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A method is given for studying the analytic properties of an arbitrary Feynman graph Ii, in which a full
two-particle propagator G is inserted between one pair of points. Three special graphs are treated in detail:
the two-particle amplitude itself, with two- and three-particle intermediate states, and the "triangle"
graph. When G has a resonance, a possible approximation for Il is to replace G by a complex pole, obtaining
thereby a new graph f in which one internal particle has a complex mass. %'e show that, although the
singularities of Ii and f are in general different, this approximation is appropriate for calculating "enhance-
ment" eGects due to singularities of P, near the physical region, associated with the resonance. For the
cases considered, we predict the ranges of the external variables for which such effects will occur, and show
how to calculate them explicitly.

1. INTRODUCTION

'HE conventional analysis of perturbation theory
graphs deals with those graphs which have stable

intermediate states —corresponding to the "elementary"
fields of the Lagrangian —as internal lines. However, it
may well be, especially in view of the wealth of experi-
mental examples, that one or more pairs of the ele-
mentary particles involved may interact to form reso-
nant states; these states contain, in a certain energy
range, the most important features of the appropriate
two-particle system. 0 we regard these two-particle
resonances as approximately stable, we are naturally
led to ask how we may extend the usual analysis to
include resonances as internal lines. If we could do this,
it would correspond to selecting out the physically most
important parts of the sum of all those graphs (involv-
ing only stable intermediate states) which contain assub-
graphs all possible graphs in the appropriate two-particle
propagator, but which are otherwise identical to each
other.

This type of reduction of three-particle intermediate
states has already been discussed from a rather different
viewpoint by Mandelstam et al. ,

' by Zwanziger, ' and
Hwa. ' These authors use equations derived from uni-
tarity to analyze eGects due to the coupling between
elastic and inelastic channels when there is a resonance
in one elastic channel, However, it is not evident how
this work may be extended if the resonance occurs in a
crossed channel. Our method is able to handle such cases,

and it also recovers the results obtained by the unitarity
method.

A third approach, related to both of these, has re-

cently been investigated by G. Bonnevay. 4 It is based
essentially on a model dispersion theory, the starting
point being a Khuri-Treiman equation. Where they
overlap, our results agree with those of Bonnevay.

The problem is formulated in Sec. 2, and the method
adopted for its solution, which is a straightforward
extension of the usual analysis of perturbation theory
graphs, is described in Sec. 3. Two simple examples are
treated in Sec. 4, while in Secs. 5 and 6 we study the
less trivial cases of the triangle graph as a function of
each of two external invariants. In Sec. 7 the technique
is recapitulated and we comment on the results.

2. FORMULATION OF THE PROBLEM

We now have to formulate more precisely the aim
outlined in the Introduction. Let us illustrate our ap-
proach in a simple way by considering the well-known

example of approximating, by a resonance pole, the
two-particle scattering amplitude itself F(W'), where
8" is the c.m. system energy of the particles. Figure 1
represents the scattering of two particles 3 and 8 of
unit mass (in what follows al/ particies are scalars and
of unit mass, for convenience) via two-particle inter-
mediate states which include all interactions of the
particles; we call the internal part of Fig. 1(a), shown
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' S. Mandelstam, I. E. Paton, R. F. Peierls, and A. Q. Sarker,
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(a) (b) (~) {&)

Fro. 1. (a) The two-particle scattering amplitude; (b) the two-
particle Green's function, G; (c) Fig. 1(a) with G replaced by a
line of mass X; (d) the resonance approximation to Fig. 1(a), in
which G in Fig. 1(a) is replaced by a line of complex mass.

' G. Bonnevay, Nuovo Cimento (to be published).
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in Fig. 1(b), the two particle Green's function G(Ws).
The part of F which contains G is related to 6 by various
constan. ts, and kinematical factors for the external lines,
with which we shall not be concerned; hence its structure
is given by that of G, which is assumed to satisfy a
Lehmann spectral representation. Hence, for Fig. 1(a)
we have

F(W') = (1/s-)
o (X')

F2
Ws —) '+ie

(2.1)

F(Ws) =(I/w) d) s~(),s)g(Wsl), s),

' M. Levy, Nuovo Cimento 13, 115 (1959).
6 R. K. Peierls in Eroceediegs of 1054 Glasgow Conference

(Pergamon Press, London, 195S), p. 296.

where o(X') is a spectral function associated with the
intermediate states to which A and 8 are coupled, and
the integral is along the real axis from the square of the
mass )0' of the lowest two-particle intermediate state.
At this stage, 0 is real, non-negative, has a cut from
Xs' to ~, and its behavior at ~ is such that (2.1) con-
verges; some further properties of 0- will be given below.

In general, of course, A and 8 may be coupled to a
stable single-particle state also; one would then add to
(2.1) a pole term at a mass N' below X,'. In some region
of the physical range of 8", it might be that this pole
term, 1/(W' —M'), would dominate the scattering; this
is the basis of "pology. " LThis term is included in the
form (2.1) by taking the integral from 0 to ao, over a
spectrR1 function %'hich hRS a delta function singulRrity
at X'= M' and which is o beyond Ass.]Suppose now that
no such term is present, but that, rather, 0 has a plr
of complex conjugate poles, on all sheets, at X'=I' and
)is =I*',where ImP is less than zero, and arg(P —Xs') =0.
That is, we assume that 0. has the form

o.(X') = (V—Xs') Irg, ')/P. '—P)() '—Ie'),

where r is a function regular in the right half-plane. The
cut is only tied down to P 0', and in our applications it
will be deformed as necessary; it will not be mentioned
further explicitly. In some simple theories, it is known
that this corresponds to the situation in which A and 8
have a resonance at 8'=I, whose width is related to
ImI. This resonance would then dominate the scattering
in some region of 5' near ReI. Recalling the form of the
Breit-signer resonance formula, we might think that
in a way analogous to the stab]e particle case, F may be
approximated by a pole formula of the type 1/(W' —P).
In this case, however, as is well known, the pole is on
the second 8' sheet, ' and thus Ii cannot be represented
exactly by 1/(W' —P). We shall see in Sec. 4 how this
may be nevertheless a good approximation to F. I.et us
now, however, restate this result in a slightly more
roundabout way which we shall then generalize. First,
let us rewrite (2.1) as

(a) (b} (~)

Fro. 2. (a) The two-particle scattering amplitude with three-
particle intermediate states, only one pair interacting through the
two-particle Green's function G. ; (b) Fig. 2(a) with G replaced
by a line of mass X; (c) the resonance approximation to Fig. 2(a).

where f(Ws la') =(Ws—),s+ie) ' f(Wsl)") is )ust the
Feynman graph for AB scattering, Fig. (1a), with G
replaced by a single line of mass X, as is shown in
Fig. 1(c). The result may now be stated as follows:
Replacing the internal G by the resonance mass I, as
shown in Fig. 1(d), gives a singularity on the first sheet
(in fact, on all sheets) of f(WslP), but on the second
sheet of F(W').

We now generalize this. Let f(x y ~
I
X') be a Feyn-

man graph in which all internal particles except one
have unit mass, the remaining hne having a mass X;
let F(x,y, . ) be the function obtained by replacing
this X line, in f(x,y, I

X ), by the two-point function G.
(The restriction to unit mass can, of course, be trivially
relaxed; it is made for algebraic convenience only. ) We
shall often write simply F, and f or f(IX');(xy ) are
the external variables of the problem. I" corresponds to
a sum of all graphs which have the form of f, but in
which, in place of the X line, all possible two-particle
insertions are made. Then

Xo'

Our problem is: In what sense F is approximated by
f(I I'), and, more generally, how are the properties of
F related to those of f(l P) P We shall actually consider
in detail only two examples. One is shown in Fig. 2(a),
a three-particle part of F(W') containing G within
itself; in this case f(W'IX') is the self-energy function
of Fig. 2(b). The other example is Fig. 3(a): a triangle
graph containing 6 internally. For this case, two
variables enter, W' and s, and f(s,W'I X') is the triangle
graph of Fig. 3(b).

We have already seen one trivial example of how
f(W'I P) may be singular on a given sheet while F(Ws)
is not. Very often, however, f(x,y, IP) may be a
useful representation of F(x,y, . ) in a certain energy
range. To illustrate our 6ndings, and to whet the
reader s appetite, we close this section by giving a rough
outline of our results. In what follows we shall take all
the elementary particles involved to be scalars and. of
equal unit mass.

Firstly, we point out that we shall clearly need the
properties of f(xy . . IX') as, say a function of )' as
well as x. Hence we will have to analyze Feynman
graphs with respect to an irsternu/ mass. f(x,y, . .

I
X').

is a many-sheeted function, and so is F(x,y, )as.
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(a) 0) (c)

Fzo. 3. (a) A rescattering, or triangle, graph containing G
internally; (b) Fig. 3(a) with i" replaced by a line of mass X;
(c) the resonance approximation to Fig. 3(a).

defined by (2.2). We postpone until the next section the
detailed definition of the physical, first unphysical, etc.
sheets, remarking here only that, roughly speaking, the
physical sheet of F(x,y, ) is defined by integrating the
physical sheet amplitude f(x,y ~X') along the un-
distorted X' contour. Continuations to other sheets are
then Inade by continuing f(x,y, ~

),') and by distorting
the ) contour. Two cases arise, depending on the choice
of external variables used to analyze F(x,y, ), and a
convention can be conveniently introduced from the
examples of Figs. 1-3.For Fig. 3(b), the definition of the
s physical sheet of f(E,Ws~) ') is independent of ) ', for
all real )2&XO', it only depends on P' through the end
point Xs' (see Sec. 3.1).We say that the resonance is in
a "closscd" channel, since it appears ln a channel
crossed with respect to s. If we chose to analyze Fig. (3a)
in terms of 8", however, the 8" physical sheet of
Fig. 3(b) would depend on ) ', the resonance is then
said to be in a "direct" channel. Figures 1(a) and 2(a)
are both, of course, direct channel cases.

For the crossed channel case we are able to give a
complete treatment of the triangle graph, Fig. 3(a). We
find, firstly, as already mentioned, that for certain 8",
f(s,W'~P), shown in Fig. 3(c), has a physical sheet
singularity in s while F(I,Ws) does not. Secondly, we
find that for a certain range in W'&9, both f(s,W'

~
P)

Rnd F($)W ) 11Rve R logal'ithIlllc slllglllR1 Ify OI1 'tile

second sheet below the s cut rather close to the physical
region, r leading to a peak in F(s,W') near the s threshold.
Finally, we show how to reach all the singularities of
F(s,W') for a general W', on all s sheets, due to the
resonance poles P and I*'.(It is convenient to introduce
the general shorthand name "resonance singularity" for
all such singularities. ) Resonance singularities associated
with I*' are never near the physical region.

