
COMPLEX PROPAGATORS IN PERTURBATION THEORY

(where )i+a.' u+ -+ v means sou+, )i+s(s)gv ). Further,
we obtain

After these lengthy preliminaries, the properties of
f(s,W'

j ) s) on the nearest sheets can be listed as follows:

L~~Q~
Eg —+ Sp

H~ —& Hp

Sg~E

Jg —+ Hp

Eg —+ S~
H~ —+ I.
Sg —& Sp.

(a) f»'. X' singular only if sou+, )i+s not singu-
lar, ) ' singular gw~s

(b) f„,=f,„: for slav~, w~ both ) ~s singular;
for sou+, X+'gv+s is singular,

)i 'gw~' not singular.

The mapping of other parts of the real s axis can be read
oK Fig. 18. We have defined X ' such that Q'&)i ' for
real s&0 and 4&s&(W—1)' but )i '&)i ' for real
s& (W+1)'. The curves 5 and H are in fact defined by
the conditions (B4).

We remark that for f,„, as s crosses X~ from v+ to u+,
X ' crosses the X' cut from below between 0 and 4
t cf. (B4)j, having been singular on the p sheet in )i'
for slav+. This singularity passes smoothly on the
Riemann surface to the q sheet in ) ' as s enters e+.
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The effects of logarithmic singularities in rescattering processes are investigated. The reaction mS ~ m.m E
is considered, but treated purely as an S-wave, spinless model. A particular triangle graph is analyzed in
detail; it contains as an intermediate state the (3,3) nucleon isobar I, which is described as a spinless
particle of complex mass. The graph is calculated from a dispersion relation as a function of the mass s
of the two pions in the Anal state, for low values of the over-all c.m. system energy W. The relation is then
analytically continued in W. For a narrow range in W, an enhancement of the square of the amplitude is
found near s =4 (the pion mass is unity). The analogous enhancement also appears in the W channel near
W=I+1, for a small range of s only, near s=4. The prominence of the effect depends on the width of I,
being closely connected with the nearness to the physical region of one of the two logarithmic singularities
(anomalous thresholds) of the graph: this distance increases sharply with the isobar width. The positions of
the singularities are interpreted as the phase-space limits for the simultaneous production of states with
mass s and I. The conclusion is that such a "double excitation" process leads to an enhancement of the
triangle amplitude only if, in general, s and I fall in certain narrow ranges. The implications of this result
for models of the higher resonances in the elastic channel (n flf ~ s.S) is brieRy discussed.

I. INTRODUCTION

I NTIL the rather recent introduction of self-
consistent (bootstrap) methods using the 1V/D

formalism, ' it is fair to say that most calculations of
dynamical eGects in strong interactions have been
single-particle exchange calculations. However, it is
worth asking how we may go further, and include re-
scattering terms, which arise from the fact that in a
multiparticle final state more than just one pair of
particles may interact strongly. A typical reaction is
shown in Fig. 1, in which a pion is produced in pion-
nucleon scattering. In the final state mxS, there is the
possibility of three interactions: the two ~E ones, and

*Work performed under the auspices of the U. S. Atomic
Energy Commis~ion.

f Present address: Service de Physique Theorique, C.E.N. ,
Saclay, France.' See, for example, F. Zachariasen, Phys. Rev. Letters 7, 112,
268 (1961);G. F. Chew, Phys. Rev. 129, 2363 (1963);and L. A. P.
Balazs, ibid. 128, 1939 (1962).

the mx. Figure 2 shows a rescattering term representing
the production of a pion and a (3,3) nucleon isobar, the
isobar then decaying and its decay pion rescattering
from the pion. We call the amplitud. e for this process Ii.
The problem is to calculate Ii as a function either of the
incoming energy W or of the mass of the two pions gs.'

Graphs similar to Fig. 2 have been discussed quite
extensively. ' Whereas single-particle exchange graphs
lead to poles, these give logarithmic singularities —often
called anomalous thresholds —in 8' or s, and some e8ort
has gone into seeing if these singularities lead to observ-

I am indebted to Dr. S. F.Tuan for stimulating my interest in
this type of graph. I have been informed by Dr. Tuan that a cal-
culation, similar to that reported here, has been done by Dr. T. T.
Wu and himself.' For example, by V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41,
1221 (1961) I English transl. : .Soviet Phys. —JETP 14, 871
(1962)j, for r decay, and by V. V. Anisovich, A. A. Ansel'm, and
V. ¹ Gribov, Zh. Eksperim. i Teor. Fiz. 42, 224 (1962) LEnglish
transl. :Soviet Phys. —JETP 15, 159 (1962)g, for pion production
reactions near threshold.
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FIG. 1.The process mN ~ x~N.

able effects. The 6rst to examine this question were
Landshoff and Treiman, 4 but the processes they con-
sidered, which involved exclusively stable particles, all
had, for one reason or another, very small cross sections.
This was remedied by Aaron' who showed that if an un-
stable particle were introduced as an internal line of the
graph, which was then calculated as a function of s,
there was the possibility of an observable effect at the
high end of the s range. Aaron included the unstable
particle in the s channel, but, as we shall see below, it is
questionable whether a simple application of dispersion
theory or perturbation theory is quite correct in that
case. We shall include the unstable particle in the 8'
channel, the crossed channel with respect to s, and shall
argue that the process can then be calculated straight-
forwardly, as a function of s.'

