'x..t(x), (6.15)

CX.(*)C '=~ (—)"2,"~- 'p"'(*) (616)

VII. 2 (2j+1)-COMPONENT FIELDS

Any parity-conserving interaction must involve both
the (j,0) field y (x) and the (O,j) 6eld X,(x). It is
therefore convenient to unite these two (2j+1)-
component fields into a single 2(2j+1)-component
field:

t (x)
P(x) =

-X(*)-
(7 1)

This field transforms according to the (j,0)Q+(O,j)
representation, i.e.,

«»~. (*)~- [»=re ~-e"'[~-]~e(»), (72)

where

g)(i)[»=
-D(i)[i1]

0

0

D(()[»
(7.3)

the representations D&» and D&&'& being de6ned by
(2.36) and (2.37) respectively. The representation S(&)

can be dered also by specifying that the generators
of rotations are to be represented by

0 J(i)

0 J(j)
(7.4)

spinless 6eld:

CPTq, (x)T 'P 'C '=t)ot)) t)z(p, t(—x), (6.25)

CPTX, (x)T 'P 'C '=t)ci)z))r( )—'&X,t'( x—), (6.26)

permitting a great simplification in the proof of the
CPT theorem. 7 The use of 2j+1-component 6elds
(either q, or X,) for massive particles as well as for
neutrinos would seem very appropriate in theories of
the weak interactions, where CP and T are conserved
but C and P are not.

& t(x) ( )2& p, (-,X, (x) (6 22) and that the generators of boosts are represented by

The fields are not Hermitian, except of course for j=0.
Nevertheless, Eq. (6.20) requires the phases ttr to be
equal to the corresponding )tr, and (6.19) then implies
that these phases can only take the real values +1,
except that p& must be &i for purely neutral fermions.

We see that the fields y, (x) and X,(x) transform
separately under T, and also under the combined
operation CP:

CP(( (x)P 'C '=)tot)) P, C„. 'q, .t(—x, x'), (6.23)

CPX (x)P-'C—'

=)to))z(—)2' Q, C,—'X, t( „„0) (6 24)

[Under CPT the transformation law is just that of a
' An important consequence is that, a particle-antiparticle pair