In the direct channel case, we analyze the somewhat
trivial Figs. 1(a) and 2(a) completely, obtaining the
well-known results of, in the one case, a second sheet
resonance pole in S"', at 8"=I', and in the other, a
second sheet resonance square-root branch point in 8"
at W'=(I+1)'. For Fig. 3(a) as a function of W'
however, we are not able to give a complete discussion.
The difhculty is primarily that the properties of
f(s,W'

~
P) are defined with respect to a complex branch

point W'=(I+1)'. We investigate the physical and

7 This result has been found by G. Sonnevay, Ref. 4.

nearest unphysical regions of F(s,W'), but do not search
further sheets; nor can we give a direct way of calcu-
lating CGects in the physical region, although an in-
direct procedure does give a peak due to a resonance
logarithmic singularity, the existence of which we are
able to prove.

3. GENERAL METHODS

We wish to study the analytic structure of F(x,y, ),
given by Eq. (2.2), as afunction of one of (x,y, . ) when
the remainder are held constant. %e 6rst indicate the
definitions of the physical and various unphysical sheets
of F(x,y, . ), and then describe two general methods
useful in the analysis.

3.1. The Physical and Unphysical Sheets off and F
Let us write F and f for F(x,y .) and f(xy ~g&),

respectively. We recall that f is a standard perturbation
theory graph containing an internal particle of mass g;
it is a many-sheeted function. Suppose we are interested
in thc properties of I' in the x plane. Then we first of all
have to define a physical x sheet, for f, by drawing cuts
from branch points due to the lowest contraction of f,
then the next lowest, and so on successively up to the
(leading) singularity of f itself. It is evident from (2.2)
that this physical sheet is to be defined in the complex
space of x, say, and X'. YVC are at once. faced with a prob-
lem involving two complex variables. Two cases arise.
In the first, which we call the crossed-channel case for
reasons which will emerge later, singularities in x and
in X' from the lowest nontrivial contractions of f—self-
energy graphs —are independent of each other. Let
these singularities be at x; and X;2, and draw cuts in the
x and X' planes from x; and ) so as to define inde-
pendent Riemann sheets in the A' and x planes. Then
f is defined in the topological product of the two cut
planes, and the sheets of f are with respect to these
(independent) cuts in the x and X' planes. Let us call the
first sheet with respect to these cuts the physical sheet p,
and denote by q the first unphysical sheet. In the x
plane, p and g are defined with respect to a cut from the
normal threshold xs, going along the real axis to +~.
The definition of the X' sheets will be given in Sec. 4.1.
Finally, let us denote by f„„etc., the function f when
x is in its physical sheet p, and )ts is in its sheet q, etc. ;
as a convention, we always refer to the external variable
x first in the subscript.

Now as far as Ii is concerned, in this crossed-channel
case, it certainly has the singularity xo since that is
independent of X'; we draw a cut from xo to ~ along
the real axis. The physical amplitude Ii is then obtained
from (2.2) by integrating, with x&xs approaching the
real axis from above, the physical amplitude f», along
a )~s contour just below the real axis Lcf. the +is in
(2.1)j, from Ass to +~. The physical sheet F of F is
then defined initially by continuation, in a counter-
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clockwise sense with respect to xo, from this region near
the real axis into the complex plane without completely
encircling x=xo. The X' contour has to be deformed if
necessary. This continuation will certainly be unique if
there are no other singularities of the physical sheet
amplitude —for example, anomalous thresholds —located
oG the real axis. For the crossed-channel case which we
consider —the graph of Fig. 3(a) as a function of s—this
is true, although f»(s, H~'l X') does have a logarithmic
singularity oe the real s axis, on the lower edge of the
s cut; this then leads, as we shall see, to a singularity of
F(s,Ws) on P just below the real axis at, say, s=s, .
Hence a complete definition of I' must include a specifi-
cation of the cut attached to s„andwe shall take it to
be simply along the real axis below the normal threshold
cut.

It is actually now already evident that f» may be
singular at some complex point, while P is nevertheless
not singular on I'. The condition is simply that in the
continuation of x into I' we never have to distort the
X' integration contour. We shall return to this below

in Sec. 3.2.
We have now defined Ii throughout the physical sheet

P for the crossed-channel case. A second case arises,
however, if the singularities in x and X' from the lowest

order contraction are not independent of each other;
that is, X;=X;(x) and x;=x,(X'). Then it is no longer true
that f may be regarded as an analytic function in the
simple topological product of two cut planes. While our

approach does not break down completely, our treat-
ment will be less complete. In this case, we have to
analyze first of all how the singularity x& survives the
)' integration. The details of this we postpone till

Sec. 3.2, but the result is that it is only xo——xs(Xs')

which is a singularity of Ii. A cut along the real axis

from xo then serves to define P initially, provided there

are no complex singularities.

Suppose we now start from a point in the physical

region (x)xo and above the real axis), and continue in

a clockwise sense with respect to xo across the cut. The
sheet reached on this path will be called Q and is the

unphysical sheet nearest to the physical region. We

shall now be integrating f,„,and in performing this

continuation singularities may appear in f and move

towards the 'A' contour, forcing us to distort it, a process

which will be halted when a singularity of F, pushing

the contour in front of it, meets a singularity of 0.Then

we will find a singularity of F in Q, so that Q will have to
be defined by an additional cut starting from this and

any other singularities we find in a similar way. Further

sheets (R,S, ) can then be defined by various other

paths of continuation. As for f, we denote by (Fr,Fo, )
the function F on sheets (P,Q, ).

We now go on to describe in more detail a method,

the rough outlines of which we have just given, for

finding the singularities of I' on the various sheets. We

call it the search method.

3 Zb Th.e D.isPersion 3fefhod

This is based on dispersion theory. We express f as
a dispersion integral in x with a spectral function g
(xla'), that is

f(xy "ll')
dx'=(1/~), . 4(x',y" ll'), (3 1)

y2) x x z6

where C represents the integration contour. Then

dx'
F(x,y .) = (1/m. ) C (x',y ), (3.2)

g(y. ~ ) x x z6

where

C(xy. )= dh (X)y(*, "lV). (3.3)

Singularities of C in x give rise to singularities of F on Q.

' R. J. F.den, Proc. Roy. Soc. (London) A210, 388 (1952) was
the first to apply the method of J. Hadamard I Acta Math. 22, 55
l1898)j to this type of problem.' J. Tarski, J. Math. Phys. 1, 149 (1960)."L.F. Cook and J. Tarski, J. Math. Phys. 3, 1 (1962).

3 2 The Properties of F

3.Za. T'he Search Method

This is based on the now well-known method of
Hadamard' ' for obtaining the domain of holomorphy
of a function defined by some integral representation.
We follow an arbitrary path in the many-sheeted com-
plex x plane, and see how far we may enlarge the domain
of holomorphy of F, by distorting, if necessary, the X'
contour away from an advancing singularity of f. This
enlargement proceeds unless (i) a X' singularity of f
coincides with Ass& or with V= ~; or (ii) a pair of X'

singularities offare coincident and pinch the X' contour;
or (iii) a X' singularity of f pinches the X' contour against
a singularity of 0-. That one of the three alternatives
(i) to (iii) is the case is necessary, though not, in general,
suf5cient, for the existence of a singularity of Ii.

The singularities of o. which are our immediate con-
cern are X'=I' and X'=I~' The 0 branch point at
X'=Xos has already been considered in (i). The singu-
larities arising by (i) and (ii) define the physical sheet
of F, and those arising by (iii) are then to be determined
with respect to this physical sheet. To determine the
sheets on which the resonance singularities are found,
we must follow the deformations of the X' integration
contour, in order to see that the coincident singularities
actually pinch the X' contour. To repeat, it is now clear
that if throughout I' no deformation of the X' contour
is necessary, Iir will have no complex singularities
although f»(x,y, l

ls) may be singular.
We shall normally use the search method, but there

is another which we describe briefly.
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We arbitrarily distort the X contour in (3.3), in such a
way that we explicitly separate off the contribution of
the pole of a at X'=12,

I (x,y )=4'—2iriR&(x, y l
I') (3.4)

where R is the residue of 0 at the pole ) '=I'. By this
separation it seems that C contains g(x,y ~ lP) and
thus the singularities of g(x,y l

I').These singularities
may give rise to singularities of P on Q. However, we
must ensure that the singularities of p are not cancelled

by those of C.
This method has certain difliculties of execution,

though not of principle, and in general we prefer the
search method. To proceed with it we have to know the
properties of f(x,y, l

1%,') as a function of X'.

3.3. Properties of f
Before dealing with Ii we must know the singularities

of f(x,y, .
l
X') in X' for all complex X' and x, say, the

other variables (y, ) being real and physical. This
requires the study of the analytic properties of perturba-
tion theory graphs as a function of two complex
variables, one being an internal mass and the other an
external variable. This has only once before been studied,
in a rather different context. " We apply here two
methods more usually used for the analysis of two ex-
ternal variables, namely perturbation theory and dis-
persion methods.

The perturbation theory analysis is a fairly obvious
generalization of the methods developed by Eden, '
Tarski, ' and Cook and Tarski, ' though several unusual
features arise. We write the standard integral over
Feynman parameters a;i and Gnd the various (x,X')
surfaces on which end point or coincident singularities
of the n; integrations occur. The singularity character
of such a surface can only change at contact with the
"one further contraction" surface, and theorems (3.2)
and (3.3) of Ref. 10 can easily be generalized for vari-
ables (x,X'). A slightly unusual feature is that the lowest
order singularity surfaces are given by 0.1,=1, a,.=0,
all iWk. One must also take account of the possible
second type singularities. "The treatment of a leading
singularity curve in (x,X') is straightforward provided
the physical sheet defined by the lower order singu-
larities does not contain any complex singular surfaces
which depend on both x and 'A'. This is the basis of the
distinction between crossed and direct variables, and
we do not pursue the treatment of direct variables as
vigorously as that of the (simpler) crossed variables.

The analysis of f(xlX') can also be performed by
dispersion methods, if f satisfies a dispersion relation in
x with a spectral function P whose properties are known

"J.Bronzan and C. Kacser, Phys. Rev. 132, 2/03 (1963).
'2 D. S. Fairlie, P. V. Landsho8, J. Nuttall, and J. C. Polking-

horne, J. Math. Phys. 3, 594 (1962); Phys. Letters 3, 55 (1962);
also see, M. Fowler, J. Math. Phys. 3, 936 (1962);Nuovo Cimento
27, 952 (1963).

as a function of x for at least some range of X'. One can
then obtain the properties of f(x l

X') by continuing P in
X'. Whenever a singularity in x of @ crosses the x dis-
persion integration contour, this leads to a new singu-
larity of f. Continuation in x onto other sheets is done

by deforming the x integration path as necessary, so
that x singularities of P become second-sheet singu-
larities of f.For the triangle there is no lack of dispersion
relations"; however this method of analysis requires
care in keeping account of sheets. The same problems
of lower order singularities arise here as for the perturba-
tion theory method, when these lower singularities de-
pend on both variables. Thus we prefer the method of
perturbation theory. (The two methods should always
lead to the same results. )

For actual calculations, however, once the singu-
larities have been determined, we shall use dispersion
theory; we now give an outline of this.

