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Energy Gap in Nuclear Matter. I. Extended Theory*
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The Bogoliubov condition of compensation of dangerous diagrams is invoked to derive a generalized
energy-gap equation of the BCS form, but with a renormalized pairing interaction and renormalized single-
particle energies. The second-order contributions to the renormalized pairing interaction are found to be
significant, contrary to popular belief. It is stressed that the self-consistent solution of the energy-gap
equation yields qualitatively and quantitatively diferent results than a perturbative evaluation of the
energy spectrum following a Bogoliubov-Valatin transformation characterized by the lowest order BCS gap
parameters. The dependence of the energy gap on high-order corrections is studied in one and three dimen-
sions for simple potentials; for some values of the potential parameters, no solution to the gap equation
exists. Finally, the energy gap is studied in nuclear matter. We include the scattering in both singlet and
triplet states of particle-hole pairs which can be neutron-neutron, neutron-proton, or proton-proton. The
interaction is taken to be a sum of separable potentials which reproduce the s-wave phase shift. Because of
the short-range repulsion that is included, we sum an infinite set of particle-particle diagrams which replaces
the second-order potential vertices by T matrices. The higher order effects studied increase the energy gap
by a large factor, especially when the lowest order BCS gap is calculated to be small. Nevertheless, the
qualitative conclusion remains that the energy gap in infinite nuclear matter appears to be considerably
smaller than that in the heaviest nuclei.

I. INTRODUCTION
' '

N recent years, impressive progress has been made in
understanding nuclear spectra in terms of phenom-

enological, two-body potentials. This work has been
spurred. by the Copenhagen group' which specilcally
employs a short-range pairing (seniority') force and a
longer range quadrupole force. The forces are charac-
terized by relatively fevr parameters, each of which may
vary smoothly with A.

The pairing interaction —which concerns us here—
gives rise to an energy gap in the spectra of even-even
nuclei consistent with observation. Other manifestations
of the pairing force include even-odd ground-state mass
differences and the reduction of nuclear rotational mo-
ments of inertia frorQ the rigid value. In Fig. 1 are
displayed the pairing energies deduced from empirical
even-odd mass differences. ' These numbers are ap-
proximately half the energy gap in even-even nuclei.
The regions away from closed shells (that is, where the
nuclei have intrinsic deformations and shell-structure
degeneracies are electively broken) exhibit considerable
regularity in the pairing energy. Except near closed
shells, the pairing energy is seen to decrease slowly vrith

increasing A.
Much less progress has been made in understanding

the origin of the phenomenological, relatively strong,
short-range pairing force in terms of two-body forces de-
rived from scattering experiments. In particular, Emery
and Sessler' solved the Bardeen-Cooper-Schrieffer' inte-
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gra1. equation for an in6nite system employing the
GRIQmel-Thaler' potential. This potential not only f1ts
two-body scattering data up to a few hundred MeV, but
also has been successful in reproducing the bulk proper-
ties of nuclear matter. Although the BCS equation is
capable of yieMing a unite gap for an inhnite system,
Emery and Sessler found the gap in nuclear matter to be
three orders of magnitude smaller than the gap observed
in the heaviest nuclei. Qualitatively similar results have
been obtained by Brueckner e1 a/. ,

' who (incorrectly)
used thc nuclear IQattcr two-body K IQatr1x 1nstcRd of
the bare two-body potential in the BCS equation. In R

companion paper, a more recent calculations based on a
variety of intcrnucleonic potentials satisfying s-wave
scattering data are shown to yield qualitatively similar
results. The conclusion that the BCS theory predicts a
very small gap for inlnite nuclear matter appears not to
be sensitively dependent upon the special choice of
potentials.

%C can understand physically why the BCS integral
equation yields a negligibly small value for the energy
gRp. The doII11nRnt potcntlal-IQatI'1x clcIQcnts alc be-
tween pairs of particles at the Fermi surface (and, of
course, with zero center-of-mass momentum). These
correspond crudely to the scattering of 80-MeV particles
in the center-of-mass system or 160-MCV incident
energy in a laboratory experiment. At these high
energies (the highest available to nucleon pairs in a
Fermi-gas model of the nucleus) the repulsive core is
CGcctive in virtually destroying the attraction. The re-
pulsive core, however, is necessary for understanding
nuclear saturation.

' J. L. Gammel and R. M. Thaler, Phys. Rev. 1ll7, 291 (1957).
'f K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel,

Phys. Rev. 118, 1442 (1960).
8R. Kennedy, L. Wilets, and E. M. Henley, following paper

Phys. Rev. 1M, B3.13k (1964). This will henceforth be referred to
as paper II.
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Pro. ts, Pairing energy of two nucleons deduced from even-odd mass di8erences, reproduced from Nemirovsky and Adamchuk (Ref. 3).
The black circles (b„) refer to protons, the open circles (b„) to neutrons. b is an average empirical Gt. The pairing energy b is approxi-
mately, but not identically, equal to the energy gap parameter A.

We conclude that there are three nonexclusive alter-
natives in understanding the magnitude of the gap in

heavy nuclei:

(1) The gap is a finite size (e.g., surface) effect which

either vanishes or becomes negligibly small in infinite

nuclear matter. This is the interpretation, for example,
of Nemirovsky and Adamchuk' in fitting the pairing

energy to an 3-'' '" law.

(2) The energy gap in nuclear matter is comparable
with the gap in heavy nuclei, but further corrections
must be applied to the BCS theory in order to calculate
the gap accurately.

(3) The BCS theory is not relevant to the nuclear

energy-gap problem.

Alternative (1) is currently being investigated, and
results will be reported in a subsequent paper. We will

ignore the third alternative for the present. The present
work is addressed to an examination of (2), namely, the
investigation of higher order corrections to the BCS
theory.