The reaction represented by Fig. 2 depends on there
being two simultaneous strong 6nal-state interactions.
Several authors have studied these reactions recently, ' "
particularly in order to see whether processes such as
Fig. 2 lead to an enhancement of one or both of the
production. (wX-+ wwÃ) and elastic (wX ~ wE) ampli-
tudes. For the one graph we consider, this question can
easily be related to the mechanism suggested by Peierls"
for the generation of the higher elastic pion-nucleon
resonances. The structure in the graph, in the lV
channel, is the one-pion exchange pole in the reaction
w+I~ w+w+X, and insofar as this pole leads to
singularities apparently near the physically region, one
expects some enhancement of Ii, with a consequent
effect in the coupled elastic amplitude. In fact though,
our calculation shows that there is no enhancement of P
in general, but only for a narrow range of s near the
threshold s=4 (the pion mass= 1).

The fact that at least this particular enhancement

appears only for a restricted range of the variables near
certain thresholds may be relevant to other mechanisms
for the generation of elastic resonances. Nauenberg and
Pais" have suggested that an inelastic threshold itself

4 P. V. Landsho6 and S.B.Treiman, Phys. Rev. 127, 649 (1962),
hereafter referred to as LT. See also P. V. LandshoB, Phys. Letters
3, 116 (1962).

~ R. Aaron, Phys. Rev. Letters 10, 32 (1963).
F.R. Halpern and H. L. Watson, Phys. Rev. 131,2674 (1963),

have considered somewhat analogous graphs, from the viewpoint
of detection of anomalous thresholds.

r C. Bouchiat and G. Flamand, Nuovo Cimento 23, 13 (1962).
R. F. Peierls and J. Tarski, Phys. Rev. 129, 981 (1963).

9B. d'Espagnat and F. M. Renard, Nuovo Cimento 30, 556
(1963).

'0 P. K. Srivastava, Phys. Rev. 131, 461 (1963).
"R. F. Peierls, Phys. Rev. Letters 6, 641 (1961); and S. F.

Tuan, Phys. Rev. 123, 1761 (1962), for application to hyperon
resonances.

's M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962).

may produce a "cusp" effect in the elastic channel, while
Ball and Frazer" have argued that the elastic amplitude
will be peaked near a point where the production cross
section is rising sharply. From the mechanism we con-
sider, Fig. 2, such a rise in the production cross section,
it it occurs at all, does so only near definite thresholds;
hence it may serve to accentuate the cusp effect.

We shall calculate F from a dispersion relation in s,
the weight function f being evaluated from Cutkosky's
rules" (Sec. IV). For these manipulations, it is assumed
that the isobar may be treated as a particle of complex
mass. We 6nd that f has logarithmic singularities at two
points s, and sb, which are, in general, complex, and
whose positions depend on 8'. These in turn produce
singularities of P at s, and sb, which for small 8' are not
on the physical sheet of F although one of them sb may
be near the physical region. As S' increases, s, crosses
the contour of integration in the dispersion relation,
necessitating a deformation of the contour; s then
appears on the physical sheet of F, although too far from
the physical region to produce any effect. In Sec. III we
first study the notion of these singularities, deduced
equivalently from perturbation theory, in order to
understand how to de6ne the dispersion integral in all
cases. At the outset, s, and sb are introduced in Sec. II
by a suggestive kinematical calculation. The results of a
numerical evaluation of the integrals is given in Sec. V.
Finally, in Sec. VI we summarize the main features of
the results, and relate them to the possibility of effects
in elastic processes. We emphasize that, throughout, the
essential complications of spin and isotopic spin are
lgnol ed.

&+7K'

rl~
v

FIG. 2. A rescattering, or triangle
graph, contribution to 7IN ~ ~mN.
The double solid line is a (3,3)
nuCleOn iSObar I. T1, T2, T3 Stand
for the vertices ms —+ 2l-x, 21-N —& xI,
~I ~ N, respectively.

' J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961).
'4 R. E. Cutkosky, J. Math. Phys. 1, 49 (1960).%'e remark that

we are using "anomalous" in a general sense to refer to any
threshold other than a normal one.

II. THE PHYSICAL NATURE OF THE SINGULARITIES

Cutkosky'4 has given a kinematical argument which
makes it plausible that there should be anomalous as
well as normal thresholds. Consider the diagram shown
in Fig. 2. This represents pion-nucleon scattering with
single pion production, via an intermediate state of a
pion (mass unity) and a (3,3) nucleon resonance
(mass I). We are interested in the behavior of this
process, as a function of the mass of the two pions in the
6nal state (s), for a range of values of the initial energy
in the over-all c.m. system (W). For the moment, let us
ignore the fact that the isobar has a width; we take I to
be real. Once W is greater than I+1, the diagram may
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Hence
xz+ys+ss —2xys —1=0. (3)

xg —
t ys {(y& 1) (s&—1)}us](x(x

=b +{(y'—1)( '—1)}'"j (4)

with a corresponding range for s: sb&s&s, . These are
the usual anomalous thresholds.