3.4. Calculation of Il

The case in which a resonance singularity is most
interesting is when Iiq has a singularity just below the
real axis, since then it is near the physical region in I';
it is for this case that we shall calculate F. The method
can certainly be generalized.

Suppose Ii@ has a resonance singularity at x&, say,
due to a pinch between the pole of 0 and a singularity
of f p, where n, P stand for the x, X' sheets of f. Then

S,=P, 2~R(12)f.(x,y—," lI2)

where R(P) is, as before, the residue of the pole in 0 at
)'=I', and where Ji has a de6nition similar to that of
F@ except that the 'A' contour passes below X'=I'. The
X' index on f has been dropped for clarity since it will
be p in our calculations. Then Jio has no singularity
at x&, since the X' contour is not pinched; the singularity
of Fo at xr is in f (x,y, lP). In Q, we draw a cut
from xr to +~; let us denote by square brackets dis-
continuities across this cut. We then have the immediate
result that, apart from constant factors,

l ~o7= Lf-(II')7 (3 6)

To evaluate Lf (l P)7 we can use either perturbation or
dispersion methods and we will use the latter. l We notice
how this section is closely related to Sec. 3.2(b).7

In sunnnary, we see that once we have proved that Ii
has a singularity on Q at xr, the effect of this can be
calculated from the separated-off resonance contribution
f (lP). The nontrivial part is to show that this con-
tribution is not cancelled by the remaining "back-
ground" term F.

4. TWO SIMPLE EXAMPLES

In order to clarify our methods, we now turn to some
straightforward examples.

» C. Fronsdal and R. E. Norton, UCLA preprint, 1963
(unpublished).
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4.1. The Two-Particle Amplitude with Two-
Particle Intermediate States

As we have seen, the two-particle amplitude of Eq.
(2.1)—Fig. 1(a)—can be identified with the form (2.2)
by setting

f(W'~ y') = 1/(W' —li'+is) . (4.1)

f(W'
~

X') is shown in Fig. 1(b). For o we take only two-
particle contributions, assuming, in particular, the
existence of resonance poles I2 snd I*' as discussed in
Sec. 2. As a function of the two complex variables S'
and X', f has a pole in each variable located at the value
of the other variable (the ie can be ignored). In this
simple case f is not many sheeted. The physical sheet
P of Ii is defined originally as the sheet for which the
)' integration runs on the real axis from 4 to ~; thus
on this sheet F(W') has a continuum of poles, that is a
cut, from 8"=4 to ~, and the physical limit is obtained

by approaching the real axis in the sense W +i&, i.e.,
from above. As we continue onto the second sheet Q
of F through this cut from above, the X' pole of f at
)'=8' will cross the 'A' integration path from above,
unless we deform the contour downwards to avoid it.
As 5"approaches I', the deformed P ' contour is pinched
between the pole of f at V= W', and the pole of o at
X'=I' so that W2=I' is a singularity of F(W') on its
second sheet Lnote that W'=P is a singularity for
"all sheets" of f(W'~ P)$. This singularity is actually a

pole, as can be seen if we follow the deformation of the
'A' contour by two distinct 8" paths to the same 8'0',
which pass 8'=I' clockwise and anticlockwise. One

easily sees that the value of the X' integration is the
same for both paths. Of course an easier way is to write

the 'A' deformed contour as the original contour together
with a closed loop about X'= W', as in Sec.3.4, Eq. (3.5);
we obtain

Fa(W') =Fp(W') —2iE(I')f(W'
~
I')

where we recall that Ii I and Jig are the values of Ii on

its first (physical) and second sheets, P and Q, respec-

tively. One can go on to find the 8"=I*'second-sheet

singularity (a pole); and also to show that going through
the second-sheet cut from above returns us to the first

sheet, so that 8"=4is a square-root branch point, which

is a consequence of the two-sheeted nature of o P~').
F(W') is a two-sheeted function, while f(W'~X') is

single valued. f(W'
~
P) has a pole which corresponds to

that second-sheet pole of F(W') which is near the phys-
ical edge of the physical sheet of F.Further, the behavior
of F(W') along this edge is properly reproduced by that
of f(W2

~
P), both in magnitude and phase (disregarding

a smooth background variation). On the other hand,
f(W'~I*') does not reproduce the physical value of
F(W') correctly (it gives the opposite phase); this is

because the pole of f(W'~I*') leads to a second-sheet

pole of F(W') which is far from the physical region, so

that the physical values of F(W') are incorrectly repre-

sented by f(W'~I*'), even to modulo a background
term.

This trivial example, therefore, already demonstrates
the necessity for caution in applying the resonance
approximation, and shows that the important question
is the location of the singularities of F(W ), not pri-
marily those of f(W2~I-') and f(W'~ I*').

4.2. The Two-Particle Amplitude with Three-
Particle Intermediate States

To discuss resonance approximations to the three-
particle intermediate state part of the two-particle
amplitude, we analyze Figs. 2(a) and 2(b). In this case
f(W'~X') is the single-loop self-energy function, whose
properties are well known for 6xed real values of the
internal masses (X and 1 in our case). In particular, the
explicit form of f is easily evaluated; the extension to
complex X' can be done either from the explicit form
or by means of the dispersion relation satis6ed by
y(W2

~

Z').
Nonetheless, in order to demonstrate our general

methods, we have treated f in full detail by the methods
of perturbation theory. This analysis, which is given
in Appendix A, will have a later application, since the
self-energy function is a lower order (contraction)
singularity of the triangle graph.

4.Za. Properties of Fig Z(a) by t.he Search 3Eethod

We now turn to the properties of Fig. 2(a), given by

where f»(W2~ X') is Fig. 2(b); the indices will often be
suppressed.

The properties of f that we use are proved in the
Appendix. For a given real X')4, f(W'l)P) has a W
cut running along the real axis between the two inverse
square-root branch points at W2=(X+1)' (this is a
direct channel case) and W'= ~, and the physical limit
is from above this cut (W'=0 is not a physical sheet
singularity). F(W2) is defined in (4.2) with a real X' path
of integration. Ii has, 6rstly, a logarithmic singularity
at W'=9, where the singularity of f at W2=(X+1)'
coincides with the end point )3=4. The physical sheet
P of F is de6ned by a cut along the real 8"' axis running
from 9 to infinity. This is the normal branch cut corre-
sponding to the three-particle intermediate state. Com-
mencing with any 8" infinitesimally above this cut,
8" can range throughout the whole complex plane
avoiding the cut—that is, staying on E—and no singu-
larity of f(W'~X') will ever meet the X' integration
contour, since the singularities are at X'=0, X'= —,
and X'=(W—1)'. Hence (a usual feature) the entire
physical sheet definition of Ii is in terms of an undis-
torted X' contour.



%e now continue from the physical region of the 8'
physical sheet P onto the 6rst unphysical sheet Q, and
ask for the singularities of Ii q. For this continuation, we

still integrate f, but the contour may have to be de-

formed since f now develops complex singularities Lsee
the remarks following Eq. (A4)7. Exactly as in (4.1),
we find that Ws= (I+1)' is a singularity of Frt, due to a
pinch of the 'A' contour between the X' singularity of
f(W'l X') at ) s= (W—1)' and the pole of o at ) '= P. It
is, in fact, a square-root branch point. ' As 8"' continues
clockwise on Q other possible singularity candidates are
for Ws =1, at which the previously singular ) s = (W+1)'
passes through the P '=0 cut, and the second type singu-

larity at 8'=0. Both of these are reasonably far from
the physical region, and we do not pursue them further.
If Ws continues around on Q between Ws = 1 and W'= 9,
one finally encounters the singularity Ws= (I"j1)s. A

singularity at (I*+1)' can also be found on a search
which starts on P below the real axis with 8'2&9, and
moves anticlockwise with respect to 8"=9, crossing
the cut. Now, however, since 5"=9 is a logarithmic,
not a square-root branch point, we reach a third sheet

R, not Q, and the value of Fit is not that of Po. Again,
one can reach (I+1)' on R. Other sheets can be defined
similarly, but the singularities on them, and of Ii@ at
(I*+1)',are far from the physical region, and we shall
be mainly concerned with the singularity of Ii@ at
(I+1)'. We remark that all these resonance singu-
larities correspond to fl,rst sheet singularities of f(W'

l P)
and f(WslI*').

We now investigate the resonance singularities in Q
more closely, show that they are branch points, and
calculate the discontinuity associated with each. Ke
let W' search to some 1F' on sheet Q, to the right of
Ws=(I+1)', along two paths which pass W'=(I+1)'
in a clockwise and in an anticlockwise sense, obtaining
Po(Ws+) and Pq(Ws —). The appropriate Xs contours
are shown in Figs. 4(a) and 4(b). One readily 6nds

Fq(w'+) —Fo(ws —)
= —2~'R(Is) l f(Ws lIs —)-f(Ws lIs+) 7
=-2-R(I )Lf(w'+ II')-f(W —II')7

where R(P) is the residue of o(Xs) at As=I', and
f(w'~

l
P) are the values of f(W'l P) obtained for 1F'

passing clockwise and anticlockwise around the branch

4

pomt of f(W'lP) at W'=(I+1)'. The form of (4.3)
is again a special case of Eq. (2./).

We can obtain the discontinuity of f(W' l
I') by con-

tinuation in X' from real to complex values; or directly
using perturbation theory methods'4 is (for we know
that the discontinuity of f is due to one of the crt poles
crossing the rri integration path); or by dispersion theo-
retic methods. We adopt the last (they all give the same
result) since we can at the same time demonstrate the
dispersive method of studying F.

4.2b. Properties of F(W') by the Dispersioe Jjdethod,
urtd Culculutiors of the Resortursce Peuh

Ke have, as before,

P(w') = (1/~) d) so()ts)f(ws l) s),

y(W'
l
gs) = LWs —()„—1)s7i/st Ws —(&+1)s7in/2Ws.

(46)
Then

with

C (8"s),8"'—8"—ie
(4 &)

C(W') = dX'o(Xs)tt (Wsl X'). (4.g)

Singularities of C for complex 8"' give singularities of F
on its second sheet. Equation (4.8) originally applied
for S'&9, with the X' contour along the real axis. %e
continue in W', and obtain a singularity of 4 if (i) the
end point X'= (W—1)' encounters a X' singularity of Q
or of o, or (ii) two singularities of p, or of o, or one of o.

and one of P pinch the Xs contour (which may have been
pushed by one of these). Notice that possible singu-
larities arising from coincidences (ii) require a careful
tracking of the deformations of the 'A' contour to test for
pinching. Hence, in general problems this method is less
straightforward than the search method for 6nding
singularities, though as we shall see below, it is very
powerful for calculating observable effects. For the self-
energy graph, the enumeration of possible singularities
is straightforward. One finds (considering only P) that
the end point meeting the pole of o gives (W—1)'=P
as a singularity, and the coincidence of p and r singu-
larities gives the possibility of W =(I 1)'. The latter-
is actually a singularity if W' 6rst circles Ws= (I+1)',

but now use the dispersion relation valid for real ) '&0

d8"'
f(ws

l
) s) =— p(w"

l
X'), (4.5)

(y+y) ' 5 —5 —le
with

(a) (b)

Pro. 4. The lP contour and cut (dashed) for F(W'). (a) W' circling
clockwise about (I+1)2; (b) 5'2 circling (I+1)2 anticlockwise.