In Sec. II, the Bogoliubov-Valatin canonical trans-
formation is introduced. The parameters of the trans-
formation are determined by the "principle of compen-
sation of dangerous diagrams. "This condition leads to
a generalized BCS integral equation which contains a
renormalized pairing interaction and renormalized single-

particle energies. In a previous communication' we

'E. M. Henley and L. Wilets, Phys. Rev. Letters 11, 326
(1.963).

demonstrated that the second-order (in the transformed
Hamiltonian) corrections to the pairing interaction are
not exponentially small —as claimed by Bogoliubov,
Tolmachev, and Shirkovl —and for simple attractive
interactions can be important not only in determining
the magnitude of the gap, but even its existence. The
dominant second-order effects correspond, in perturba-
tion language, to the intermediate scattering of a
particle-hole pair.

In Sec. III, we consider the e8ect on the generalized
BCS equation of including i~finite sums of particle-hole
and particle-particle diagrams in a one-dimensional
model with a simple, separable interaction. The in-
clusion of second-order interaction terms for simple
three-dimensional potentials, reported previously, ' is
summarized in Sec. IV.

The topic of primary interest is presented in Sec. V.
This is the evaluation of the energy gap in nuclear
matter. It is carried out for a sum of separable poten-
tials, consisting of a short-range repulsive shell and a
longer range attraction, adjusted to 6t two-body scat-
tering data. We have not restricted ourselves to
scattering in singlet states only, but have included
triplet forces as well. The calculation for the energy gap
is carried out with the generalized BCS equation; it
includes sects of particle-particle interactions to a}1
orders and particle-hole forces to second order. The

'0 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A
Rem Method farl, the Theory of SuPercondmctieity (Consultants
Bureau, Inc. , Neer York, 1959), Chap. VII,



81120 E. M. HENLEY AN 0 L. FILETS

results indicate that the second-order corrections are
very important to the magnitude of the calculated gap,
but mhether or not the gap is appreciable in size depends
crucially on the assumed value of the CGective mass.

A critique of the calculations as well as suggested
further areas of investigation is included in the con-
clusion.

II. COMPENSATION OF DANGEROUS DIAGRAMS

A. General Considerations

The perturbation expansion of the ground-state
energy of the many-body system involves the evaluation
of integrals (diagrams) containing energy denominators
which may vanish. The vanishing of a denominator is
not catastrophic unless the resulting singularity is
nonintegrable. The most serious (in the sense of phase

space) vanishing denominators yet discovered occur
when propagator lines have pair-wise equal and opposite
momenta, and all lie at the Fermi surface. Even in this
case, the singularities are integrable in each order of
perturbation theory, but in6nitc sums of such diagrams—such as are normally summed by a T matrix —do lead
to (logarithmically) divergent results.

Bogollubov" has termed as "dangcrousrr that class o
energy denominators which can lead to divergences. In
order to circumvent divergence problems, he has pro-
posed a canonical transformation which introduces
quasiparticle operators in place of particle operators.
The most divergent propagators in the perturbation ex-

pansion of the transformed representation consists of an
isolated pair of quasiparticle lines. The principle of

COIQPCnSR'tlon Of dangC1OuS dlagrRIQSr CXPOulldCd by
Bogoliubov, "is that the sum of all diagrams leading to
an isolated. pair must vanish for each value of the pair-
momentum. %hen this condition can be satis6ed non-

trivially, the quasiparticle energies which appear in the
propagators are always greater than some minimum

value 6&0. Then one aNHcspates that perturbation
theory can be applied without danger of divergences

reappearing. Although no singularities of any kind occur
in any order, one must still be prepared for the possible
appearance of singularities in in6nitc sums of the type
included in T matrices.

B. The Hamiltonian

%c consider a system of nuclear matter consisting of
uncharged nucleons (neutrons and neutral "protons")
described by the Hamiltonian

+-,' P at+s, ~+s(1'2'~ V~12)u, .tas tulsa„(2. 1a)

"N. N. Sogoliubov, Zh. Eksperim. i Teor. Fiz. 34, 58 (1958)
LEnglish transl. : Soviet Phys. —JETP 34, 41 (1958)g; J. G.
Palatin, Nuovo Cimento 7, 'l94 (1958).

where the numeral (ts) stands for the set (k„,s„,t,„),with
k„ the vector momentum, s the s component of spin,
Rlld t~ the third component of lsospln. Here es = (fs 0 /251)—p, is the kinetic energy of a particle measured relative
to the chemical potential p, which in lowest order is
given by fs'ks'/2m. The chemical potential (=Fermi
energy) is introduced as a Lagrangian multiplier to as-
sure the conservation of the mean number of particles
when the approximations do not guarantee this con-
servation. The potential is taken to be real and to satisfy
charge invariance, but may be spin-dependent. The
interaction (1'2'

~

V
~

1 2) is the direct minus the exchange
integral, such that

(1'2'I VI») =-(I'2'I VI»). (2.»)
The a's satisfy the Fermion anticommutation relations

C. The Bogoliubov-Valatin Transformation

We introduce a slight generalization of the Bogoliubov-
Valatin" transformation, which consists in replacing the
Fermion annihilation and creation operators al„& and
aga c~ by the quaslpartlcle operators 0.'ga g and o.ga s~ de6ncd
by .

kist +ss&ksg+s —s—s&—k—88

ahab =NkaO'hat W&-k—aO'—k—aS.

It can be shown that ts and n may be chosen real and
that the transformation is canonical if

(2.4)

Then the operators o.„and o.„~ obey the same anti-
commutation rules as the operators a„and a„~.