has intrinsic parit
~~~p= ()"-

a well-known result that would be inexplicable og. the basis of
nonrelativistic quantum mechanics,

R(&' = iy 3(&'—,

where p5 is the 2(2j+1)-dimensional matrix:

0

(7 5)

(7.6)

0

1 0
P'= 1. (7.8)

[See Eq. (6.11).]This has the consequence that

«»f-(x) ~ '[»=re fe(») &e."'P], (7.9)

This satisf(es (2.24)—(2.26) because y(2=1.
The (j,0)o+(0,j) representation (7.3) differs from the

(j,0) and (O,j) representations in the important re-

spect that S~ is equivalent to S '.
~(i)[»t=p~(i) [p—i]p (7.7)

where
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where |P is the covariant adjoint

i(x)=O—'(x)~.

where II(q) and II(q) are deGned by (A.10) and (A.41).
In the 2 (2j+1)-dimensional matrix notation this reads

7.10

The T, C, and P transformation properties of f (x)
can be read olI immediately from (6.13)—(6.18):

T|P(x)T-'=2Ir6$(x, —x')

gc8 'Pip~-(x) (bosons),
C|P(x)C-'=

2Ic8 'y2@*(x) (fermions),

Pl(x)P '=n~W( —x, *')

(7.11)

(7.12)

(7.13)
with

C 0

0 C
(7.14)

w ()( )fx=
6-'y2P|P*(x) (fermions).

(7.15)

A purely neutral particle will have a Geld which satisfies
the reality condition

6 ' * x bosons

yiI182 ~ ~ 92) j27'

]PIP2 ' P2j
(7.2o)

and are discussed and evaluated in Appendix B.
The field 2P obviously obeys causal commutation re-

lations, since q and y commute with both qt and yt

at spacelike separations. Its homogeneous Green's

functions are

$3p
Q-(x)01(y))o= (2~) 'm " M-s(p)

2o)(p)

&(exp{ip (x—y) }, (7.21)

[~»»" »~88'8 +m2&52P(x) =0, (7.19)

where the generalized p matrices, p»»' ",are deGned by

IPIP2' ' 'P2j

(a2—m2)y. (*)=O. (7.16)

Its inversion phases gr, ge, qi must be real, except that
g~= &i for purely neutral fermions. |pp(y)2P (X) 0——22r

—'m 2&

The Geld 2P(x) of course satisiies the Klein-Gordon
equation

d8p
&'-s(P)

»(u)
Xexp{ip (y—x)}, (7.22)

But 2P(x) has twice as many components as the opera-
«rs a(y, o) and b*(p,o), so it has a chance oi also satis-
fying some other homogeneous field equation. In fact,
it does. Using (A.12) and (A.40), we can easily show
that the (j,o) and (0,j) fields are related by

II( ia)q (—x)= m22X( x) (7.17)

m22 II(P)
M(p) =

II(p) m"
(7.23)

-
(—m)'& II(p)—

— 11(p) (—m)"-
= (—)"M(—p) (7 24)

II( ia)x(—x) = mq2j(x), (7.18) The "raw" propagator is then

(2'{4-(x)A(y) })o=—8(x—y)(4-(x)A(y)) o+ (—) a(y —*)(A(y)4-(x))0

= (22r)
—'m —2&

d8 p
fa(x y)M, s( ia) e—xp{ip (x —y)}+8(y x)M s( —ia) exp{ip—(y—x)}5—. (7.25)

2~(Ii)

As discussed in Sec. V, this is no|t the covariant propagator to be used in conjunction with the Feynman rules. We
must add certain noncovariant contact terms to (7.25} which allow us to move the derivatives in M(—ia) to the
left of the 8 functions. The true propagator is

S p(x —y) = (22r) 'm 2&M—p(
—ia')—d3p

[8(x—y) exp{ip (x—y) }+8(y—x) exp{ip (y—x)}5.
2~(ii)

im 2'M p( —ia)ho(x y)—, (7.26)—

where ho(x) is the invariant j=o propagator (5.9).
This can be written in a more familiar form by using
(B.13); we find that

s(x) =im 22Lv»"'"""8 8 8 —m"5&o(x) (733)

It is easy to see from (B.4) that this has the correct
transformation property:

ni ifA5s(x)n& i- fA5=s(Ax).

In momentum space we replace B„by ig„, so that

s(q) = im 2&f6'—(q)+-m'2&5/q2+m2 ic, —
where

(P(q) = —i22yPIP2'''P2lq q
~ ~ ~

q

General formulas for 6'(q) are given in Appendix B;
the results for j~ 2 are in Table 2. The wave functions
for creation and annihilation of particles and anti-
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particles can be read off from (7.1), (4.11), Rnd (6.9),
or alternatively found from the solutions of {7.19).
This whole formalism reduces to the Dirac theory for
2=2.

VIII. GENERAL FIELDS

We started in Sec. III by introducing a 6eld y(x)
which transforms according to the (j,0) representation.