Since J is unstable, we have s& 1, so that for x, and
xs to be real we need y& —1, or W&I+1. In other
words, when the incident energy is such that the pion-
isobar state can be formed, there is a range of s for which
3-momentum conservation also may be satisfied, so that
both the (2z.,X) and the (7r,I) states propagate freely.
It is now simple to interpret this range on a Dalitz plot
for the three-particle state mmX, taking the two mass
variables to be those associated with the xE and the mx

systems, gt and gs respectively, say. For a given W,
the plot extends over a limited region in the gs gt-
plane, which is just that corresponding to Eq. (1).The
range of s that we have found is the one for which, given
a value of W, the line ps=constant, may interest the
isobar band gt=I. This is illustrated in Fig. 3. R, the
boundary of the elliptical-shaped region, is a function
of W, and hence so are s, and sb.

%e may refer to the end points of this range as

represent a real process —namely, production and sub-
sequent decay of the isobar, with rescattering of its
decay pion. There will, however, only be some range of
s for which this process is kinematically allowed. ; and
the end points of this range are then, in some sense,
thresholds.

The range of s is easy to find. In the c.m. system of the
two pions, write the four-vector of the initial state as
(Ei= (W'+p')'" p) and that of the nucleon (mass M)
in the final state as (Es= (M'+p')'", —p), where

p= ~p~ is the magnitude of the 3-momentum of the
nucleon. Then

p'= Ls' —2s(W'+M')+ (W' —M')'j/4s

s=4q'+4

where q is the magnitude of the 3-momentum q of the
pions. Also,

Ei= (s+W' M')/2+—s, Es= (s+—M' W')/2+s. —

Energy conservation at the vertex T3 gives

(Es+ ',gs)'= I'+-p'+q' 2pq cos8—,

where 0 is the angle between y and q. For real 0, s must
therefore lie in the range defined by

2Pq(M'+1—+Esses P&2Pq. — (1)

Introducing the variables x, y, and s by

s= 2(1—x) Ms =P+1 2Is, W'=—P+1 2Iy (2)—
the end points of the range are given by the roots
x~) xb of

FIG. 3. Daiitz plot in the gs,
gt plane. The double line is the
isobar band gt= I.

&s,

Esb

"double excitation, "rather than anomalous, thresholds.
At one or both of them, we may expect some type of
threshold singularity. Perturbation theory implies (see
Sec. III) that the singularities are logarithmic, while
the dispersion relation calculation of Sec. IV shows that,
to avoid an infinity in the physical region, we have to
give I an imaginary part, representing the width of the
isobar. Our purpose is to see what effect the resulting
pattern of singularities has on the amplitude. First, we
discuss their motion in detail.

g(s, W')= dX'o(X')F(s, h', W'),

where o'(X'), essentially the spectral function of the
pion-nucleon propagator, has a square-root cut from
(M+ 1)' to + ~, and where c is a contour along the real

"D.Zwanziger, Phys. Rev. 131, 188 (1963). See also Ref. 16.' I.J.R.Aitchison and C. Kacser, Phys. Rev. 133,$1239 (1964),
preceding paper.

III. THE SINGULARITIES IN
PERTURBATION THEORY

A. Treatment of the Isobar

Ke now regard Fig. 2 as a perturbation theory graph,
assuming that the isobar may be treated as a particle of
complex mass, the finite (negative) imaginary part
representing the width.

This procedure may seem questionable. One difhculty
is the following. One might say that corresponding to
the two-particle pion-isobar state, there should be a
branch point in W' at (I+1)', on the first (physical)
sheet of the two-sheeted surface de6ned by the elastic
cut at (M+1)'. However, it is known" that this branch
point is not on the physical 8"sheet, but rather on the
sheet reached by crossing the real TV' axis between the
2- and 3-pion production thresholds. Hence, a simple
replacement of the isobar by a complex mass may be
misleading. In our case, however, the isobar occurs in a
crossed channel with respect to the variable of interest
s, so that we might hope that this type of objection
would not arise.

In fact, an analysis can be made in terms of the square
of the internal mass X' of the pion-nucleon system form-
ing the isobar. "The full amplitude, including states of
all values of )', is written as
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axis above this cut. Ii is the amplitude for the case in
which the square of the mass of the xX system is X'. The
isobar is included as a pole in 0 P,'), on the second X'

sheet of the propagator, below the real axis at P'=P.
The meaning then ascribed to Fig. 2 is that it represents
F(s,P W'), the residue of F(s,X' W') at the pole X'=P
and the continuation to complex values of X' of the con-
ventional amplitude with X' real. Thus g contains Ii as
a part.

The result of this analysis is that peaking effects, due
to singularities of g near the physical region, are cor-
rectly calculable by treating the isobar as a particle of
complex mass —that is, the nearby singularities of
F(s,P,W') and g(s,W') are the same. On the other hand,
this may be by no neans true of the dhstuet singularities—although of course, by de6nition, these give no physi-
cal eGect, apart from providing a smooth background.

In the following we treat F(s,W') exclusively (sup-
pressing from now on the P dependence). We must
remember, however, that it is finally only the peaking
eGects which are to be taken as representing correctly
the behavior of g; the remaining background we are
unable to calculate properly.