Because mc are dealing with equal densities of
neutrons and protons, wc have assumed u and v to be
independent of isospin. In actual heavy nuclei, thc
neutron and proton densities are quite diGcrcnt and so
are the corresponding neutron and proton Fermi ener-
gies. If the two Fermi energies in actual nuclei were
equal, one could consider a transformation mhich mixes
proton and. neutron operators. This would correspond to
pairing neutrons to protons (with equal magnitude and
oppositely directed momenta) rather than neutrons to
neutrons and protons to protons. The phase space
available to a neutron-proton pair coupled to zero total
spin and momentum is twice as great as for like nucleons.
The phase space enters crucially in the energy-gap
condltlon. However when thc ncutlon Rnd pI'oton Fermi
momenta are diferent, neutron-proton pairs no longer
are dangerous, since their energies cannot vanish simul-
taneously. Although we will not consider explicit
neutron-proton pairing, we mill want to include other
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sects arising from the interactions between neutrons
and protons; for these purposes the equal density ap-
proximation will be maintained.

The unperturbed ground, or vacuum, state
~
0) of the

quasiparticle system is defined by

„io)=o. (2 5)

The transformation (2.3) is called "normal" or
"trivial" if

Nk, =0,
(2.6)

FIG. 2. Standard diagrams. (a) is the
standard potential vertex; (b) illustrates
how the partial weight factors I and u are
associated with arrows pointing to the left
and right, respectively.

(b)
V

Sks= 1
y ek) 0.

vk, =0,
In this case, the vacuum state of the quasiparticles is
just the Fermi sea, with nk, & representing a particle
creation (hole annihilation) operator for k above the
Fermi sea or a hole creation (particle annihilation)
operator for k below the Fermi sea.

1. I'oterItl/ Vertices

Direct substitution of the transformation (2.3) into
the Hamiltonian (2.1) gives the transformed Hamil-
tonian. The ground-state energy of the transformed
system can be computed by summing the contributions
of all vacuum-to-vacuum connected diagrams generated
by the transformed Hamiltonian. These diagrams can be
constructed with the aid of the following rules:

In Fig. 2 (a) we have drawn what we shall refer to as
the "standard" potential vertex. The operators reading
from right to left in Eq. (2.1) are associated with the
legs read counterclockwise beginning at the lower right.
The standard vertex contributes a factor

(-',Bi+2,ipse(1'2
i Vi12))(li N2 tt2Ni).

Other distinct vertices can be generated from the stand-
ard one by rotating the legs about the vertex point from
one side of the vertical to the other. A new diagram so
obtained contains the same potential matrix element as
the standard vertex. The remaining factors, or weight
factors as we will call them, are given as follows:

(1) In rotating a leg, do not cross the lower dotted
line.

(2) The arrows remain fixed on a leg; that is, the
right-left sense of an arrow reverses in crossing the upper
vertical. This assures two arrows into, and two arrows
out of, each vertex.

(3) Crossing the upper vertical changes the leg in-
dices from k, s, t to —k, —s, t; the t index remains un-
changed. This assures conservation of linear momentum
and s component of spin across a vertex. Quasiparticle
number is not conserved. If, as a mnemonic, we think of
an arrow to the left as meaning a quasiparticle and an
arrow to the right as an antiquasiparticle, then quasi-
particle number can be thought- of as conserved inde-
pendently for neutrons and protons at a vertex. If (I)

denotes (k„,s„,t„), we will mean by (—rt) the set

(—k., —s„, +t„).
(4) If one rotated leg crosses another, the vertex

weight factor is multiplied by (—1).
(5) The vertex weight factor contains the product of

four I's and v's, one for each leg according to whether
the arrow points to the left or to the right, respectively
[see Fig. 2(b)].

Two legs connected to the same vertex may be joined
(contracted) into a loop according to the following rules.

(6) One leg must come from the right, and one from
the left, of the (not necessarily standard) diagram. Both
legs must bear identical indices.

(7) The relative position of the legs must be obtain-
able from the standard diagram without having
switched (crossed) the pair.

(8) The weight factor associated with the pair is now
determined by interchanging the legs of the loop (with
rto accompanying sign change) and then applying
rule (5).

Z. EAsetic-ErI, ergy Vertices

The transformed kinetic-energy operator assumes the
form

P &ts[(ttks ~ks )&kst tttkst
ksf

+Nks& —k—s(&kst & k stt+& k sttttks—t)—+&ks j—~ -(2 7)

The terms involving Nv factors play the same role in the
perturbation expansion of the ground state as does the
potential. Diagrammatically they give rise to wedge
vertices, opening to the right or left. Each such vertex
has associated with it the factor e„multiplied by a
weight factor obtained by applying rules (1)-(5) above
to the standard diagram given in Fig. 3. Only the wedge-
type kinetic vertices are to be considered on a par with
the potential vertices.

3. ProPugators

Legs from different vertices labeled with the same
index (k,s,t) may be connected by lines irrespective of

FIG. 3. Standard diagram for kinetic
energy vertex,
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PEG. 4. Diagrammatic representation of equal to zero, one 6nds~ ~

~

~

~

~ ~

~the generalized compensation condition.
—2N, ~,L~,+Q ev'(11'~ V~11')j

)lr= (Qk —'V1P)Ek. (2.8)

(The spin index has been suppressed. ) For the normal
transformation, Eq. (2.6), this becomes $q

——~e/, ~; in
general, Pq is non-negative.

the arrow direction. Every such line will have two
arrows, each belonging to its respective vertex. If a pair
of connecting lines cross, a factor (—1) must be in-
cluded; this is consistent with rule (4). Between each
pair of successive vertices (reading from right to left)
there is associated a factor (Eo—P $~) ', where the
sum is taken over all propagator lines which exist
simultaneously between the two vertices; Eo is zero for
the vacuum state, $q is the coeKcient of n~, ~ ng, ~,

—(Ni2 —ep)-', Q Ni vi (1—1I V~ 1'—1')=0, (2.9)

where th, e first term in the square brackets is (a+9), the
second (c+d) and the next term of the equation is due
to (e) and (f). Symmetries of the potential matrix
elements have been used in combining terms. The sum
over (1') for (e) and (f) assumes the 8-function condi-
tion that tp=tq.