Then, in order to discuss parity conserving theories,
we introduced the (0,j) field x(x) in Sec, VI and used
it in Sec. VII to construct a field P(x) which transforms
under the {reducible) representation (j,0) Q+ (0,j).These
particular fields have the advantage of depending very
simply and explicitly on the particular value of j, but
&o, Z, and IP are certainly not otherwise unique. In fact,
the usual tensor representation of a field with integer j
is (j/2, j/2), while the Rarita-Schwinger representation
for half-integer j is based on the (2j+1) -dimensional
reducible representation:

(2j-1 2j—iq
E(l,0) O+ (0,—',)lsi

E 4

Our simpler fields agree with these conventional repre-
sentations only for the case j=-,'.

We now consider the general case. Let D &tA) be
any representation (perhaps reducible) of the Lorentz
group. Assume that when A. is restricted to be a rota-
tion E, the repre. sentation DLR) contains a particular
component D&"t R). By this we mean that there must
be R lotatlo11 basis of vectois N„(o), sucll tllat

Q„D„„LR)e (o) =P. N„(o')D;.&»LR). (8.1)

We can form an operator n„(y) analogous to (3.4):

~.(y) =f2~(p))'" Z. D-g(y))N-(o)o(y, o) (8.2)

which transforms simply:

U/A)n„(y) U 'LA) =Q„D.„LA
—I)n„(AP) . (8.3)

LUse (8.1) and (2.12).) For the antiparticles we can use
another basis o (o), which in general may or may not
be the same as the u„(o), but which must also satisfy

Z-D-PG. ()=Z. '( ')D. .& &EX. (84)

The operator P„(y) analogous to (3.5) is now formed as

P.(y)=P~(y))"' 2 D..LL(y))

The 6eld is constructed as the invariant Fourier
transform

p
L~-(y)o'"'+P-(y)o '"') (8 7)

2&o(y)
P.(x)= (2s.)-sl'

)&o„(o')C, , 'b*(y,o) . (8.5)

Using (8.4) and (2.17), we see that it transforms just
like &I„(y):

UC:A)~-(P) ~- t:A) =Z- D-P-)~.(AP) (8.6)

or going back to u and b~

4-( )= d'P Z I .(P, ) (P, ) '" *

+o-(y,o)t*(y,o)o '" *1, (8 8)

where the "wave functions" in (8.8) are

1.1(y, o)=(2~) "P~(y)) "ZD-IL(y))N ( ), (89)

o-(p, o) = (2~) '"P~(p)) '" Z D-Ll-(p))

&(o„(o')C. . (8.10)

This 6eld transforms correctly

U/A, R)y. (x)U-ILA, R)=Q.D,P )y.(A~+a). (8.11)

It obeys the Klein-Gordon equation, and may or may
not obey other field equations as well. The causality
condition (1.8) can be satis6ed if we choose

P.I (o)N o(o) =g. s„(o.)ii„o(o), (8.12)

and if we use the usual connection between spin and
statistics. We will not pursue these matters further here.

The chief point to be learned from this general con-
struction is that the wave functions (8.9), (8.10) which

enter into the Feynman rules are always determined by
the matrices D„)1.(y)) representing a boost.
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APPENDIX A: SPINOR CALCULUS FOR ANY SPIN

Everyone knows that the three Pauli matrices to-.

gether with the 2&2 unit matrix make up a four
vector 6':

t—=e) to=—i
in the sense that

D&'I'&t'A)~~D&'i»LA)t =A„~~ . (A2)

Here A. is a general proper homogeneous Lorentz trans-
formation, and D&ii'ILA) is the corresponding 2)&2
matrix in the (~,0) representation, defined by repre-

senting the generators of infinitesimal transformations

2'
This famous construction of the vector 0' is the basis
of the familiar spinor calculus, which can also be em-

ployed in a rather cumbrous fashion to discuss spins
higher than -', .

We shaH instead show here that this construction
of a vector out of two-dimensional matrices can be
directly generalized to the construction of a tensor of
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rank 2j out of 2j+1-dimensional matrices. "We shall
also show that the commutator and propagator of a
(2j+1)-component field of spin j are proportional to
this tensor.

We first prove that for any integral or half-integral j