Xp

9 5
/ l

7 / y,
Xii',:sj

Z

I

Xn

I ~+( ~, y,
I

&w 3&Z

1

B. The Motion of the Singularities

The locations of the singularities of the graph of
Fig. 2 in perturbation theory are well known. "They lie
on the surface Z defined by

x'+y'+ z' —2xyz —1=0

exactly the equation [Eq. (3)j de6ning the points x.,
xb, of Sec. II. In the present application, s is a fixed com-
plex number, and y is a complex linear function of W'.
[cf.Eqs. (2).$ The singularities s„st, for various W' are
then given by the roots x(y) of Z for a given z. We
emphasize that s and sb are functions of 8", though we
shall usually not indicate this explicitly.

We review the results of Ref. 17. Let x=x~+ix~,
y=y&+iy2, z=z&+iz2 The su. rface Z is a 4-variety in
the 6-dimensional (xyz) space dered by

xP+yi'+zP = 2xiyizx —1

—(x2'+y2'+zz' —2x&y&z2 —2x2y&z2 —2x2y, z&) =0, (6)

xlx2+yly2+zlz2 x2ylzl xly 2zl xlylz2 0 ~ (7)

Consider first the mapping of the real y axis in Z. This is
a quartic in the x plane, for fixed s, with four double
points ~s, &s*. It therefore degenerates" into two
conies, an ellipse and a hyperbola, which we may
write as

S] $2 $$ $2—+—=1, and —+—=1
a' b' C2 d2

'7 A detailed account with full references is given by G.
Bonnevay, I. J. R. Aitchison, and J. S. Dowker, Nuovo Cimento
21, 1001 (1961).Note that in this paper a complex value for x, y
and z was associated with a complex external, rather than internal,
mass.

' George Salmon, Higher P/une CNrves {Chelsea Publishing
Company, New York, 1879), 3rd ed. , p. 29 G.

FxG. 4. The mapping Z in the complex x and y planes. The
degenerate quartics forming the mappings of the real axes are
shown by long dashed lines. The mapping, in the x plane, of a line
in the y plane just below the axis is shown by short dotted lines,
corresponding points being indicated by numbers. The mapping in
the x plane of the line L in the y plane is shown by solid lines
labeled x, and xb. When a pair (x,y) is in the shaded region, that
point is singular on the physical sheet.

where we find

g =—[(zP+zz +1)+( (zP+zm +1) —4zP) j
$2 —L[(z 2+z22 1)+{(zP+z22 1)2+4z 2)1/2j

c2 1[(z2+zz2+1) ((z~2+z 2+1)2 4z 2)1/2j

d'=-,'[(z '+ zz' —1)—( (zP+z2' —1)'+4z2') '"j.
Since Z is symmetric in x and y, the same curve, in the

y plane, shows the mapping of the real x axis in Z. To
resolve ambiguities at the turning points, we give y a
small negative imaginary part; the correspondence be-
tween the two x roots of Z and the values of y is shown
in Fig. 4 by numbers along the dotted lines. In summary,
whenever y lies on the quartic, one of the corresponding
x roots is real.

In our case, as 8"varies, y follows a line such as L,
so that x, and xb move as shown by the solid lines,
appropriately labeled. Now y passes through the ellipse
to the left of y&=0 before the hyperbola, so that xb
crosses the real axis before x; also x, crosses at a more
negative value than previously.

C. The Two Sheets of the Amplitude

The amplitude of Fig. 2 has a normal threshold
(square root) singularity at s=4, or x= —1; the s plane
is cut along the positive real axis from 4 to ~, defining
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Fto. 5. The motion of the singularities s, sq in the s plane
for the case of a real mass of the isobar. s and sq meet
at s=g(I+1)s Ms]—/I when W=I+1; ss encircles s=4 when
W =2 (I2+1)—M'. The arrows show the direction of W increasing.

'~ L. S. Liu, Phys. Rev. 125, 761 (1962); J. B. Bronzan and
C. Kacser, ibid. 132, 2703 (1963); also C. Kacser, ibid. 132, 2712
(1963).

a two-sheeted surface. Similarly, there are cuts
—1&x&—~, —1&y&—~, shown as thick lines in

Fig. 4. The first, physical, sheet in x is defined by
—+&arg(x+1) &e., and the physical values of x(s) are
obtained by approaching the cut from below (above).
When we cross a cut, we pass onto a different sheet.

Reference 17 established that a singularity x is only
on the physical sheet when y is in the lower left quadrant
of the hyperbola; this region, and the corresponding
singular x region are shown hatched in Fig. 4. As W'
increases, therefore x will appear on the physical sheet,
as it crosses the real axis and enters the shaded region.
For that 8"for which x lies on the negative real axis, at
x0 say, there will be an infinity in the amplitude at
se ——2(1—xe). I'f I, and hence y and s, are purely real, xe

occurs first at the double point —s, for y= —1, the
hyperbola having collapsed onto the real axis, and x
and x~ being both on the real axis, and coincident. Then
se ——s= [(I+1)' M2j//I, for —W =I+1. Figure 5 shows

the motion of the singularities in the s plane for the
case I real. This situation has been discussed in rather
different contexts by I.iu and by Bronzan and Kacser."