The effect of diagrams (c) and (d) is to "dress" the
single-particle energies by the usual Hartree-Pock po-
tential energy. The dressed particle energies will be
denoted by

4. The Compeesatiol Cor/dition

ei ——ei+P vi'(11'~ V~11'). (2.10)

It is sufhcient, in order to compensate dangerous
diagrams, to assert as a condition on the transformation,
that the sum of all diagrams (Fig. 4) going from the
vacuum to an isolated propagator pair (k, s, t, —k—s, t)
must vanish for each (k,s,t). Diagrams which contain an
intermediate state consisting of only an isolated pair
need not be considered. (~d& 1( 4

(p 2) 2 ( (g ~+ g 2)»2)
(2.11)

In order that the density be the same as for a non-
interacting gas, the chemical potential p must be
dressed as well.

Equation (2.9) can be cast into the standard BCS
form by setting

D. Lowest Order Diagrams: The BCS
Integral Equation

(2.12a)~k 2 2 Gkk'
(Q,2+g,2)1/2

where we have assumed that ~~ and h~ are independent
of spin direction. This leads at once to the integral

Listed in Fig. 5 are all vacuum-to-pair diagrams equation
through 6rst order in the transformed interaction (po-
tential and kinetic). Setting the sum of these diagrams

(b)

where, to this order,

Ggg' =—-', $(ks, —k—s~ V~k's, —k' —s)
—(ks, —k—s

i
V i

k' —s, —k's) j. (2.12b)

The isospin index, which is constant throughout, has
been suppressed. Note that G' is derivable from the
singlet-spin part of the interaction only.

With some manipulation, the expectation value of a
quasiparticle excited "state" n~, P ~0) can be shown to
be given by

(c) (Q 2+s 2)1/2 (2.13)

P& is to be interpreted —approximately —as an inde-

pendent-quasiparticle excitational energy. We see that

(e)

FIG. 5. Vacuum-to-pair diagrams through Grst order in the
transformed interaction,

E. Generalized Energy-Gay Equation

With complete generality, we can group vacuum-to-

pair diagrams (Fig. 4) into two classes, as shown in

I'ig. 6. Each arrow shown belongs to the vertex to which
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FIG. 6. Diagrammatic representation of the generalized integral
equation. The vacuum-to-pair diagrams are grouped according to
whether the external arrows point in the opposite or same direc-
tions. In the latter case, Gkkl, there is always at least one internal
line with arrows pointing in opposite directions; this is explicitly
indicated by the loop labeled h.'.

the line is attached inside the blob. Both solid and
dashed arrow diagrams must be included in the sums. It
is trivial to show that any diagram with both free leg
arrows pointing out (or in) must have at least one
internal line in which the two arrows point in opposite
directions. (They need not loop in the direction shown,
however. ) The loop involves a factor es ss,. the sum
over momenta k' is explicitly displayed by this separa-
tion. Kith these diagramatic definitions of ek and Gkk,
and retaining Eq. (2.11), the BCS integral equation now
can be generalized formally to'

compensation condition and thus be zero. But the extra
propagator lines affect the value of the diagram only
when intermediate states are involved, as in 7 (c'), 7(d'),
~ . Thus the difference between the sum of the primed
and the compensation sets is of second order.

1. Renormalised Particle Energies, ~k.

In Fig. 8 are displayed some of the types of diagrams
which contribute to ek. The particular set displayed is
the beginning of a sequence which, when summed, gives
Lcompare Eq. (2.10))

sr++ s,.'(1 1'I T(pr+$t ) I
1 1'), (2.15)

with the T matrix satisfying

&1'2'
I T(~) I

1 2)

=&1'2'I ~I12)+ & &1'2'I I'I 1"2")

A 1 /
2 ~kkl ~

(g,s+s,s) 1/s
(2.14) &( (1"2"

I T(a&) I1 2). (2.16)
Q) ]I I 2I I

The solution of this integral equation satisfies the
compensation conditions to all orders in the transformed
interaction. Our task now is to investigate higher order
corrections to 8 and G.

There is a special property of the kinetic-energy
vertices which we shall use in evaluating G to second
order in the transformed interaction. In Fig. 7(a) is
shown the only second-order diagram containing a
kinetic-energy vertex. If, however, the second-order
diagram 7 (b) is added to 7(a), the sum can be shown to
be of third order. This can be generalized to state that
an nth-order diagram containing a kinetic-energy vertex
Le.g., 7(d)) plus the same order "potential-loop" dia-
gram Le.g. , 7(e)) are of (N+1)st order. Consider the
sequence of diagrams 7(a'), 7(b'), 7(c'), ~ Lwhich are,
for example, the left-hand parts of the sequence 7(a),
7(b), 7(c), ). If it were not for the (two) propagator
lines at the bottom, the sum of this set would yield the

This corresponds closely to the Brueckner T matrix for
summing particle-particle scattering in the presence of
a pair of holes of momentum (—1, —1')—the major dia-
grams which are summed in the elementary Brueckner
theory —the only difference being that in the latter case
the rI, 's are given by the normal transformation (2.6).

In Fig. 8(b) is shown a set of diagrams for calculating
the renormalized energy of a single "particle. "The dia-
grams in 8(b) have exactly the same topological struc-
ture as 8(a), but differ in the intermediate propagators
which enter in second order and beyond. Ke will not
here be concerned with the actual calculation of ek, but
will rather rely for these upon previous calculations on

(b)

(b) (c) (e)

FIG. 8. A comparison of
diagrams (al contributing
to ~, with a topologically
equivalent set (b) con-
tributing to the renor-
malized single "particle"
energy.