there exists a set of quantities

(lrv o =212
pro'

(tii, tl2 ' ' ' tl2'=0 1 2 3/

then
q'= —m'; qp&0, (A11)

II&i&(q) =m'2D&2&LL(q)7'=m'1'exp( —28q J&i&) (A12)

where

we define a scalar matrix

it&(q) ——(—)2lt, 111112~ . 112iq q
. . .

q (A10)

We will prove that if q is in the forward light-cone,

with the properties:

(a) t is symmetric in all tl's.
(b) t is traceless in all ti's, i.e.,

r Ittl It 2
' ' ' It 27' =05IttlIt&2 &o'

(c) t is a tensor, in the sense that

(A4)

q=q/lql,
sinhe=

l ql/m,
(A13)

and J&l' is the usual 2j+1-dimensional representation
of the angular momentum. LThe constant factor in
(A12) is of course arbitrary, but is chosen here so that
the normalization of t will be as simple as possible. 7

Dil&LA7t»». "»1D(i&LA]t
A .»it""" "1' (AS)

where Dii&l A7 is the 2j+1-dimensional matrix corre-
sponding to A in the (j,0) representation. LThese
Dii&LA7 are the same as used in the text, and are
de6ned by Eqs. (2.36) and (2.35). Ordinary matrix
multiplication is understood on the left-hand side of
(AS). Eq. (AS) reduces to (A2) for j=-', .7

Existertce Proof:
Let 22, be a 2j+1-dimensional basis transforming

according to the (j,0) representation of the Lorentz
group, i.e.,

22. —& P. D. .U&LA7N. . (A6)

The quantities N,N,* evidently furnish a (2j+1)'-
dimensional representation, the direct product of the
(j 0) representation with its complex conjugate. But
this is

q'(m) =m; q(m) =0. (A15)

(a) If h. is a rotation then D"&l A7 is the unitary
matrix

DU&l 37=exp(ie J(2'&), (A16)

where JU& is the usual 2j+1-dimensional representa-
tion of the angular momentum vector J. The vector
(A15) is rotation-invariant, so (A14) gives

l J&i&,II&i&(q(m))7=0.

But the three matrices Jii& are irreducible, so Schur's
Lemma tells us that Ili"(q(m)) must be proportional
to the unit matrix. Ke will fix its normalization so that

Proof of (A12):
The transformation law (AS) implies that

Dii&l A711&i&(q)Dii»l A7=11ii&(Aq). (A14)

Let us fix q to have the rest-value q= q(m), where

II..(i&(q(m)) =m22l&... , (A1S)
so the quantities N,N„* transform under the (j,j)
representation. The (j,j) representation consists of all
symmetric traceless tensors of rank 2j, so it must be
possible to form such a tensor basis by taking linear
combinations of the N,N,*, i.e.,

T111». P2i(22) =Q t . Pl» lr2ig g 2'. (AS)

in such a way that the transformation (A6) gives

Tl41» . .»1 (22) ~A. »A». . .A»v'Tviv2 ~ ~ ~ v2l(22) (A9)

But this requires that the t coefFicients must satisfy
Eq. (A5). They must also be symmetric and traceless
with respect to the tl;, because T(22) is symmetric and
traceless for all N. Q.E.D.

Having proved the existence of the t's, we must now
establish a formula which will allow us to calculate
them, and which will also provide a connection with the
Green's functions of field theory. For any four-vector q,

and therefore
pp v ~ vp (A19)

and
DU&l L(p)7=exp( —8P J&i&)

L(p)q(m) =P.

(A21)

(A22)

Formula (A12) now follows immediately.
The exponential in (A12) may be calculated as a

polynomial of order 2j in the matrix

s—=2(q Jii&).

Recall that 2 is an Hermitian matrix with integer eigen-
values 2j, 2j—2, ~ ~, —2j, and that therefore

Equation (A14) therefore gives

II i'&(Aq(m) )=m,"Di'&LA7Dii&tLA7. (A20)

(b) If A is the "boost" L(p) defined by Eq. (2.4),
then D"'l A7 is the Hermitian matrix

"These are a special case of the matrices constructed by Barut,
Muzinich, and Williams, Ref. 4, by induction from the j= ~ case. (z—2j) (s—2j+2) . (z+2j)=0. (A24)



This can be revmitten to give z'+' as a polynomial of
order 2j in s. It follows then that 11&j&(q) must itself
be such a polynomial, since all powers of z beyond the
2jth in the Taylor series for the exponential can be