'4 R. J. Eden, in Brandeis Lectures in Theoretica/ Physks, &61
Lectures (W. A. Benjamin, Inc. , New York, 1962), Vol. 1."R.E. Cutkosky, J. Math. Phys. 1, 429 (1960).
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but not on a direct path. 8"=0 is also a singularity of
both g and of C, being the second type singularity.

We now distort the W" path in (3.12), avoiding the
singularities of C as shown in Fig. 5. The spectral func-
tion along Ci is the straightforward continuation of C

to complex W' for (W—1)' passing below X'=P and
the ) ' integration along C2 is equivalent to a X' integra-
tion from (I+1)' to ~, with a weight function

C (Ws+) —4 (W' —) = —2rriR(j')y(Ws
I
I') (4 9)

But

C1

pro. 5. The distorted Ws dispersion integral path for F(W').
The part C1 gives P, with no singularity close to the physical
sheet& while C~ leads to an explicit separation of f(W'~P).

between F and f(lP), Fig. 3(c). We begin with the
definitions of the physical, and. erst unphysical, sheets
of F; that is, P and Q, respectively.

Therefore, for 8" in the lower half-plane,

F (W') = (1/a) {dW"C'(W")/(W" —W' —ie)}
—2% iR(I') f(W+' l

I') (4.11)

where F@ is the second-sheet continuation of F, the
resonance contribution being explicitly separated off

l
it is clear that the Cr integration has no singularity at

Ws = (I+1)'] This is another example of the separation
of the resonance contribution, as described in Sec. 3.4.
If we now evaluate (4.11) for W')9, W' having an
in6nitesimal negative imaginary part, then the C~ con-
tribution will have a threshold behavior coming from
W'=9, but no other "peaking;" however, f(WslP) will

show some enhancement arising from the singularity
at W'=(I+1)' But Fq(W' ie)=F—i(Ws+ie); hence
we see that the physical amplitude in the physical limit
will show an enhancement due to the second-sheet
singularity at W'=(I+1)', which can be calculated

simply from the resonance contribution of (4.11),which
itself can be calculated from (4.5) and (4.6). Of course
we cannot calculate the magnitude of the smoothly
varying background term arising from the C& integra-
tion, but we do know that it does not cancel the reso-
nance singularity. This enhancement is a woolly cusp
effect of the type discussed by Nauenberg and Pais. '

F(s W') = d) 'o (X')f(s W' l) '), (5.1)

where f is Fig. 3(b). We wish to find the connection

«M. Nsnenberg and A. Pais, Phys. Rev. 126, 360 (1962).

5. THE TRIANGLE GRAPH WITH A RESONANCE
IN THE CROSSED CHANNEL

Having outlined the general approach, and having
used it in two simple examples, we now apply it to a
rather less trivial case: the analysis of the triangle graph
F(s,W'), Fig. 3(a), as a function of s. This is our first
crossed channel case. As before, we write

5.1. The Definition of Sheets P and Q

We first have to define the sheets of f, which in this
case is rather more complicated, since f is a function of
two complex variables, s and X'. For a given 8", we
need the complete analytic structure of f in X' as well
as s. This is derived in Appendix B. For the purposes
of the present discussion, we first recall the notation for
the sheets of f introduced in Sec. 3. The physical sheet
of f is defined initially with respect to the various singu-
larities coming from the contracted graphs, which in
this case are self-energy graphs of the type of Fig. 2(b);
these have been analyzed already in Appendix A. In the
s plane, the physical sheet p is defined with respect to
the normal threshold cut starting at s=4; the first
unphysical sheet q is reached by crossing this cut from
above. In the )' plane, two cuts define the physical
sheet p; they are drawn along the real axis from
),'=(W —1)' to —co, and from X'=0 to —~ (these
overlap, of course). If we cross the cut between X'=0 and
X'= (W—1)' we pass to sheet g in X', the X'= (W—1)'
branch point being a square root singularity. The singu-
larity at P'=0 is logarithmic, and in general we will not
continue through the negative real Xs axis. Then f„„
for example, denotes f when s and Xs are on sheet P
and q, respectively. These lowest order singularities in
s and X' are independent of each other, so that this is
a crossed channel case: X' is in a crossed channel with
respect to s. Hence f is defined in the product of the
cut s and X' planes.

We can now define the sheets of F. Since F certainly
has those singularities of f which are independent of
X', we see that F has a square root (normal threshold)
branch point at s=4. The resulting two Riemann sheets
join across a cut in the s plane, which we take to be
along the real axis from s=4 to s=+ ~. The physical
amplitude F is obtained from Eq. (5.1) by integrating,
with s approaching the real axis from above, the physical
sheet amplitude f» along a contour taken just beloto the
real X' axis

l
cf. Eq. (2.1)j. In this case, we note that

the definition of the P' contour gives the necessary pre-
scription for passing the branch point of f» at
)'=(W—1)' which, for all s and W')9, lies on the
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real X' axis to the right of X'=4. The physical sheet I'
is reached by continuation from the physical region
above the real s axis into the complex s plane, in a
counter-clockwise sense with respect to s=4.

An important remark follows from the properties of

f» derived in Appendix B. Since f» is totally free of
singularities for Ims)0, Imk'&0, it follows that as s
moves in the upper half-plane, there is no X' singularity
which can approach the X' integration contour; i.e., for
Ims)0, the X' contour is not distorted. This remains
true for sEw, and sos Lcf. Eq. (85a)j. Finally as s
enters I from v by crossing H, X ' does become singu-

lar; however, it enters P through I.. 0&As&4, thus

avoiding the X' contour. We therefore see that this
continuation may proceed throughout the whole s plane
without our having to distort the X' contour, so that we

may write, with an Nndistorted contour,

d) s ()~s)y„„(i)s). (5.2)

To anticipate somewhat, we point out that this is not
true for continuation into Q, the sheet reached by a
clockwise continuation with respect to s=4; then we

must write

(5 3)

the circle sign on the integral indicating that a distortion
of the ) ' integral has been necessary.

Sheets F and Q will also have to be further defined

with respect to additional branch points of F arising
from pinch or end point singularities of the X' integra-
tion. The initial definitions of F and Q are shown in

Fig. 6.

Fn. 6. The initial definition of the
s physical (P) and nearest unphysical
(Q) sheet, for F in the crossed channel
case.

ps
qQ

S.2. Properties of F and Sheets P and Q

In addition to the X'-independent singularity at s=4,
F& or Fg are singular, 6rstly, when one of the triangle
singularities of f»(s, W'

~
) s), denoted by

reaches the end points ) '=4, ) '= ac, of the ) ' integra-
tion. The motion and singular character of )~+s, X s are
described in Appendix H. We refer to Fig. 19 in particu-

lar, which defines certain regions, in the s and X' planes,
which we shall use frequently. From Eq. (BS) and

Fig. 18 we see that as s approaches -', (Ws —1) through

values greater than this, below the real axis (that is,
as s tends to the upper left corner of u ) a singularity

X ' of f»(W', s~ X') reaches the end point X'=4. Hence
s=-,'(W' —1) is a singularity for F&, reached from below

the real axis (and is far from the physical region). In
the same way, we find that s= st (Ws—1) is a singularity

~sam—(W -I)I

2

0 4

(b)

—(4-I )2

Fro. 7. (a) The physical (P) sheet cuts of t(s,W'); (b) some of the
cuts of F(r,W') on the nearest unphysical sheet Q.

for F@, reached from above the real axis. The fact that
for X =4 the singularities of f» coincide is essentially
irrelevant. The existence of these singularities at
s= is(W' —1) may also be inferred from a conventional
analysis of f»(W', s~4) in terms of W' and s (although
this case is admittedly somewhat degenerate), or by
explicitly making continuations of F&(Frf) along two
paths passing on either side of ~t(W' —1), starting from
below (above) the real axis and ending above (below) it.
These continuations lead to different results, demon-
strating the existence of a singularity of FI and F@
at —,'(W' —1).

Finally, we remark that s=0 is not a singularity of
F~. At Grst sight we might suspect that it was, since if
we make a circle about it inside m in the s plane, one of
the X' points, X 2, crosses the X' cuts near )'= —~, and
hence its singularity character might change. This does
not occur on this sheet, since this "possible" singularity
cannot cause a deformation of the 'A2 contour in Eq.
(5.1). Since f»(s, W'

~

Xs) is certainly regular at s=0 for
all X' on the undistorted )' contour, it follows that s=0
cannot be a singularity of F„.Lof course, s=0 also
arises by contraction of the 'A' side of the triangle, as
both the Landau pseudothreshold (mi —ms)', and also
as the second type singularity. But these are not singu-
lar on the physical s sheet. )

In fact, one 6nds that s=0 and s= —~, the two
singularities associated with X = ~, appear only in Fq.
Since any remaining singularities of FI or Fq come from
a pinch of the X' contour at )'=I' or I*' where I is

complex, we have found all the branch points of FI and

F@ on the real axis. Our choice of cuts for FI and Fg
at this stage is shown in Fig. 7. Crossing a cut on two
successive revolutions about s=4 returns us to the same
sheet as that on which we started only if we cross in the
region 4&s&—,'(W' —1).

Consider now, for FI, the possibility of a pinch at
X'=P or I*'.On its physical sheet, f» may have com-

plex singularities for s in u, if I is in to t Eq. (5)j.
But, as we remarked earlier, no deformation of the X'

contour in Eq. (5.1) is necessary to reach these points,
nor is it necessary throughout I', so that no pinch can
occur. That is, FI has no complex resonance singularities,
despite the fact that f»(W', s

~
P) may have. The differ-

ence between the properties of F and those of f(~P) is
made clearly evident.

The situation is different for F@, however. Let us
introduce the notation Q(u ) to denote the domain u
on sheet Q, etc. . . . We shall illustrate the procedure
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L O~

r J

(I-W) j (W+I) ( W+I)

FIG. 8. A search for resonance singularities in the s variable of the triangle graph F(s,W ) (the crossed channel case). The search
path in the s plane is shown by the heavy line joining ringed points on the path. The inset diagrams show the X' plane at each ringed
point. In these, the singularities in Xs of the triangle graph F(s,Ws

~
Xs) are shown by the plus and minus signs; the ) s contour is the heavy

line. Only the essential parts of the bounding curves S+, H+ have been included. The cuts in the s plane are indicated by thick dashed
lines. A detailed commentary on this figure is given in the text.

by one rather straightforward search, which we describe
in detail. It is drawn in Fig. 8, and we shall devote the
rest of this section to explaining, and commenting on,
this diagram.