(a') (b') (c, ) (d') (e')

FIG. 7. Diagrams (a), (b), (c), (d), ~ are a subset of vacuum-
to-pair diagrams. The pieces to left of the broken lines are ex-
p icitly displayed in diagrams (a'), {b'), (c'), (d'), ~ . lt is shown
in the text that the sum of diagrams (a'), (b'), (c'), (d') are of
second order, and hence the sum of (a), (b), (c), (d), ~ are of
third order.
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FIG. 9. Contributions to the renormalized single quasip article
A,

propagator $».

the "normal" state of nuclear matter. This is predicated
on th, e assumption that 8» depends only weakly on 6»
when 6» is small. In calculations reported here, we

further assume that ek can be described by an effective-
mass approximation

ek= (k2 —kr2)A2/2222*

where m* is evaluated at the Fermi surface.

Z. RertorNtalised QNasiparticle Ertergies fk

(2.1'/)

The energy denominators which enter into propa-
gators for intermediate states are the sums of ]'s, which
in lowest order are given by Eq. (2.8). The diagrams
which determine the renormalized propagator energies,

pk, are given in Fig. 9; the external I and v factors are
here included in the sum. Through first order in the
potential, these diagrams give the result in Eq. (2.13).
When intermediate-state propagators enter into the
evaluation of the blobs in Fig. 9, the diagrams also

depend on these intermediate states (they are repre-
sented by dashed lines in Fig. 9), since these affect the
energy denominators. We will make the independent
quasiparticle approximation and take the gk to be inde-

pendent of the number of other excitations. "Consistent

FIG. 10. T-matrix-type vacuum-to-pair
diagrams. These are not allowed.

with this approximation, we will evaluate the internal
factors of the blobs in Fig. 9 by bending the right-hand

legs around and equating to the topologically equivalent
diagrams in Fig. 6 (i.e., the compensation condition).
This gives

$k= (Nk2 —Vk )ek—NkVk Q 22k'Vk'Gkk'
»I

contain intermediate states consisting of only an iso-
lated pair, and must be excluded. In diferent termi-
nology, including the diagrams of Fig. 10 would result in
double counting.

The kinds of diagrams we will consider are displayed
in Fig. 11. Diagrams with all arrows reversed and
topologically equivalent variations of such diagrams
must also be included. Not all of the diagrams shown
will be summed simultaneously. We note, in particular,
that (b') contains two extra (a total of three) factors of
2t,v2=6, /2(622+i, 2)"2, and is expected to be consider-
ably smaller than diagrams with only one such factor.
We have not obtained an analytic estimate of the re-

(a) (c)

duction of diagrams due to factors of Nv, but in Sec. IV
a numerical comparison is made. It is plausible" that
each function Nv reduces a diagram by a factor pro-
portional to h.

For some simple potentials, it is possible to sum
special in6nite sets of diagrams. In the case of nuclear
potentials which contain repulsive in6nite cores, it is
necessary to sum some subset (if one goes beyond the
BCS approximation) in order to obtain finite results.
Thus in Fig. 11(b) the two potential vertices have been
replaced by T matrices (Ti and T2). These T matrices
are sums of diagrams which involve pairs of lines with
arrows pointing only to the left ("forward-going

(b')

FIG. 11. Some diagrams which contribute to the renormalized
pairing interaction. In diagram (b), the potential vertices have
been replaced by T matrices, see Fig. 12.

—(Q 2+e 2)1/2 (2.18)

Equations (2.11) and (2.14) were used in obtaining the
6nal form. Note that this is formally identical with

Eq. (2.13).

3. Renormalised Pairing Potential G»»

The remainder of this paper is primarily devoted to
the evaluation of G» and the subsequent effect on the
nuclear energy gap. We note first, that G is not related to
the Brueckner T matrix. Replacement of G by T would

+ 0 ~ ~

sum diagrams of the type shown in Fig. 10, but these
FIG. 12. Diagrammatic representation of the T matrices of

"See, however, H. A. Bethe, B. H. Brandow, and A. G. Fig. 11(b). Only interactions of bubbles with arrows pointing to
Petschek, Phys. Rev. 129, 225 (1963). the left are included.
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graphs" ), as indicated in Fig. 12:

(1'2'I Till 2) =&1'2'I 2"(h + t2 ) I1 2& s

&1'2'I T2I12)=(1'2'I T(4+6) I12&,
(2.19)

4. IsotroPy of Aj,

Although nuclear matter by delnition has rotational
symmetry, it is not obvious that the solutions of the

"L.N. Cooper, Phys. Rev. 104, 367 (1956).

and T (ol) is given by Eq. (2.16). [When variations of (b)
are included, only the T matrices derived from forward-
going graphs are considered. ~ The limit 6 —s 0 [i.e.,
replacing the I's by the normal distribution function
Eq. (2.6)j is well deaned in Eq. (2.16) and should intro-
duce no new singularities. Depending upon the particu-
lar potential employed, T(os) may or may not have a
pole in the range of interest, i.e., co&26. For a purely
attractive potential, such a pole always exists (at least
for kl+k2 ——0) and is located at exactly minus the energy
of the Cooper pair state. "It can be shown (Sec. III) for
a separable attractive interaction that the pole lies
below 2A('), where 6(0) is the gap calculated to lowest
order [i.e., using Eq. (2.11)].In the case of the par-
ticular nuclear potentials employed, we have established
that there is no pole for the singlet interaction. The
triplet interaction —which has a pole at the deuteron
binding energy when k p=o—has a pole in co very close
to zero, and positive. This is an annoying accident and
can be circumvented either by decreasing the attraction
slightly or by assuming the existence of a small but
finite gap. We chose the latter.

The sequence diagrams of Fig. 11(a), (b) (with T re-
placed by V), (c), (d), , can be summed for some
special interactions that are discussed in Sec. III. In
that case, the pairing interaction Gkk can be written as
the sum

Gkk'
G22'[1 fV43 +(fV—33 )'

1+ V/4

If the contribution of (b) is small compared to that of
(a), this justifies terminating the sequence with (b). Its
contribution to the eRective pairing interaction is'

G/ssls =2 Q Q N3 s4
sQE2 3 4

(—14I VI —3 2&(—31I VI —2 4&X, , „„.(2.20)
fi+ $2+ $3+ 54

The diagrams for the renormalized pairing potential
also have an analogy with conventional perturbation
theory. Thus, corresponding to Fig. 11, we find the
diagrams of Fig. 13 (and similar diagrams with reversed
arrows, etc.) which are obtained by breaking the leg
with opposite arrows in Fig. 11. [There is no perturba-
tion diagram corresponding to 11(b').j The diagrams
13(b), 13(c), 13(d), , in perturbation language, con-
tain the exchange of particle-hole pairs.