reduced to polynomials in z of order 2j.

For examPle, in the case of sPin j=rs, Eq. (A24)
gives, z'= 1, so that

Setting this equal to P—'q„ then gives (A1).

To go through this sort of calculation for general j
vrould be tedious and dificult. Ke shall approach the
problem of representing exp( —28z) as a polynomial in s
more directly. First split it into even and odd parts,

exp( —8s) =cosh8s —sinh8z. (A26)

exP( —s8) =1—«8+-'.8'——,"8'+" =coal 8—s siW8. We consider separately the cases of j integer and

half-integer,
Then (A12) gives l. Integer Spin
«'j»(q) =~[cosh8 —2(y J&rj») smh8j The eigenvalues 2j, 2j—2, etc., of the Hermitian

=q' —2(» J&'j'j) (A25) matrix s=2(g J) are even mtegers. If follows that"

j-r s'(s'-2') (s'-4') (s'- (2l)')
coshs8= 1+Q slnh2n+20

n=e (2ey2)!

j-r (s' —2') (s' —4') (s' —(2js)')
sinhs8= s cosh8 P slnh 8

n=s (2N+1)!

Using (A26) and (A12) gives for all q:
r ( q2)j I'--

D"'(q)=(—q')'+2 (2» J)[(2» J)'—(2»)'X(2» J)'—(4»)'1".
(2n,+2)!

&& [(2» J)'—(2~»)'j[2» J—(2&+2)q'&

or

(—q')' ' ( qs) j-s
II& &(q) = (—q')'+ (2» J)[2»*J—2q'J+ (2» J)[(2» J)'—(2»)'j[2» J 4fJ—

4!

(A27)

(A28)

(—q') '
+ (2» J)[(2» J)'—(2»)'][(2» J)'—(4»)'][2» J—6q ]+ . (A30)

The series (A30) cuts itself oB automatically after j+1 terins. The terms we have listed are sufncient to calculate

II for j=o, j., 2, 3; the results are in Table I.

2. Half-Integer Spin

The eigenvalues 2j, 2j—2, etc., of s= 2(q J) are now odd integers. It follows that"

j'-»s (s' —1') (s'—3') . (s' —(2l—1)')
coshs8= cosh8 1+ g sinh'"0

n 1 (2N)!

j-tjr (s'—V) (z' —3') (s' —(2l—1)')
sinhs8=s sinh8 1+ P sinh'"0

(2js+1)!

Using (A26) and (A12) now gives:

( qs) j-n-1/s

II&j&(q) = (—q')~'js[qs —2» J$+ Q
(2~+1)!

(A31)

(A32)

XC(2» J)'—«']C(2». J)'—(3»)'1" C(2» J)'—([2N—1J»)'j[(2~+1)q'—2» Jj, (A33)

"For (A27) and (A31) see, for example, H. B.Dwight, TaMe of Iwtegrals and Other MatheesaHca/ Data (The MacmiHan Company,

New York, 1961), fourth edition, formulas 403.11 and 403.13, respectively. Equations (A28) and (A32) can be checked by

differentiating with respect to S; we get (A2"I) and (A31). I would like to thank C. Zemach for suggesting the existence of such ex-

pressions and a method of deriving them.
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11(j)(q) = (—q2)i I/2[q0 —2» J]+—(—qs) j 2/2[(2» J)2—»s][3q0 2» J]
3I

+—(—. q') j SjS[(2» J)'—»'][(2» J)'—(3»)s][Sq0—2» J]+ . (A34)
5t

""'(q)=-q'+2(»»(» J-q').
Setting this equal to t&"q„q„gives

t00 —]
jj02—jj j0 +J'.

t'j= fJj,J,j—b;;.

Observe that this is traceless, because

(A35)

(A36)

The series (A34) cuts itself off after j+12terms. The
terms we have listed suKce to calculate II for j=—,', —,', ~;
the results are in Table I.

Having calculated II(q), the coeKcients PIvs " may
be determined by inspection. For example, in the case
j=1,Eq. (A30) gives tI lI 2 I 27']V1V2 V27q q

o ~ o

q q q
o ~ o

q
= t»»'"~2&tv'v'"v2&q„q„q„. q, q, ~ q, .

—( q2)2j (A47)

Since this holds true for any q, we can use it to derive
formulas for any symmetrized product of t and t. For
j=2:

', ftVi "+t"t-V]= ', PtVt"+h-V]= gV". —(A48)

APPENDIX B: DIRAC MATRICES FOR ANY SPIN

It follows immediately from (A12) and (A40) that

II '

(q)G
'
(q)=H

'

(q)II
'

(q) = (—q')". (A46)

Substitution of (A10) and (A41) into (A46) gives

tvv= [2JS—3]—1=2(J'—2) =0. (A37) We will use the 2j+1-dimensional matrices tv"
tl"""' discussed in Appendix A to construct a set of
2 (2j+1)-dimensional matrices:

We won't bother extracting the tf"""' for j)1, because
it is II(q) that we really need to know.

We could have gone through this whole analysis using
the (O,j) instead of the (j,O) representation in (AS).
In that case we should have defined a symmetric trace-
less object t»I" "»~ which is a tensor in the sense that