The over-all plane is the s plane for Ii, divided into
the six regions u+, vz, m+ as defined in Appendix B.
This plane has two cuts along the real axis from 4 to ~,
and from —,'(W' —1) to ~. Dt also has two "naming"
cuts (see Appendix B) between 0 and 4, and between
(W—1)' and (W+1)'.]Starting at the point 1 in P(w+),
we cross the first cut, passing into Q(w ), and proceed
to search for singularities along the route 2, 3, 4, 5.
This route crosses no other cuts (at a naming cut, the
name of the singularities of f, not their singular charac-
ter, changes). Consideration of the sheets reached by
crossing the cut attached to sr(W' —1) will be deferred
to Sec. 5.3. This route in the s plane is shown by the
line joining the points 1—5; the part of that line in P(w+)
is shown dotted, to emphasize that between points 1
and 2 we move from P to Q, so that it is on a different
sheet of E from the remainder.

The insert diagrams, on the other hand, show the X'

plane. The regions u~, etc., are indicated, as needed, by
light solid lines. The positions of the two singularities
of f, X+' and X ', are indicated by + and —signs; their
singular character, and motion, is determined in Ap-
pendix B.In this plane, there are, we repeat, cuts along
the real X' axis from (W—1)' to —~, and from 0 to
—~, which for clarity are not shown in the Fig. 8.

Finally, the X contour, which runs initially from 4 to
+ oo, just below the real axis, is shown as a heavy solid
line.

We start at the point 1, in P(w+), so that Eq. (5.1)
holds. Neither X~' nor X ' is singular for f», and the
X' contour is undistorted. As we pass to 2, we move
continuously onto Q, and onto the q sheet in s. We see
that X+' has crossed a X' cut, so that it now appears on
f,„ t s eEeq. (B6)],forcing a deformation of the contour
down into I, . This is the crucia/ Point of the whole analy
sis At 3, we cro.ss a naming cut, and the names kP, X s

interchange; the properties of Jig, however, remain the
same. At 4, the distorted )' contour now enters m,
having passed through v, while at 5 it enters m+. At 5,
the distortion has forced a part of the contour through
the X' cut between 4 and 0, so that for that part we
would be integrating f«. (cf. the remark at the end of
Appendix B.) That part is shown dotted.

The possibilities for resonance singularities are now
quite evident; we require the deformed X' contour to
collide with a pole of 0-. We shall state the results. Most
notably, we see that there is a complex singularity in
Q(w ) if I is in u . This is near the physical region in
P(w+) if the imaginary part of I is sufficiently small.
We shall show how to calculate the eGect of this singu-
larity in Sec. 5.4, below. It is found on any path entering
Q from P in the upper half-plane. Note that s= W+1
is not a branch point of Ii I . It may appear, at first sight,
that it is, since if we penetrate Q(s ) by going from
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~R
4

4 g
+S

(b)

Fio. 9. (a) and (b). The location of the sheets
R and S of F(r,W').

sheet specified. Figures 10(b) and 10(c) complete the
possibilities for positions of I and I*. Further sheets,
and the singularities in them, can be searched in the
same way.

The most significant singularity, physically, is that in

Q(w ) when I is in u . We now turn to the question of
how effects due to it may be calculated.

P(w+) via P(s+), for instance, no )+' singularity appears
in f, „

to force a ) ' contour deformation, so that there
is no singularity in Q(e ).However, if we then move into

Q(w ), the singularity does appear; essentially, this is
because as we circle s= W'+1 omce, the X~' point circles
the ) '= (W—1)' cut twice s=-', (.W' —1) is not a branch
point either, when approached from above the real axis,
since, although the singular character of X ' does change,
it causes no deformation of the contour. These com-
ments reQect our earlier findings about the singularities
of F on I', and the content of these is that, in general,
any point in Q can be reached from P on an arbitrary
path crossing the cut. Hence any most convenient search
into Q is adequate for any given region.

The remaining results for sheet Q will be summarized
below, in Sec. 5.3, where we investigate higher sheets
of F.

5.3. Further Sheets of E, and Some
Singularities on Them

Although s = -', (W' —1) is not a singularity of Fr when
reached from above the real axis, it is when reached from
below, as we saw in Sec. 5.2. It is also a singularity of
Jig from above. Referring to Fig. 9, denote by E the
sheet reached by continuing across the real axis into
I+ from P(N ); and by S that reached by continuing in
the opposite sense into u from Q(N+). Both of these
sheets are rather far from the physical region of I'.
Nevertheless there is some point in investigating them.
Firstly, the analysis is easily handled by the search
method, and is an example of a distinctly nontrivial
case. Secondly, singularities associated with I*' are
frequent on these sheets. Thirdly, we recall that for the
two-particle amplitude with three-particle intermediate
states (Sec. 4.2), the resonance singularities were found
by penetrating the cut attached to the branch point
associated with X'=4; we might expect, therefore, as
has been conjectured by Challifour, '~ that continuations
through the cut attached to the branch point
s=st(W' —1), associated with X'=4, would also find
resonance singularities. We And that this is the case.

We have summarized our principal 6ndings diagram-
matically in Figs. 10(a)—(c). Fig. 10(a) shows on the left,
a possible position for I and l~, with, on the right, the
consequent singularities associated with each, with the

'7 J. Challifour, private communication to p, p, I.andgggff
quoted in Nuovo Cimento 28, 123 (1963),

5.4. Calculation of Effects due to a
Resonance Singularity in s

Following the general method of Sec. 3.4, we make
manipulations similar to those leading to the separation
given by Eq. (4.11), so that we are left with the problem
of calculating f(s,W'l, ls), this giving the dominant
contribution to Ii q in the region of interest.

This problem has been treated in some detail by one
of us, "and will not be dwelt on here. "f is calculated
from a dispersion relation in s, the spectral function

[f(s,W'~ls)$, in the notation of Eq. (3.5), being the
continuation in X' of the usual one. The example con-
sidered in Ref. 18, is, in fact, an unequal mass problem:
The reaction is 7r+E~w+rr+X, and the diagram
calculated is shown in Fig. j.1.The intermediate state is

on Q

(a)

&b)

~on 0

2
on S

,) nz-.
Uzm

I onS

"I.J. R. Aitchison, Phys. Rev. 133, 81257 (1964), following
paper; but see also j.Bronzan, M.I.T. preprint (unpublished).

'~ This graph has also been calculated by S. F. Tuan and T. T.
Wu (private communication). Somewhat similar types of graph
have been calculated approximately by F. R. Halpern and H. L.
&atsop (tg be pubhshed).

FIG. j.o. Summary of results for the crossed channel case of the
triangle F(s,Ws). In each of the three cases (a), (b), (c), the left-
hand Ggure shows a possldle location of the 0. poles at )P =I2 and
)'=I~ in the X' plane, while the right-hand Ggure shows in which
sectors of the s plane the related triangle singularities vriQ occur,
and on what sheet.



81250 I. J. R. AITCHISON AN 0 C. KACSER

W

FIG. 11. The process
calculated in Ref. 18; the
dashed lines are pions, solid
lines nucleons, and the
double line is the (3,3)
isobar.

a pion and the (3,3) nucleon isobar. It turns out that
the calculation is sensitive to the actual isobar width, in
that the resonance singularity, whenever it is in Q(w ),
is very near the threshold s=4. Hence, it is somewhat
suppressed. For a very sharp resonance, the calculation
shows that the eGect produced would be a pronounced
peak in

~

F
~

' near s=4: that is, at the low mass end of
the pion-pion spectrum. Naturally, the singularity is in
the critical region Q(w ) only for a certain range of W;
as W is increased, it passes out of Q(w ) into Q(w+),
passing to the left of s=4, and the effect disappears. It
is unfortunate that, when it occurs, it is so near s=4
that detection of it may prove hard.

We now proceed to our last example, the triangle
graph in the direct channel. Here we shall find a similar
effect, and it may be physically more interesting.

0. THE TRIANGLE GRAPH WITH A RESONANCE
IN THE DIRECT CHANNEL

We once again consider the properties of

but now as a function of the complex variable S', for
fixed real s&4. The properties of f(s,W'~ X') in the two
complex variables (W', X') have to be determined on the
sheets de6ned by the lower order contractions singu-
larities. One of these, in particular, is the singularity
surface W'= (X+1)'as found in Sec. 4.2, or Appendix A;
that is, (W' is a direct variable) the contraction physical
sheet is not a simple topological product of two cut
planes. Hence, our normal procedure, based on what
would, in this case, be a X'—W2 analysis of f(s,W'~ X')

for fixed s, is much more involved. Therefore we only
attempt to find the Nearest singularities of Ii instead,
and do not give a general method for studying all sheets.
We do find a second-sheet resonance (triangle) singu-

larity for F, not to be confused with the resonance
(contraction threshold) singularity at (I+1)'. As usual

the effect of this can be expressed in terms of f(s,W'
~
P).

While f(s,W'
~
P) can presumably be evaluated in terms

of a dispersion integral along a complex 8' contour
starting at W'= (I+1)',a more straightforward, though
somewhat circular method, is to use the dispersion rela-

tion in s to calculate f for a range of "fixed" physical
8", and hence the resonance enhancement effect on

F(s,W'), as a function W'. F will have two resonance

peaks, one arising from the complex normal threshold

(I+1)' (woolly cusp), and another from the resonance

triangle singularity, both being calculable simply from
f. A numerical evaluation of f(s,W'~P) has been
performed, "and as a function of 8" the two resonance
peaks are distinct, for a suf6ciently narrow resonance.

We now describe the method to be used. First, we
must de6ne the 8"physical sheet. For any real X')4,
it is known (see, for example, Ref. 11), that there are
no complex singularities of f for any s or W' on the
physical sheet, there being only an s cut from 4 to ~,
and a W' cut from (X+1)' to ~. Using this information
in (6.1), with an undistorted X' contour, we see that
F(s,W') has as physical sheet the topological product
of a 4&s& ~ cut and a 9&W' & ~ cut (as in Sec. 4.2),
there being no complex S' singularities on the physical8" sheet.

Thus we must look to the second and higher 8"
sheets of Ii(s,W') for resonance singularities. We only
search the nearest such sheet, reached by continuing
8"clockwise from above and through its cut, on which
from Sec. 4.2, we already know that we will 6nd the
singularity W'= (I+1)'.

We look for eBects of the I' pole, ignoring those from
I*' since we know that the contraction singularity
W2= (I*+1)'is fairly far from the physical region; the
triangle singularities arising from I*' will be further
away. We hence investigate the candidates W~'(s, P)
on the physical and nearest unphysical sheet, using the
search method )here W+'(s, P) are the two W' roots of
F(s,W', P) =Oj. That is, we follow a W' path to one of
W+', and observe how the X' singularities of f force us
to distort. the X' contour. The motioe of these points,
X~'(s,W'), can be derived from the W', X' section of the
surface P. However, to avoid facing the problem of the
definition of the (W', X') physical sheet with respect to
W'= (X+1)', we determine the singularity character of
X~'(s, W2) by first of all taking W' to be real, and using
the (s,'A') analysis of Appendix B with s real )4; we
then preserve the character of each of P ~' as singular or
nonsingular when we continue to complex 8".