FIG. 13. Conventional
perturbation analog of Fig.
11; these diagrams contrib-
ute to the renormalized
pairing interaction. Note
change of both horizon-
tal and vertical scales at
k=BF '.

(c)

(b)

generalized integral equation (2.14) also possess rota-
tional symmetry. The question already arises in lowest
order (G= V) when the potential contains components
beyond the s wave, "and occurs for the general G even
when only s-wave scattering is considered. The pairing
interaction is capable of polarizing the medium in a
preferred direction. (Such phenomena are familiar in
crystalline structure. ) The energy levels of the system
are degenerate with respect to the orientation of the
preferred direction. This degeneracy can be utilized to
generate another state which has an isotropic spectrum—namely, a linear combination of state vectors which is
in average over all directions of orientation.

The anisotropy eRects are real and interesting, but
will be ignored in the present analysis; that is, we take
6k to be isotropic. This immediately allows us to
average G22 over the angles between k and k'. The
resultant average depends only on the magnitudes of k
and 1' and is denoted by G&I, .

(ksk4I VIklk2)= f for (Ik;I——kr)2(lo,
i=i, 2, 3, 4,

=0 otherwise, (3 2)
"K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel,

Phys. Rev. 118, 1442 (1960); R. Balian and ¹ R. Werthamer,
4Md. 131, 1553 (1963)."The specific form of the potential is not crucial so long as it is
a smoothly varying function. Thus, we have also investigated the
problem for a separable Vamaguchi potential and have obtained
similar results.

III. ONE-DIMENSIONAL PROBLEM

A. Through Second Order

In order to gain some insight into the importance of
higher order corrections to the BCS equation, we first
investigate the one-dimensional problem for one type of
Fermion interacting solely in singlet s states:

(3 4I V
I
1 2) (k3k4I V Iklk2&

Xh(k3+k4 kl —k2)S(3 4)S(1 2), (3.1)
where

+(1 2) 5sl, l/25ss, l/2 bss, —1/25ss, l/2 ~

For simplicity, we have studied an attractive "shell"
interaction" (A= 2rr4= 1)
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with v&(kp2. The integral equation for Dk through
second order is

~a=qfZ „
4, '

g 0—+0—
4k pave

g
—&/0

2kgmm
r

m* sinh(1/g) g))1 m~

44kyq &q,' q(N-&)~q(N&) 4'—q

X 1—2fg. . . „—. (3.3)
5i+ki +qI+q+5q q—

Because of the form of the potential (3.2), the sums are
restricted so that the momenta k, k', k+q, and k' —

q all
lie within the shell. We use the effective-mass approxi-
mation for the energies q~= (k' —k p')m/m*.

The solution of the lowest order integral equation
(only first-order terms in f are kept) yields a gap which
is constant inside the shell region:

first-order terms and are not of order e '~' as suggested
by Sogoliubov, Tolmacbev, ag.d Shirkov. "

The lowest order solution obtains from setting P= 1.
The solution of (3.5) requires Ii =2, or

~= (4k,m/m+)e-»q, g«1. (3.6)

Equation (3.6) differs from (3.4) in that e "q is now
replaced by e "g. This is, of course, a very large reduc-
tion for g«1. Note that if the terms 0(g) are negative,
no solution obtains.

B. Sum of "Particle-Hole" Graphs

Because of the importance of the second-order correc-
tions, it is of interest to investigate higher order terms.
Since our potential is separable in each momentum
coordinate, the sum of diagrams (a), (b) [with Ti= 2'q

= VJ, (c), (d) in Fig. 11 can be written explicitly as

G~~ = —f[1—v~~+(var)' —(v~~ )'+ ]

=0 otherwise,

(ik i

—kp)'&q4,

(3.4) 1+Vki, '
(3.7)

where
g= fm*/(2qrmkF).

Nk+q &k'—q
2 2

vaq'=2f 2,
q fq+$i +(ipq+54

(3.8)

We now turn to the solution of (3.3) including the
second-order terms. In particular, we solve for 6= Ak~
with the assumption that on the right-hand side of (3.3)
the momentum dependence of Dk can be neglected
inside the shell region. This is a good approximation,
since 6k is important only near the Fermi surface.
Moreover, we have seen that Ak is independent of k for
the leading order solution (3.4). The effect of the second-
order terms in f is to cause hi to be an increasing
function of ~(k~

—ki ~. This is because the 44qqq term
dominates the (Nv) (m) term, and the major k depend-
ence arises from the energy denominator. This yields the
result that the second-order term is an algebraically
increasing function of ~~k~

—k~~. Thus evaluating Aq at
k p underestimates the correction terms.

Consistent with the evaluation of the correction terms
to second order, we will take the normal distributions
(2.6) for I and ~ and, in the energy denominator of the
second-order term, set

$„=2kF[)k [
—k p [ /(m*/m) .

The integrals can now be evaluated. The leading order
expression for (3.3) when the gap is small (i.e.,
fm*/2mmk p g«1), is. ——

Note that yq, is positive for an attractive interaction,
and tends to weaken the strength of G relative to the
lowest order value. "In particular, we note that

2k p'Nts
1yk, k, ———,g ln = ~F, g((1. (3 9)

If we replace G» by. G»», and 6k by 6 in the
integral equation (2.14) we obtain, instead of (3.5),

1=8/(1+ ',F), -
or Ii =—„and for the gap parameter

(3.10)

0,= (4kgm/m*)e 4"q. (3.11)

There is still a significant reduction in the gap relative to
lowest order value (3.4), but it is not so dramatic as the
second-order result (3.6).