The extent of the physical phase space for s is 4&s& si
=(W—M)'. Hence, se falls in the physical region if

(I+1)(I—(M+1))(I—(M 1)))0. If,—therefore, I is
unstable, there will be an infinity in the amplitude at so

when W reaches I+1.This difficulty is removed by the
procedure of giving I a finite imaginary part I2. It
turns out that so increases rapidly as I2 becomes
different from zero, but is thereafter insensitive to the
precise value of I2. In Fig. 6, the solid lines are paths of
so and st, for the (3,3) isobar case: I=8 91 0 32.i, i—n.
units of the pion mass. In these units, 8=6. s, and s~
now become separated with respect to 8:s~ never reaches
the real axis and hardly moves to the right of s=4, while
s crosses far to the right of 8, at s0=24.1 when
iV=11.62. For this 8', the singularity s, is then not in
the physical region, which only extends to s&

——23.62.
This feature is independent of the precise value of I2,.
in Fig. 6 we have also plotted the trajectories for
I=8 91 0 02i (thi.s re—pre. sents a width of about 7 MeV

for the isobar). Now, se follows more closely its path for
I2——0, but never reaches the real axis for s&4; and s,
although much closer to the real axis, still crosses outside
the physical region.

Perturbation theory, therefore, shows that there is a
singularity s on the physical sheet, with Ims, &0, for
all IV greater than some critical value which depends
on I2 but which is roughly Ii+1(I=Ii+iI2). However,
this point is not near the physical region of s, which is
the limit onto the top edge of the cut. It is not expected
to produce any effect: The distance between s and the
physical region has to be reckoned by going around s=4,
not through the cut. But there remains the singularity

sb, and if I2 is small, there will be a range of 8'—corre-
sponding to the range I+1&W&

I
2(I2+1)—M'J~' in

the case I2——0—for which s& is singular on the Nnphysi-

cal sheet below the cut; this point is near the physical
region. Here again we need a finite I2 to save us from an
infinity of the amplitude; in this case, though, we shall

find (in Sec. V) a peaking of the amplitude in the
vicinity of st, for those S"'s for which sb is just below the
real axis. We remark that if I were stable, I(M+1,
there would be no W for which either s or sb was near
the physical region; this is our reason for studying a
graph with an unstable intermediate particle.

1 " f(s', W')
F(s,W') = —ds'

4 $ —$—M
(8)

The integration is along a line C just above the real
axis. The weight function f is found from Cutkosky's
rules, "and the result is familiar. We wish, however, to
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FIG. 6. The motion of s and sq when the isobar is given a
complex mass: I=8.91—0.32i (solid line), I=8.91—0.02i (dashed
line). s, crosses the real axis at so. The insert shows the region near
s=4 in more detail.

IV. CALCULATION OF THE AMPLITUDE FROM
A DISPERSION RELATION

A. The Weight Function

The amplitude F(s,W') for Fig. 2 is calculated from
the dispersion relation
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I'10. 7.The cuts of R.
Sl —i SP+

give some of the details, in ord.er to relate this section
to Sec. II.

f is proportional to the Feynman amplitude with the
two internal pions on their mass shells. In the c.m.
system of the two pions, and. with the notation of
Sec. II,

a+R
ln

2(—E)'" a—R
(1Q)

where, in the notation of LT,

R=(—EI.)'", —E=(s—sI)(s—ss), L=s(s 4)—
a= s'+sL2P —M' —W' —2l,

st= (W—M)', ss= (W+M)'.

The cuts of f must now be specifIed. First, R has
branch points at 0, 4, sj. and s2. the definition of R is
shown in Fig. 7. To make explicit the singularities s„ss
we rewrite f as

f= — in(a —R)+ ln(a' —R')
( E)1/s 2(—E)'"

and we observe that

a'+EL = 16sP (x'+y'+ s'—2xys —1) .

"This is, of course, the s-wave projection of the isobar pole in
the crossed channel of the reaction mm ~ ~Kg, and the simple
explicit appearance of I in the denominator of Kq. (9) is essentially
the reason for our being able to calculate straightforwardly with
a complex value of I. See Ref. 16.

where I' and Q are, respectively, the 4-momenta of the
Anal-state nucleon and the pion associated with the
isobar. "We have suppressed three factors representing
the vertices: We are taking these to be constant.

Tile denominator III Eq. (9) ls

D= M'+1+&/s+2pqs P, —
so that there will be singularities of f when D vanishes
at s= +I, that is, when

M'+ 1 P+Esgs =—+2Pq.

These are just the end. points s„s~ of the kinematical
region described in Sec. II. t cf. Eq. (1).]Nor is this un-

expected: f is calculated by requiring the two pions to
have their real mass, and. the zeros of D correspond to
putting the third internal particle I on its mass shell.
At the singular points, all the internal particles propa-
gate freely, and. these points are just what the calcula-
tion of Sec. II gave us. The singularities are logarithmic
since the result of the integration in Eq. (9) is

f= — ln(a —R)
(—E)IIs

+ ln4sP (s s,)—(s ss)—(11)
2(—E)'"

and a—R is regular at s =s,. The resulting cuts of f are
shown in Fig. 8 for a -typical 5', below the point at
which s, crosses the real axis: We de6ne the logarithms
to be on their principal branches when lV is below
Re(I)+1.We refer to this as the normal case.