D (I)[A]tvlvS vS jD (i)[A"]t
VIA V2. ~ .A V2itvlvl ~ ~ vli (A38~)V2g )

where D(j)[A] is the matrix corresponding to A. in the
(0,j) representation:

D(i)[A]=D(i)[A I]&-

0 t"I"'""2
(81)yrjjlII2 ~ ~ ~ Ijj2j= i2j

PW2 "V2g 0

(82)

-0 1

1 0
(83)

Their properties follow immediately from the work of
Appendix A.The fundamental formula (A12) would then read

II(j') (q) = jjs'j'D(j )[L(»)]'=m'SjD(j)[1 ( »)]2-
=m eSxjp(28q J(j)), A40

i. Lorentz Transformations

where

Hence
11(j)(q)= (—)Si)jvl»" Vsjq q . . .

qP2j '

vo(i)[A]~VIVS "VSig)(i)-IP,]
=A»A» "h. .»iq"I"2" "sj (84)

$VIVS'''jjSj = (+)jjVI» jj2j
7 (A42)

the sign being +1 or —1 according to whether the jl's
contain altogether an even or an odd number of space-
like indices. There is another relation between barred
and unbarred matrices which follows from (6.7):

II(j)(q)*=CII(j) (q)C-' (A43)

where $(j) is the (j,0) 0+ (0,j) representation

-D(j)[A]

0

0
(8S)~(j)[A]=

D(j')p].

( )
It follows from (AS), (A38), and (A39) that the y's

(A41) are tensors, in the sense that

and so Obviously ps is a scalar
(A44))Pl@2' 'P2 —

/tlat 1@2 P2 g—&

g)(j)[A]PSg)(j)-I[A]=yS

but p is not, because

Equation (A44) in conjunction with (A42) yields the
reality condition

(86)

(A45)fvlvl jjsjo —(+)Cjviv2 jlsif"I—
o P

—
2
—2ig00 ~ ~ 0 (87)
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~wu2" v2j=06 PIIs2 (89)

3. Algebra

2. Symmetry and Tracelessness

The t and t are symmetric and traceless in the p, in-
dices, so y is also:

(any permutation), (88)

and for half-integer j:
(P"'(q) = (—q')' '"[q'P —2» av5P]

i(g ( q2) j—n—1/2

+ 2 [(2» 3)'—«']
(2n+1)!

X [(2q 3)'—(3q)'] [(2q 3)'—([2n—1]q)'

X [(2n+1)q'P —2q av(P] (817)I have not studied the algebra generated by these p
matrices in detail, but there is one simple relation that
can be derived very easily. It follows from (A47) that The results for j~2 are presented in Table II.
for any g:
v"'"'"""v"'"'"""q.q-" q-;q q"" q.„=(q')" (»o) 5. Spin —' and 1

Cancellation of the q's gives the symmetrized product
of two p's as a symmetrized product of g&". For example,
it follows from (810) that

Table II gives

6'""'(q)= iv"—q.—=q'P 2(» 3—)v P

(811)
so tlla't

j=1: fv» v"")+&v""v~")+&v""v'"&
—2[gpvgpx+g»gv'k+gpxgvp] (812)

and so on.

4. Evaluation

0 —i

0

0
v = 2iav—nP =

0

(818)

Comparison with (A10) and (A41) shows that

(P(q) =—i21vP1P2' '&2(q q
. . .

q

0 II(q)-
(813)

3(q) 0

The matrix II(q) was evaluated in Appendix A, and

II(q) is just

J(t'& —+ 3('&vl, where (815)
0 J(n

and then multiplying the whole resulting formula on
the right by P. We Gnd that for integer j:
(P"'(q) = ( q')'P—

i ( q2)P'—i—n

+2 (2» 3)[(2» 3)'—(2»)']
(2n+2)!

X[(2» 3)2—(4q)2] ~ ~ [(2q 3)~—(2nq)~]

X[2» ap —(2n+2)q'v~p], (816)

II(q) =11(—», q'). (814)

It follows that we can calculate 6'(q) from the formulae

(A29) and (A33) for 1I(q), by making the substitution
-J(() 0—

This is just the standard representation of the Dirac
matrices with ps diagonal.

For spin 1, Table II gives

6'"'(q) —=v""q.q = —q'P+2(». 3)(» 8P—q'»P),

v00 —p

v"=v"=3v P

v"= f3',8~)P—&' P

(819)

Notes added in, proof (1) Th. e external-line wave
functions are much simpler in the Jacob-Wick helicity
formalism. They are given for both massive and massless

particles in a second article on the Feynman rules for
any spin (Phys. Rev. , to be published). (We also give

general rules for constructing Lorentz-invariant inter-
actions involving derivatives, Geld adjoints, etc.) (2)
It is not strictly necessary to introduce 2(2j+1)-com-
ponent Gelds in order to satisfy P and C conservation,
because the x, fields in (6.15) and (6.17) may be ex-

pressed in terms of &p, by using (7.17). I would like to
thank H. Stapp for a discussion on this point.