The same-method of summing "particle-hole" dia-
grams can be extended trivially to three dimensions for
the lshell" interaction or the exchange part of a local
interaction. If the second-order term is already small

compared with the leading order term, however, we are
justified in terminating the sequence at second order.

1=F(1—-'4F)+0(g), (3.5a) C. T-Matrix Vertices
where

Ii =g ln(2ki mw/m*6) . (3.5b)
%e now investigate the effect of employing T matrices

in diagram (b) of Fig. 11. The T-matrix integral

The terms 0(g), which we now neglect, include the
contribution of the (Nn) (m) term. Note that the domi-
nant second-order terms are comparable with the

'6 For a repulsive interaction, G may have a pole corresponding
to a collective "exciton"; A. Bardasis and J. R. SchrieGer, Phys.
Rev. 121, 1050 (1961).
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equation (2.16) can be solved to yield

(p+k, p —ki T(i0) i p+k', p—k')

about the existence of a pole of the T matrix, nor about
the energy gap for the chosen interaction.

(3.12)
1 f—Z.I~'&~'/(~+ ).+.+&~~)

where it is understood that all momenta lie within the
shell region.

Tlic qilcstloll al'lscs wllctlicl' (Rnd wllcl'c) T((v) 11Rs a
pole corresponding to a Cooper pair state. This has been
lnvcst1gRtcd by Tomasini, who has shown in a per'-

turbation context, that no such pole can exist. The
argument must be modi6ed in our self-consistent treat-
Iilclit. Tile tcl'111 Qg ill tlic denominator 18 lal'gest wllcll
p= 0 and &u =26 {the smallest value ~ assumes). In this
case

(k—k( r(2~}ik'—k')

f—
(3.13)

1——',fp, I,'/(6+], ) 1—h(h)

and a pole arises if h can equal unity. But h (6) satisfies
thc lncquRlltlcs

Qg Nq

h(a) = ',fP -„&-',fP &-,'f Q —.(3.14)
~+i.

In the limit of g«1 and 6/Icii'kg&&1, the inequalities
approach equalities, and we.6nd

h(a) ~ -',F(a). (3.15}

Thus, lf the lowest order BCS 1ntcgral equation 18 used
to determine 5, we note that h(6') ~-', , and no pole
occurs. '~ However, we have seen that the inclusion of
particle-hole scattering I Eq. (3.7)) tends to decrease the
cncrgy gRp. If only second-order dlRgrarns arc 1ncluded)
h(6) ~ 1, but if the whole set of particle-hole diagrams
is summed (see Fig. 11), h(h) -+ 2.

The effect of replacing V by 2", as in Fig. 11(b), is to
increase the second-order correction (when V is attrac-
tive), decrease the gap, and hence increase h beyond the
value —,'. Perhaps, a crude estimate of this replacement
CRn bc obtRlncd by 1nscrtlng T Rt every vcl'tcx 1n Figs.
11(b), (c), . /not (a)j; that is, f is replaced by
f/(1 —h) =f/(1 —2&). Then Eq. (3.10) becomes

The results obtained in the previous section tell us
that, in one dimension, higher order terms in the
interaction cannot be neglected in solving for the energy
gap. In a letter, ' we have shown that this is not peculiar
to the one-dimensional problem. For various attractive
interactions acting only in singlet states, it was demon™
strated that:

(a) The second-order interaction terms, G'+G', are
not of order 6 compared with 6' and they tend to reduce
the cnel'gy gRp.

(b) The (NI) (Nv) terms are small compared with the
(Ii') (e') terms if 6 is smalL

(c) For some parameters of the interaction, there is
no solution to the gap equation (2.14) when terms only

up to second order in the interaction are included.

(d) It is necessary to solve the energy-gap equation
self-consistently rather than resorting to a perturbation
procedure. The latter arises in the evaluation of g(ki ) by
standard perturbation methods following (say) a lowest
order transformation characterized by LP. Through
second order, ](kip) =6 is given by the right-hand side
of Eq. (2.14). Perturbation theory would replace 4 by
6' wherever it appears; the self-consistcnt procedure
maintains 6 on the right-hand side. We rewrite the gap
equation (2.14) in the form'

&=f1.(~) f'I.(~)-, (4.1)

where —f is the strength of the interaction. In the limit
«small ~, I&(ii)/II(a) approaches a constant inde-

pendent of 6, in contrast to the one-dimensional case
Lsce Eq. (3.5)g. To illustrate the difference between the
self-consistent and perturbation solutions of (4.1), we

note that for suKciently small gaps, we may set

Ii——ci in(p/6),

II ci ln (P/d, ), ——

wlici'c ci Rlld ci Rl'c constRIits and p is some charac-
teristic range of the interaction. The self-consistent
solution of (4.1) is

6=6' exp — 6' exp( —c2/ci'), (4.3)
-ci (1—fci/CI)-

1+4F/(1—V')
(3.16) where 6'=pc "Ir"& and the final form assumes fcm/ci

&(1.On the other hand, 'the perturbation solution yields

which has no solution for F real. This is undoubtedly too
stringent a bound, since the T matrix assumes the value
—f/(1 ——,'E) only at one point fp=0, &v=26 in Eq.
(3.12)j and we must integrate T over a range of values
of p and ~. Hence, no definite conclusion can be drawn

'~ A. Tomasini, NIIovo CimeIIto 20, 963 (1961)."Sec also Ref. 9.

If cI/cp is numerically small, for example, we find

(4.4)
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Thus the perturbation procedure would predict a much
smaller correction to the energy gap than would the
self-consistent procedure. We wish to emphasize that
the differences do not approach each other even when

the corrections are small.
We have not summed particle-hole graphs in the

three-dimensional case, but as indicated in the letter,
this can be done for the exchange part of a separable
interaction.