The (W', X') real section of F is shown in Fig. 12,
drawn for 4&s&16. The dashed curve in the same
6gure is

5=—LW' —(X—1)'jLW' —Pi+1)']=0, (6.2)

being the contraction singularity surface, singular for
W'= (X+1)'. The points in Fig. 12 are labeled by the
same letters as in Fig. 18, for corresponding points, there
being two points at infinity on the upper branch of the
hyperbola I', called a& and a2, corresponding to the one
point a of Fig. 18. (Fig. 12 is discussed in more detail
in Ref. 11;recall the s +~ X' symmetry of F).A point on
the arc bc of Fig. 18 corresponds to one on the same-
named arc of Fig. 12, etc., with ab= a~b, ae=a2e.

In the (s,X') treatment, Appendix B, for real W2, the
physical s limit was s+ic For e non.zero, X+' then also
has imaginary parts whose sign can be reaL off Fig. 18
(which gives dX'/ds). Further, we know from Appendix B
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2
W

TAsx, E I. The starting point of the direct channel analysis:
The singularity characters are transferred from the crossed
channel case.

(
l/2 +-1)2

a1b
bc
ce
ea2

(s,X') Singular on
ImX' p sheet

no
yes
no
no

Singular in
which sense

anticlockwise
anticlockwise
anticlockwise
clockwise

9 c

(Sl/2 ()2~cQ/
8
j

0

Fzo. 12. The real (W', X') section of F(s,W',X'), for real s)4;
also that of 5—=LW2 —{k+1)mjLW'—(X—1)mj=0 (broken curve).
The various points shown are at: b, 8" =2s+1; c, )2=W+1
=s'a+2 e, W'= (s—1)' X'= (s—2)'= {W—1)' C X'= —W+1

gl/2+2

whether each of X+' is singular or nonsingular on the
physical X sheet with this imaginary part. However,
what we will really want to know is the singularity
character of each of )i+' and X ' when reached on the
two paths in the X' plane, on the physical sheet starting
to the right of the branch point X'=(W—1)', which
circle to the ) ' under consideration in a clockwise and
in an anticlockwise sense with respect to this branch
point. Recall that the location of the cut is arbitrary,
and the language of paths is more appropriate for a
function on a Riemann surface than that of cuts. We
call these path senses clockwise and anticlockwise.

Since each of X~' is singular on one but not the other
of the two sheets of f(s,Ws

~

ks) with respect to
X'= (W—1)', we can easily determine the answer. When
we turn to (Ws, ks) and Fig. 12 we commence with
s real )4, and 8"on its physical side of its cut from 9
to ~, i.e., W +ie. We again 6nd a definite sign of the
imaginary part of X+' and P ', but this sign will not
always be the same as that given by the (s,X') method.
However, the X' cut will be displaced slightly into the
upper half-plane due to the displacement of its end
point X'= (W—1)', and in fact the singularity character
on the clockwise and anticlockwise paths must neces-
sarily be the same as found by (s,k'). (Both s+ie and
Ws+ie give the same Physical limit of the physical
sheet. ) We therefore get the starting characters as
shown in Table I. We see that the sense in which X' is
singular changes at e, the contact of F with the lower
order singular contraction h.

Let us consider an s which is only slightly larger than
4, specifically (s—2)'«ReP. We commence with W'+ie

~- ~(w-ii'

X' N.S,
0I2

(c)
X N. S.

X N, s.

FIG. 13.The Xs contour and cut (dashed) of P(s, W'), for variousW' (a) W' real, on physical edge of physical sheet I'; (b)(I+1)'on Q; (c) W'= W '(Im) on Q, for W'passing clockwise
about (I+1)'; {d) as in (c), but W' passing (I+1)santiclockwise.

on its physical sheet with Ws&)(s —1)' and the two &'

singularities of f(s,W'~ X') on the branches aib(X ') and
eas()i+'). The X' contour is then as shown in Fig. 13(a);
here each of (W—1)' X ' and Q' has a small positive
imaginary part, the X' integration goes along the real
axis, and in order to display the clockwise sense of
X+', we have slightly deformed the X' cut upwards.

Let 8"move on a fairly direct path into the lower
half-plane through the W' cut, towards W'=(I+1)'.
We then obtain the situation shown in Fig. 13(b). All
three of k ' )i+' and (W—1)' have moved into the
lower half of the X' plane, to the right of A.'=4; however,
they have not changed their relative locations. Both
X+' and (W—1)' are singular, and cause the X' contour
to be moved downwards. At W'=(I+1)' we see that
the X' contour is pinched between the pole of 0- at X'=I'
and the contraction singularity )'=(W—1)' so that
W'= (I+1)' is a singularity of F on Q. This is nothing
more than the singularity of the three-particle inter-
mediate state two-particle amplitude discussed in
Sec. 4.2.

Now consider, instead, a 8' path which goes towards
W '(s,I'), passing in a clockwise sense around
W'(I+1)' Here W '(s,P) is that W' root of
F(s,W'P)=0 for which X+'(W ')=P; and similarly
W+'(s, I') is defined by X '(W+') =I'. (Note that for
P real )4, X~')X ', W+') W ', all being real )We.
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then get the situation shown in Fig. 13(c). The X'

contour is between I' and A, ', and at this point

f(s,W'
~

X') is being seen in a clockwise sense with respect
to (W—1)', so that X ' is singular. Hence, on a clockwise
W' path to W ', W ' is a singularity of Fu(s, W').

On the other hand, if the 8"path to 8' ' had passed
around W'= (I+1)' in an anticlockwise sense, we would

have found the situation of Fig. 13(d). Now the X'=P
part of the X' contour is seen in an anticlockwise sense

with respect to X'=(W—1)', for this sense X ' is not
singular, so that the "pinching" shown in Fig. 13(d) is

only apparent. In an anticlockwise sense lV ' is not a
singularity of Fa(s,W'). [We should point out that we

are free to move the X' cut as we wish, since only the
sense of a point is significant. Thus between Fig. 13(c)
and Fig. 13(d) X ' has crossed the cut; however, it has
never crossed the contour when in a singular sense. In
general, for a given sense any )~' point may cross the
X' contour if it is nonsingular but must push the contour
ahead of itself if it is singular. ]

We use precisely similar methods to show that
W~'(s, P) is a singularity of Fo(s,W ) if reached in an
anticlockwise sense about W'(I+1)', but is nonsingular

in a clockwise sense. In summary,

W '(s,P) singular in clockwise sense,

(6.3)
not anticlockwise.

W~'(s, P) singular in anticlockwise sense,

not clockwise.

It will be seen that the diferent conclusions for 8" '
and W~' arise because Q Cea2 is singular in a clockwise

sense, but X ga, h is singular in an anticlockwise sense

(cf. Table I). It may well be asked what happens if we

leave P for Q at a W'&(s —1)', so that X+'gee, and is

now nonsingular in a clockwise sense. Apparently
W'= (s—1)' is a first-sheet singularity of F in the physi-

cal region. A little thought shows that this is not the
case. W'=(s —1)' is a special point of the mapping,
and near it we find

P. '—(W—1)']~ —[W' —(s—1)']';

as W' circles the point W'= (s—1)' once, X ' makes two

complete revolutions with respect to the X'=(W —1)'
branch point. This is true regardless of the size of the
W' closed path enclosing (s—1)'. It then can be shown

that we reach the same conclusions, Eq. (6.3), regardless

of where we start with O'. In fact, we can start with

any 5"&9, independently of s, with 8" real and the

two X~' being complex conjugate on the surface BC'.
Our initial restriction that (s—2)'«ReI is also irrele-

vant to the final conclusions. It was made to ensure that
in Fig. 13(a—d), no violent gyrations of relative positions

would occur. It is straightforward to follow the P'

contour and singularities for many different 8" paths;
however, the various domains in the 8" plane do not

have any particularly direct physical significance.

FIG. 14. The motion of W+'(s, 12) in the complex 8'2 plane, for
s moving along the real axis from 4 to ~. The cut starting at
W'= {I+1)2is also shown.

There are many other sheets which could be investi-
gated, and among other singularity candidates are
W'= (Xo—1)'=1 (the nonsingular pseudonormal thresh-

old), and the second type singularities W'=(s'I'+1)'
and W'= (s"'—1)'. The latter are rot singular on the
physical edge of P. Thus all other candidates are further
away from P than those we have found in Eq. (6.3).

We show the location of W+'(s, P) for all s)4 in

Fig. 14. The curve is one branch of a hyperbola. The
important features are that W~' ——W '=2P+1 for
s=4; as s increases, 8"+' moves down and to the right,
while W ' circles to the left of (I+1)', and ultimately
crosses the real 5" axis. These properties can be ob-
tained directly from the form I'(s, W+',P) =0, or, more

neatly, by rewriting F=O in terms of the familiar ex-
ternal variables" x, y, and s defined by W'= 1+P 2Ix, —
s= 2(1—y), 2I= s. I'= 0 then becomes x'+y'+s'
—2xys —j.=0, and the mapping of the real y axis in
I' is a degenerate quartic" made up of an ellipse and

a hyperbola. The real s axis with s&4 maps into one
branch of the hyperbola.

The properties Eq. (6.3) apply for all real s&4. The
reason for our initial restriction (s—2)'«ReP was to
ensure that W' ' had not yet circled W'= (I+1)', for
at this moment the 'A~' also starts gyrations relative to
X'=(W—1)', which would have led to unnecessary
confusion.

The result Eq. (6.3), as regards W~', implies that
W+' is only singular if W' moves on Q along a path
which avoids the W'=(I+1)' cut shown in Fig. 14.
Thus, the singularity 8'+' is always rather far from the
physical region. 8' is not singular on a clockwise

path with respect to W'= (I+1)'. For small s)4 anti-
clockwise clearly means on a path which avoids the
W'= (I+1)' cut, and as s increases this definition cannot

change, even though the word anticlockwise is hardly

appropriate by the time 5' ' has entered the upper half-

plane. Similarly "clockwise" means on a 8"path which

lea~es Q through the upper edge of the (I+1)' cut, to

"R.Karplus, C. M. Sommerfield, and E. D. Wichmann, Phys.
Rev. 111, 1187 {1958).

2' G. Bonnevay, I. J. R. Aitchison, and J. S. Dowker, Nuovo
Cimento, 21, 1001 {1961).



another sheet R. On this sheet 5" ' is singular. It is
also singular on the sheet R' reached by leaving Q
through the lower edge of the W'= (I+1)' cut, as can
be verified by following such a 5"' path for small s. It is
customarily asserted that W'= (I+1)' is a square-root
branch point. We have not been able to prove this by
our methods, but have found no contradiction; that is,
R'=—R is very plausible.