B. The Dispersion Relation in the Normal Case

Gonsider now a W less than Re(I)+1 for which,
referring to Fig. 6, s, and sg have 6nite imaginary parts
of opposite signs. For this case, the result of perturba-
tion theory is that F is not singular on its physical sheet,
so that the integral in Eq. (8) may consistently be taken
along the real axis: s, and ss, though singularities of f,
are not so of F.This may also be verified for such values
of W by making successive continuations in y and 2',

starting from a real stable value for I, for which the
st,atement certainly holds.

However, as lV increases to 5'0 say, we notice that,
given the determination of R by Fig. 7, (a+R) may
vanish at some point ss in the range (sr, ss), since a
has a negative imaginary part. Hence fwill be unde6ned
at so. In fact, so is the point at which s, crosses the real
axis, and it is, as we saw in Sec. III, indeed in the range

(st,ss}.We next consider how to modify the representa-
tloll of Eq. (8) to IIIC111dc such lllgllcl' values of W.

C. Continuation of the Representation in 5'

We follow the method. of Mandelstam "and continue
the representation (8) in the energy W. Referring to
Fig. 6 and to Eq. (11) for f, we see that as W increases,
the root s~ encircles s=4 from below, never crossing
the integration contour, so that arg(s —ss) goes
smoothly from positive to negative values. On the other
hand, s, moves towards the integration path at sQ, to
the right of sI. To continue Eq. (8), we have to distort
the contour C downwards into the lower half s plane
(into the second s sheet) away from the advancing s„
as shown in Fig. 9. Furthermore, as s crosses, arg(s —s,)
changes from —x to x for all points to the left of so, but
is continuous to the right of so. To make the correct
continuation, we note that the cut I.„attached. to s„

=so

Sb

Pro. 8. The cuts of f in the case Im(s, ))0.

s' S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).
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Fio. 9. The deforma-
tion C down into the sec-
ond s sheet (shown'by
the dotted part of C) to
avoid the advancing sin-
gularity s,. P

and the definition of R,

1 '~ ( 2s.i ) ds'
F( P')=-

I f( ')+
4 k (—K(s'))'I'/ s' —s—ie

has swept over the integration contour to the left of so,
so that those points are now on the second sheet of
L„hence we have to subtract 2mi from the value of
ln(s —s ). We can, of course, equally well define I. as
shown in Fig. 10:a piece between so and s, in the lower
half plane, following the trajectory of s„and the rest

-Sb

vr here

1 'o 2s i ds'
f(s')—

(+K(s'))"')s' s—
1 "f(s')

ds'+ F~, (12)
go s —s

1 ( 2s ) ds'
F~= —

I
f($')—

P E ( K(s'))"') s' s—
0

Fio. 10. The cuts of f in the case In)(s, l (0.
and P.is the dotted path of Fig. 9. Since f(s') increases

by 2s/(K(s'))')' on encircling s„we have

Sa ds1 2'
along the real axis —~ &s&so. Then, for s&so, we do
not have to subtract the 2xi. For the machine calcula- „(+K(s'))'I' s' —s
tion described below, the first definition of L, is used
consistently. The integrals not involving f can be done exactly, and

The representation (8) thenbecomes s'using Eq. (11), one finds

f($') , 1 "f($')
F(s,Ws) =-

4 S —S—Ze m' „S—S

2i (»—$)($.—») '"
ln 1+i

((s,—s)(s,—s))'" (s,—s)(s,—s.) )
2i f (si—$)(Ss—4) 'I'

ln I1-
( (s —s) (s —s) )'i' ( (s,—s) (s —4) )

(ss—s)(s~—si) "')
I1 i-

- (St—$) (ss—sg)-

(si—s) (ss—4) 'I')
I
1+ I

—2 /L —K( )7" (13)
(ss—s) (si—4)

As W increases further, s moves further into the lower
half plane, and s& moves to the right of so. From Eq.
(12), we notice that s=si is now a singularity of the
spectral function, and hence of F on its second sheet (it
is a "second-type" singularity. ") But from Eq. (13),
we see directly that so is not a singularity of Ii, and
further continuation in W is trivial.

We remark that s is indeed now a singularity of Ii,
although one can see qualitatively that its effect is likely
to be small. If, as is the case, the imaginary part of 12 is
small compared to the real part, s will lie close to the
real axis; but although it is on the physical sheet, it is
on the lower (unphysical) side of the cut.

V. NUMERICAL RESULTS

The integrals in Eqs. (8) and (13) have been done,
using complex arithmic FORTRAN, on the IBM 7094 at

~ See also a recent UCLA preprint by C. Fronsdal and R. E.
Norton, 1963 (unpublished), although these authors have not
explicitly considered a complex internal mass.

"D.B. Fairlie, P. V. Landsho6, J. Nuttall, and J. C. Polking-
horne, J. Math. Phys. 3, 594 (1962).

BNL. Our purpose is to investigate by explicit calcula-
tion the effect of the logarithmic singularities: of s, on
the high mass end of the xx spectrum, and of s~ on the
low mass end, as W varies.