In terms of these sheets, our anal conclusions for
F(s,Ws) are:

(i) Ws=(I+1)' singular on Q;

(ii) Ws= W+'(s P), singular on Q, not on R; (6.4)

(iii) W'= W '(s,I') singular on R, R', not on Q;

when ImW ') 0, Q becomes F, not singular.

We now ask if any of these are likely to have ob-
servable effects" The threshold W'=(I+1)' will, of
course, lead to a woolly cusp effect, exactly as for the
scattering amplitude of Sec. 4.2. 8'+' is always far away
from the physical sheet, so will never have an effect.
However, for sufFiciently small s&4, 8' ' can have an
effect, since then the path from the upper edge of the
(I+1)' threshold cut into R will be fairly short. This is
especially the case if ~ImP~(&ReP, for then Fig, 12
becomes contracted in the vertical scale. Thus, for a
sufIiciently narrow resonance, and for suKciently small
(fixed) s)4, F(s,W') should show two separate reso-
nance "peaks, " one associated with W'=(I+1)' and
the other with the resonance triangle singularity
W '(s,P).

As usual, these enhancements can be calculated by
explicitly separating out the resonance contribution, i.e.,

F(s W') =F(s W') 2iR(I') f($ W—'~P). (6.5)

We do not discuss the question of evaluating discon-
tinuities in detaiL From Eq. (6.5) it is clear that the
essential properties of Fo are given by f(s,W'

~
P). If we

write a dispersion relation in W' for Fr(s,w'), with
contour the real 8"axis from 9 to ~, this contour can
be swung down into the lower half 8" plane, revealing
the beginning of the sheet Q. Then, as shown in Fig. 15„
if we swing down sufFiciently far and around, we can
write two separate contour integrals. It seems clear that
the integration along C~ will give I', while that around
C2 will give the separate contribution from the resonance
f(s,w'~P). Since Ws is a direct variable, Cs encloses
two singularities, the contraction threshold and also the
triangle singularity 8'+'. The sum of these contributions
will give f(s,w'~ P). However, since ultimately we will
want to take both s and 8' real and physical, there is a
much easier way of evaluating f, namely by use of an

~ In what seems to be the erst consideration of resonances as
internal lines, a triangle with a resonance in the direct channel
(in this case the s channel) was calculated approximately by R.
Aaron, Phys. Rev. Letters 10, 82 (1963). However, there the
interest was rather different.

Cg

a
Vf+

~ ~ «Wa

Cg

Fxo. 15. The distorted 8"' dispersion integral path for F(s,tV~).
The part C~ gives P, with no resonance singularities near the physi-
cal edge of I'; while C~ leads to the explicit separation of the reso-
nance contribution I(s,W' (Ir).

s dispersion relation, for which there is on/y ore branch
point. This is exactly the same calculation as discussed
in Sec. 5.4. When f(s,w'~P) is evaluated numerically, "
one does actually 6nd that for a suKciently narrow
resonance, f shows two resolved "peaks" in W' for fixed
s very close to threshold s=4; of the two peaks one is
due to the woolly cusp singularity Ws=(I+1)', the
other is due to the triangle resonance singularity at
W '(s,P). The significance of this result is discussed
further in Ref. 18.

i. SUMMARY AND CONCLUSIONS

We now review the techniques we have used and
comment on the results we have obtained. The basic
problem considered was the meaning and application of a
perturbation theory graph when it contains an internal
particle of complex mass. We stated with an arbitrary
graph F in which the full two-particle Green's function
(or propagator) G was inserted between two points (the
resulting graph being then, in fact, a sum of many
Feynman graphs),

We wrote F (cf. Sec. 2) as an integral of the product
of the spectral function 0 of G and the Feynman graph
f( ~

X') obtamed from F by replacing G with a single line
of mass ), the integral being over X'. We considered the
case in which G had a resonance, corresponding to poles
of 0 at X'=12 and I*'.Then Ii could be written, quite
generally, as the sum of f(~P) and another "back-
ground" term coming from the continuum part of G,
not the pole.

Within this framework we attempted to answer three
questions. First, what are the analytic properties of Ii,
given such a resonance structure in GP Second, under
what conditions are these properties suf6ciently similar
to those of f(]P) that the latter is a good approximation
to Ii P Third, what observable effects are expected from
singularities associated specifically with the resonance,
and how may they be calculated?

To answer the 6rst question, the singularities of the
) ' integral representation for F had to be analyzed and
this necessitated a prior analysis of the perturbation
theory graph f(~X') as a function of the ielernal mass X'.
Three examples were considered in detail. By way of
introduction, the first, a trivial one, was the two-particle
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scattering amplitude with two-particle intermediate
states as a function of the energy variable 5". Apart
from inessential factors, this amplitude is just G itself
and f(I) ') is I/(Ws —) '). We rederived the well-known
result that the poles in 0. reappear as second-sheet poles
of G. Of these, the one at 8"=I' may be near the physi-
cal region, and if so, it leads to an enhancement effect
in G. Our techniques show why f(~P) is a suitable ap-
proximation to G for calculating this enhancement,
while, on the other hand, f(~ I*'), a priori an equally
plausible candidate, is not.

A less trivial example was that of the two-particle
amplitude with three-particle intermediate states,
F(W ), one pair of the particles interacting via G. Here

f(~ X') was the single-loop self-energy function, and was
analyzed in detail in Appendix A. The analysis of F(W')
was done in Sec. 4, and the singularities of F associated
with the resonance in G were found. Of physical signi6-
cance was a square-root branch point on an unphysical
sheet near the physical region, closely analogous to the
resonance pole of the first example. We showed that the
effect of this branch point in F could be calculated
correctly by evaluating f(~ P).

Our main example was the triangle graph F(s,Ws), as
a function of each of two external invariants s and 8".
f(~X') for this case was discussed in Appendix 8, and
the properties of F were given in Secs. 5 and 6. Two
singularities of Ii appeared to be of special physical
signifKance. First, as a function of s, F could have a
logarithmic branch point on an unphysical sheet near
the physical region, for a certain range of 8".Second, Ii

could have an analogous branch point in 8" for a
certain range of s. In the first case, we showed that
effects due to this branch point could again be calcu-
lated by evaluating f(~P), and the prescription for
doing this was given. However, we were not able to
carry through the analogous calculation in the second
case, and we had to resort instead to the first prescrip-
tion, evaluated for a given fixed s and many values of
Ws, thereby calculating F(r,Ws) along the real W' axis.
These calculations, reported elsewhere, " indicate that
if the width of the resonance is small, effects due to
these "resonance singularities" may be observable.

From these three examples we draw the following con-
clusions. In a certain range of the energy variable 8",
the two-particle scattering amplitudes may be well

approximated by any simple form which represents a
pole in 8", near the physical region. Correspondingly,
more complicated graphs Ii containing the two-particle
propagator G internally may be approximated, in certain
energy ranges, by simply replacing G with a complex
pole, that is, by a graph f(~P) which has an internal
particle of complex mass. Although, in general, the
singularities of f(~P) and F are quite different, for
these energy ranges two necessary requirements hold:
firstly, only certain singularities of Ii associated with
the P pole in G ("resonance singularities" ) need be

considered, and secondly, these singularities of Ii are
contained in f. In that case, the "background" part of
F—which we are unable to calculate —does not cancel
these singularities, so that we are justified in calculating
their effect from f(~P). We conjecture that whenever a
calculation of f(~I') shows an effect in the physical
region due to a resonance singularity, it is a legitimate
approximation to F, but not otherwise; this is, after all,
quite satisfactory. In the examples considered, f(~I*')
is never a good approximation.
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APPENDIX A' PROPERTIES OF f(W'(2')

Following standard methods" one has

1 1

f(W'
~
X') = dnr dns8(nt+ns 1) lnA—, (A1)

where
A =nt+ns) ' ntnsW—' se =nZ—n, (A2)

Z being the 2X2 matrix

—,'(1+) s—Ws)

sr (1+As —W')
(A3)

- W

Fro. 16. The real (Ws, X~) section of the various singularity sur-
faces of the single-loop self-energy function f(W'~l'). The heavy
lines are singular on the physical sheet.

"R.J. Eden, Maryland Physics Department Report No. 211,
1961 (unpublished), especially p. II, 4 G. We are ignoring a sub-
traction term needed for convergence since it is independent of S"'.

Since X' is one of the variables, we have not performed
the usual transformation on the 0.; which makes s;;=1
(c.f. Ref. 20). We now enumerate the possible singu-
larity surfaces.

(i) nt ——0, ns=i end point. This gives A. =O if X =0
so that there is a singularity surface X'=0; but see (iv).

(ii) n, = 1,ns ——0 end point. Similarly this gives X' = ~ .
(iii) nt coincident singularities. This gives the

parabola

Z=—detZ—=PW' —() +1)']LW'—() —1)']
=—t) s—(W+1)sjP,s—(W—1)sj=o. (A4)
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FIG. l7. The location of the Fepnman denominator a singularities aa of f(W2)X2) for real X2 for the three cases
(a) 8'~&0; (b) 0&lP'&1; and (c) 1&tV.

For real W' and X' we see that nt/as= —-'2(1+X'—W')
which implies 0&nt, os&1 for Ws=(1+X)2, i.e.,
) '= (W—1)' with W') 1;but n2 outside 0 to 1 otherwise.

(iv) Another possible singularity is Ws=ac, which
actually comes under both types (i) and (ii), but is easy
to overlook. For W'~ ~ X2 finite, one has nt~X2/W2
or o,t 1+1/W'. Thus, as W' does a circle about the
point at inhnity, the two 0.& singularities circle syn-
chronously about the two n& end points 0 and 1.

(v) Finally we must include the possible second type
singularity" 8"=0.We show the real sections of these
surfaces in Fig. 16. By inspection of Eq. (A4), A never
vanishes on the undistorted o.; region of integration if
X'&0 and 8"&0; nor if Im'A'&0, ImB")0, this being
the definition of the physical limit. Hence, end point
contraction cuts should be taken along the whole of the
negative real X2 axis (we postpone discussion of W-'= ~ ).
Turning to the coincident singularities, the complete
real section of Z can be reached from the physical limit
(with undistorted n; paths), and thus we see that only
the branch CD is singular (since for it the pinch occurs
between 0 and 1). The W' branch cut runs from
W2= () +1)' to W2= oo; the possible second type singu-
larity 5"=0 is, therefore, not singular on the physical
sheet. A remark important for the analysis of Sec. 4.2
is that the complex extension of Z is singular only from
CD. We see that following ABCD the singularity charac-
ter changes only at C, at contact with a singular lower
order curve, but not at 8, exactly as in more standard
analyses.