In Fig. 11(a) we have plotted the square of the ampli-
tude,

I
F I', versus s, for some typical values of W. (A

factor 1/s is suppressed from now on. ) This, and Figs.
11(b), 12(a) and (b), and 14, which we shall describe
presently, should be looked at in conjunction with Fig. 6.
We see that s produces no effect, but that for W=10.0
there is a characteristic rise in IF I' near s=4, a result
similar to that of Halpern and Watson'. From Fig. 6 we

see that this W is just the one for which sb is near the
real axis in the lower half plane.

To make the correspondence between the position of
ss and the enhancement of

I
F I' still clearer, we have

repeated the calculation with an unrealistically small
width for I:We took I=8.91—0.02i, so that the motion
of s and sb is now given by the dashed lines of Fig. 6.
For this case, s~ approaches near the real axis from
below, at a point S=S, distinct from s=4; and indeed
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~F~s shows —Fig. 11(b)—a definite peak for the ap-
propriate W, near s=5.

The effect of s~, when present, is masked for two
reasons: First, even when I2 is small, s~ approaches the
real axis rather near to s=4, where the spectral function
has to vanish in any case; second, as I2 increases, s~
moves even nearer to s= 4 whenever it is just below the
real axis, so that this suppression is aggravated. In an
actual calculation, therefore, the width may play an
important part.

It is instructive to see how the spectral function varies
at the interesting values of W. For W(11.62, it is just
f, calculated from Eq. (10).Figures 12(a) and (b) show,
respectively, the real and imaginary parts of f, f„and f;.
The solid curves are for I=8.91—0.32i, the dashed ones
for I=8.91—0.02'. Referring again to Fig. 6, we see that
as W increases from 9.0, for the W such that s~ is just
below the real axis, both f„and f; rise steeply froin zero
[see especially the dashed curve in Fig. 12(b) for
W = 10.0, which shows a separate peak near s= 5$, while

for larger values of W this becomes less pronounced. For
W such that s is near the real axis, there is a peak near
s„nevertheless there is no resultant peak in F.

VI. DISCUSSION

We have calculated, from a dispersion relation in s,
the amplitude F of Fig. 2, taking all particles to be spin-
less isoscalars. The effects of singularities of the weight
function were examined, and it was found that an en-
hancement near s=4 was expected, but only for a
restricted range in W near the rr+I threshold; the
magnitude of the effect is very sensitive to the width of
the unstable particle.

We now wish to consider F as a function of W rather
than s—that is, we regard it as a contributor to inelastic
xX scattering. We can imagine calculating F from a dis-
persion relation in W, the contour of which is taken
along some path starting at the "two-particle" threshold
W'= (I+1)', and going to in6nity. Such two particle
cuts—originating from a state in which one of the
particles is unstable —have been considered by Zwan-

ziger, "who, as we mentioned in Sec. III, has shown that
they are two-sheeted, and reached by a path crossing the
inelastic ~m.X cut. For the present purposes, we may dis-

regard the fact that I is complex, and treat this ~I
cut—and the dispersion relation contour —as being
along the real axis, just below the physical region, as in
the usual case. The spectral function P then involves the
s-wave projection of the one-pion-exchange pole in the
reaction rrI —+rrrrN (compare footnote 20), and the
question arises as to whether the Peierls mechanism"
operates to give an enhancement. It is easy to verify
that p has exactly the singularities given by Eq. (3); in
the W plane we call them W and W&, and they are
functions of s. Their motion as s varies may be read off

from Fig. 4, and is similar to that of s, and s& already
described. Namely, for a range in s, W& lies below the
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cut, near the real axis, but for no other s do either W,
or W& lie near the physical region. This range in s is
4&s& L(I+1)'—M'jjI=6. We can express this condi-
tion more generally and concisely in terms of the varia-
bles s, y and s of Secs. II and III: a singularity in y is
near the physical region if x lies in the range

—1&x& —2', (14)

where s is the variable associated with the stable
external particle. For the case in which the masses are
real, this region of x corresponds to the part of the
dashed line in Fig. 4 which is below the real axis.~ It is
clear that for Eq. (14) to be satisfmd, s has to be greater
than 1, implying that an internal particle is unstable.

This region is easily interpreted on the Dalitz plot
picture of the singularities given in Sec. II. Figure 13 is a
Dalitz plot for gs and gt, where gt is the mass of the
intermediate xÃ state. Suppose there are resonances at
ps= p, the p meson, and gt=I, the (3,3) isobar. For
small W= We, the two resonance bands gs= p, gt=I
(shown, as double lines in Fig. 13) do not intersect in the
allowed physical region E: The resonances cannot be

'4The special nature of this region was Grst mentioned by
G. Barton and C. Kacser, Nuovo Cimento 21, 593 {1961);see also
Ref. 6.

(b)

FIG. 11.The square of the amplitude of Fig. 2 versus s for various
values of W. (a) for I=8 91 0 32t .(b)—for. I=8.91—0.02t.
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Fro. 12. The real (a) and the imaginary (b) parts of the spectral
function in units of p~ versus s in units of p,' (p=pion mass). The
solid curve is for I=8.91—0.32i, the dashed for I=8.91—0.02i.
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solid curve is, as before, for I=8.91—0.32i and the
dashed one is for I=8.91—0.02i. For the narrow width

it is especially clear: Firstly, there is a peak at W= 10.4,
which is just the value for which s=4.1 gives a singu-

larity in W near the physical region Lthe gs= (4.1)'t',
+I=I bands crossing on n]; secondly, one sees a
separate shoulder at W= 10, corresponding to the normal
threshold I+1.The latter is just the cusp phenomenon
of Nauenberg and Pais, "while the former is an addi-
tional enhancement from W&. Unfortunately, no dis-

tinction between the phenomena remains for the realistic
width, and the effect is much reduced. "It disappears

simultaneously produced for that W. As W increases,
the point of crossing will appear on the edge of R for
W= S"~, and then drop off R at 8'= 8',. As the names

imply, W and W& are the positions of the logarithmic
singularities of J"as a function of W, so we may call these
"double excitation" thresholds. The content of Eq. (14)
is then that the higher such threshold gives no effect,
while the lower does so only if the bands cross on the
boundary R in the lower right-hand segment n shown
dotted in Fig. 13.

To illustrate this effect in W, we fix s at a value of
4.1, and calculate F for a range of values of W, from
Eqs. (8) and (10). Figure 14 shows IF ~' versus W; the

FIG. 13. Dalitz
plots in the vt's, gt
plane for various
values of W'.
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altogether in both cases as soon as s increased beyond
s=5, the bands no longer crossing on 0,. In summary,
the effect, if observable, should show up as a bump in
the production process, if the two pions are observed
near threshold. (See also Ref. 2.)

Our conclusion is, therefore, that it is only for a
limited range of the variables, Eq. (14), that a double
excitation threshold of the triangle graph gives any
effect. This criterion is quite general, and we may apply
it to the graph shown in Fig. 15, for example. This
process appears to be closely related to that originally
considered by Peierls, " in that the structure in the W
channel comes from the nucleon exchange pole in the
reaction rrI ~7rI. We find, however, that Eq. (14) is

FIG. 14. The square of the amplitude versus 8', for s=4.1; the
solid curve is for I=8.91—0.32i, the dashed is for I=8.91—0.02i.
The ~I threshold is at W =10.

N+ I

"We stress that the actual calculation was not a dispersion
relation in 8', but one in s, Eq. (8), evaluated for one value of s

/t and several values of S'; hence it does not depend on assumptions
regarding analyticity in the W plane.
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Fro. 15. An approximation for the
production amplitude mE ~ m.I.

not satisfied, as has already been pointed out by
Goebel, "so that no enhancement of the inelastic ampli-
tude is expected from this graph.

%e ask, 6nally, what e8ects may be found in the
elastic channel, s.S~ s.X. Consider again the rrI state
as a contributor to the absorptive part of the xS ~xX
reaction (Fig. 16), as may be a reasonable approxima-

Fn. 16. The xI
contribution to the
absorptive part of
the elastic process.

tion near the x'I threshold. Tlils contribution contains
the production vertex mX~x/, which itself may be
thought of as proceeding via the +I intermediate state,
in that energy range, so that it is given by Fig. 14. The
result is then Fig. 17. Now, we expect the elastic

FIG. 17. The approxi-
mation of Fig. 15 in-
serted into Fig. 16.

amplitude to be enhanced when the production vertex
is, but we have already seen that, for Fig. 15, it is not.
It appears unlikely that this single graph can be
responsible for any effect in the elastic channel. This
conclusion is essentially the same as that reached by
diferent methods by Hwa. '7 This is not to say, however,
that repeated iterations of the singularity, through
unitarity relations of the type considered by Hwa in

Secs. VI and VII of his paper, could not lead to the
formation of a suitable resonance pole."This possibility

ss C. Goebel, University of Wisconsin preprint, 1962 (un-
published)."R.C. Hwa, , Phys. Rev. 130, 2380 (1963l."R, F. Peierls (private communication).

is perhaps suggested by the work of Peierls and Tarski, '
in which the complete solution of a model seems to show
some double excitation effects.

Although Eq. (14) is not satisfied for the case just
discussed, it is not hard to find examples for which it is.
Consider, for instance, the process of Fig. 18, in which

FIG. I8. A graph leading
to enhancement of the
elastic channel 2I-S —+ ~I.

a p is produced, decays, and a mI state is formed. If s
and x are associated with the external pion and isobar,
respectively, it is readily verified that Eq. (14) holds.
The resulting enhancement in TV occurs near the Xp
threshold. It is at least possible that this may account
for the i688 xE resonance which, as is well known, lies
close to this threshold. "This mechanism is then a kind
of synthesis of the Ball-Frazer and Peierls suggestions.
It has been observed" that the levels of the known
nucleon isobars appear to be separated by the masses of
certain combinations of pion resonance states. It is
certainly possible to construct graphs such as Fig. i8,
satisfying Eq. (14), all giving enhancements near the ap-
propriate (nucleon resonance+pion resonance) thresh-

old. To decide if this observation provides a basis for
understanding the empirical level spacing or not would

require a much more elaborate calculation, in which, at
least, the essential complications of spin were properly
treated.
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