An unusual feature is that )P=O is always a singu-
larity, as well as X2= (W—1)2 for Ws&1. This can be
seen in more detail if we solve for the a;. We eliminate 0.2,
then

W2rr12+~1(1 ~2 W2)+g2
= W2(nt a+) (nt n—), —

with o.~——L(X2+W2 —1)+Zfj/2s. We show n~ versus
real ) 2 in Fig. 1'7(a) for W'&0, Fig. 17(b) for 0&W'&1
and Fig. 17(c) for 1&W2 (most easily obtained by solv-

ing h.=0 for X2 in terms of o.t) . From Fig. 17 we see that
for W'&1 there is one (and only one) nr singularity on
the undistorted at 3 contour for X'&0, and none for X')0;
while for W'& 1 there is one n~ singularity for X'&0, but
two for 0&'A2&(W —1)', these being coincident at
X2= (W—1)'. Hence )2=0 is always a physical sheet
branch point, as is )2= (W—1)' for Ws) 1.By explicitly
performing the n~ integration one easily sees that the
latter is two sheeted; however, the former is actually a
logarithmic singularity, with

—Xs t' —Xs 'l
f= in'

W —1 (W —1&

for H/'41 X'=0.

APPENDIX B: PROPERTIES OF THE TRIANGLE
GRAPH, f(s, W ill), FOR COMPLEX

s AND 0P

We now turn to the properties of the triangle graph
LFig. 3(b)j in perturbation theory. This has been
studied by Bronzan and one of the present authors
(C. K.)"in terms of s and X2 for fixed real W2) 9. We
briefly summarize their findings.

The physical sheet for f(s,W2~) 2) is defined with
respect to the various contraction singularities. In s the
contractions give rise to the usual normal threshold cut
running along the real s axis from 4 to ~, the physical
limit being from above. (s=0 is a branch point on the
second contraction sheet reached by going through the
normal cut. ) The other contraction leads immediately
to the self-energy function f(W'~),'), which has been
treated in Appendix A. From f(W2~) 2) one has, for
8'&9, two independent inverse square root X' cuts
along the real axis, one from —~ to 0 and one from—~ to (W—1)', the physical limit being from below
each of these cuts. The (leading) singularity surface is

1'(s,W2, )I.2)—=sX2(s+ X2—W' —3)+(W'—1)'= () . (B1 )



81256 I. J. R. A ITCH ISON AND C. KACSF R.

Finally we have possible second type singularities on

Z(s, W')—=
I
s—(W+1)'7Ls—(W—1)'7=0. (82)

The real section of the surface F is shown in Fig. 18, in
which capital and lower case letters are paired by the
links of the complex surfaces.

As well as the physical sheet of f, on which it is
denoted by f», we have the various sheets obtained by
continuing through one or more of the contraction cuts
arising from the branch points s=4, X'= 0 and
X'= (W—1)'. In particular, we will be interested in the
properties of f,~ and f„„wherethe second suffix q
denotes )I.' on the second sheet of the ) '= (W—1)' cut,
reached by anoidistg the X'=0 cut (recall all these cuts
are two sheeted).

For a given s, there are always two X' points on F, and
the properties of f on the various sheets are fully deter-
mined once we know for which sheets these X' points
are in fact singular. If a given point (s,X ) is singular
(nonsingular) for f», then it is nonsingular (singular)
for f,„andf„„etc.This is a straightforward generaliza-
tion of Theorem 3.2 of Ref. 10.

Consider now an s moving continuously from slightly
above the normal cut on p to slightly below this cut on

q, with 4&Re(s) &(W—1)'; then the two X' points will

also move continuously, and each will cross the X' cut
between 4 and (W—1)'. The character of each of the
X ' points remains fixed as long as we do not jump across
a cut. I et us follow the X' root of I' which has an in6ni-
tesimal imaginary part of the same sign as that of s;
then the singularity character of this point for f» is
the same as that for f«, and that for f„,is the same as
that for f,„Our restri. ction to 4&s&(W—1)' is not

(W+I )

(W-I) (W+I& B

C

I-W
Lp
L„ I+W

R+ (W+ II

R

(w -I)

V
H

U-

FiG. 19. The various complex plane domains of the mapping
s -+ X '(s), these being the roots of F(s,S"~)') =0 for real 8'2&9.

necessary but was used to ensure avoiding the X'=0 cut.
We now state the singularity characters. Recalling

that f» means the function f in the first s and X' sheets,
defined with respect to the cuts associated with the
singularities s=4, X'=0, and X'= (W—1)', respectively,
we find that f» has complex singularities on the two
complex conjugate branches of the surface bcBC, but on
no other surface. The second type singularitys = (W—1)'
is singular on the lower (unphysical) edge of the s cut,
for X'& W+1; no other singularities exist for f». Those
on the other sheets can easily be derived from this (but
see below).

To study F(s,W') we must follow the motion of the
X' singularities of f(s,W' j) ') as s moves in the complex
plane, i.e., we need the motion of the roots X~'(s) of
I'(s, W', 6)=0. Figure 18 really contains complete in-

formation, but it is useful to give a few more details. A
further treatment of the mapping s —+X~' has been
given elsewhere. '4

In the equal mass case this mapping is particularly
simple, since I'(s, W', X') is symmetric under s~~) '
(cf. Fig. 18); however the typical features given below
are general. Both the s and X' planes can be divided into
six regions as shown in Fig. 19, called I+, v+, and m~.

The exact form of the boundary curves is unimportant
(but see Ref. 24). The upper and lower halves of the
closed curve are called S~, and of the "bow" curve H~.
The mapping is double valued, a given s determines two
points 'A+' and X '. "Naming" cuts are introduced for
0&s&4 and (W—1)'&s&(W+1)' called L and R,
respectively, with upper and lower edges L+ and R+.
These naming cuts are simply to guarantee that the
same point is always given the same name; for example,
for s&Ry X+ and X ' are complex conjugate, with large
imaginary parts. We specify Im), +'/Ims &+0. Then as s
crosses from R+ to R moving infinitesimally, )t+s and
X ' seem to jump discontinuously, but in fact X+'(s—ie)
is infinitesimally close to X (s+ie).

One 6nds that the various domains of Fig. 19 map
into each other as follows:

FIG. 18. The real (s,X') section of the various singularity sur-
faces of the triangle f(s,Ws[Xs) for real Ws)9. The heavy lines
show' siagllor lower order contractions, and the curve is I'(s, W', X').
The various points are at: a, X'=-,'(W' —1); b, s=-', (IIn' —1); c,
)P=S'+1; e, s=S'+1; c, )P= —8'+1; e, s=- —8'+1.

u~~ vp

5y~ Sp

ZOy ~ Np

k '. N~~ mr~

5y ~ VOg

"C.Kacser, Phys. Rev. 132, 2712 (1963).
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(where )i+a.' u+ -+ v means sou+, )i+s(s)gv ). Further,
we obtain

After these lengthy preliminaries, the properties of
f(s,W'

j ) s) on the nearest sheets can be listed as follows:

L~~Q~
Eg —+ Sp

H~ —& Hp

Sg~E

Jg —+ Hp

Eg —+ S~
H~ —+ I.
Sg —& Sp.

(a) f»'. X' singular only if sou+, )i+s not singu-
lar, ) ' singular gw~s

(b) f„,=f,„:for slav~, w~ both ) ~s singular;
for sou+, X+'gv+s is singular,

)i 'gw~' not singular.

The mapping of other parts of the real s axis can be read
oK Fig. 18. We have defined X ' such that Q'&)i ' for
real s&0 and 4&s&(W—1)' but )i '&)i ' for real
s& (W+1)'. The curves 5 and H are in fact defined by
the conditions (B4).

We remark that for f,„,as s crosses X~ from v+ to u+,
X ' crosses the X' cut from below between 0 and 4
t cf. (B4)j, having been singular on the p sheet in )i'
for slav+. This singularity passes smoothly on the
Riemann surface to the q sheet in ) ' as s enters e+.
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Logarithmic Singularities in Processes with Two Final-State Interactions*
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The effects of logarithmic singularities in rescattering processes are investigated. The reaction mS ~ m.m E
is considered, but treated purely as an S-wave, spinless model. A particular triangle graph is analyzed in
detail; it contains as an intermediate state the (3,3) nucleon isobar I, which is described as a spinless
particle of complex mass. The graph is calculated from a dispersion relation as a function of the mass s
of the two pions in the Anal state, for low values of the over-all c.m. system energy W. The relation is then
analytically continued in W. For a narrow range in W, an enhancement of the square of the amplitude is
found near s =4 (the pion mass is unity). The analogous enhancement also appears in the W channel near
W=I+1, for a small range of s only, near s=4. The prominence of the effect depends on the width of I,
being closely connected with the nearness to the physical region of one of the two logarithmic singularities
(anomalous thresholds) of the graph: this distance increases sharply with the isobar width. The positions of
the singularities are interpreted as the phase-space limits for the simultaneous production of states with
mass s and I. The conclusion is that such a "double excitation" process leads to an enhancement of the
triangle amplitude only if, in general, s and I fall in certain narrow ranges. The implications of this result
for models of the higher resonances in the elastic channel (n flf ~ s.S) is brieRy discussed.

I. INTRODUCTION

I NTIL the rather recent introduction of self-
consistent (bootstrap) methods using the 1V/D

formalism, ' it is fair to say that most calculations of
dynamical eGects in strong interactions have been
single-particle exchange calculations. However, it is
worth asking how we may go further, and include re-
scattering terms, which arise from the fact that in a
multiparticle final state more than just one pair of
particles may interact strongly. A typical reaction is
shown in Fig. 1, in which a pion is produced in pion-
nucleon scattering. In the final state mxS, there is the
possibility of three interactions: the two ~E ones, and

*Work performed under the auspices of the U. S. Atomic
Energy Commis~ion.

f Present address: Service de Physique Theorique, C.E.N. ,
Saclay, France.' See, for example, F. Zachariasen, Phys. Rev. Letters 7, 112,
268 (1961);G. F. Chew, Phys. Rev. 129, 2363 (1963);and L. A. P.
Balazs, ibid. 128, 1939 (1962).

the mx. Figure 2 shows a rescattering term representing
the production of a pion and a (3,3) nucleon isobar, the
isobar then decaying and its decay pion rescattering
from the pion. We call the amplitud. e for this process Ii.
The problem is to calculate Ii as a function either of the
incoming energy W or of the mass of the two pions gs.'

Graphs similar to Fig. 2 have been discussed quite
extensively. ' Whereas single-particle exchange graphs
lead to poles, these give logarithmic singularities —often
called anomalous thresholds —in 8' or s, and some e8ort
has gone into seeing if these singularities lead to observ-

I am indebted to Dr. S. F.Tuan for stimulating my interest in
this type of graph. I have been informed by Dr. Tuan that a cal-
culation, similar to that reported here, has been done by Dr. T. T.
Wu and himself.' For example, by V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41,
1221 (1961) I English transl. : .Soviet Phys. —JETP 14, 871
(1962)j, for r decay, and by V. V. Anisovich, A. A. Ansel'm, and
V. ¹ Gribov, Zh. Eksperim. i Teor. Fiz. 42, 224 (1962) LEnglish
transl. :Soviet Phys. —JETP 15, 159 (1962)g, for pion production
reactions near threshold.