V. NUCLEAR MATTER

The T matrix for a potential which can be written as a
Qnite sum of separable terms,

(-,'K+p, —',K—pi Vi-', K'+y', —',K' —p')

= 8 (K—K') (2tr)s P li w (P)w„(P')
a

can be written

(-', K+y, —,'K—pi T(ot) i-;K'+p, —,'K' —y')

=ll(K —K') P ($A+L(Eat)]-')..w. (p)w. .(p'),
With the insights gained from our studies in Secs. III

and IV, we now investigate the energy gap in infinite
nuclear matter. For small gaps, we have seen that the
contribution to Gkk given by diagram 11(b') is small
compared with that of (b). Furthermore, if G' is small

compared with G', as is found to be the case, then it is
consistent to neglect diagrams 11(c), (d), . Thus we

only investigate O'. Whereas in lowest order only the
singlet component of the interaction contributes to G',
both singlet and triplet components contribute to G~.

We note also that the particle-hole pair exchanged be-
tween the vertices can be either a neutron pair or a
proton pair regardless of the isospin of the external lines.

The sum of all diagrams of the type 11(b) leads to the
contribution (fs'= 2ttt = 1)

0.06

0.05-

0.04-

Ill JC

0,02-

I I

I

kF
k(F II

-O.OOI

k r-

s

5 5

—-O.OOI

7 9 II I5

~ t t t t t t t t 0a006

where

Gb (5/4)Gst s (Gt t+Gtt+Gt t)
(a)

I I I 0.006

Nk+q ~k'—q
2 2

Gkk ""'=22,
s 4+5k+4+s+fk s—

X(—k, k' —
q~

T"(jk+&k, ~

—k—q, k')

X(—l -q, l
~

T"(jk.+jk,) ~

—k', k'-q),

Lp, p'=s(singlet), f(triplet) j. (5.2)

0

- 0.002

The T matrices satisfy the equations Lcompare

(2.16)7

(p+k', p —k'I T"(~)lp+k, p —k)

=(p+k', p —k'i V"ip+k, p —k)

I

I

kF k' IF ')

(b)

5 7

/ —-O.OOI
I

9 I I I5

Qp+g» Qy
2 2

ttt+ 5p+k" +5p—k"

X(y+k', p —k'i V"
t
y+k", y —k")

X(p+k", p —k"
~

T"(td)
~
p+k, p —k). (5.3)

The T matrix was evaluated using the normal [Eq.
(2.6)] form for the I's and replacing es by ~e~. The
potentials employed were of the Puff type; that is, the
s-wave part of a hard shell plus an attractive Yamaguchi:

(p+k', p —k'
i
V"

i y+k, y —k)

0.06

I

kF k{F t)

I I t 0.006

.0.005

-0,004

I

7 9

sink'r, sinkr,
= lim)„

(~)

(5.4) Fro. 14. Plots of the contributions to Gkk. " along the cuts k'=0
and 0'= k. Here m*/m = i.
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0.0l Q.00l

0 m"/i =0.7
m~/m Rs&

:—.—0

F&G. 15. Plot of G».~ for
k'=0 and k'=k. The corn-
plete solid and dashed
curves are for m~/m = 1.
Fragments of curves for
k=k' close to k~ are shown
for various values of m"/m.
The dotted curve and the
dot-dash curve are Yamagu-
chi representations (m*/m
=1, k'=k) of GI,I, ~ corre-
sponding to the two ranges
of the interaction given in
Table I. Note change of
both horizontal and vertical
scales at k=3F '.

-0.0l -
i

-0.02-

-0.04-

-0.07-
0

nP/m =0.9
/

r

6 .' r

r

t

:I
~

l

~

5

- -0,00l

—-0,002

- -0.003

- -0.004

- -0.005

—-0.006

-0.007
l3

TABLE I. Table of s-wave potential parameters. Type-I parame-
ters are those given by PuB (Ref. 19); type II are derived in. paper
II and yield a better 6t to the singlet s-wave scattering data.

Singlet

Type 1 (F-~) P(F ') r.(F)
Triplet

),(F ') P(F '} r (F)

3.64 2.004 0.45
0.886 1.602 0.257'

8.695 2.453 0.45
8.695 2.453 0.45

"R.PuS, Ann. Phys. (N.V.}13, 317 (1961).

where A. is a diagonal matrix with elements 'A and the
matrix elements of L(E,ru) are given by

w. (P")u's„.,xu's ixw. (P")
d'~//

re+ (-,'E'+ 2p'")/(m*/es)

These integrals were evaluated in part analytically and
in part numerically.

The parameters for the singlet and triplet interactions
are listed in Table I.

The most extensive calculations vrere carried out
using the singlet parameters I (original Puff" ), although
we now believe set II gives a better representation of the
tvro-body scattering data. ' It turns out that 6" domi-
nates Gs for most values of ir and lr', so that the 6nal
results are somewhat insensitive to the singlet potential
assumed.

Plots of the three G~r, '" appear in Figs. 14 and GI, ~
~

is shown in Fig. 15 LGss. is G„k averaged over the angle
g (kk') j. All computations were made with type-I
potentials, and were carried out by a numerical four-

dimensional Monte Carlo integration. ~ In the limit
+~0, Gkrsi ls ever/where 6nlte and continuous. It
does, however, possess infinite first derivatives at k= k'

=kg, and can be shown to behave like

Gs, s + =Gs y, s coilst —
~
x~ ln[x~,

i
x[«k, . (5.5)

When 6 is small but finite, the cusp at the Fermi surface
is sin,oothed out over a momentum range of the order of
m*6/2esk~. The numerical integrations reported here
were made with 6=0.01F ' (0.2074m/m" MeV), ks
= j..4F—', so that the cusps appear as narrow peaks
-ooo3F ' wide Gss- Gss "»d (Gss"'+Gas ") in-
dividually and therefore Gqs s are symmetric with
respect to the exchange of k and O'. Except for the cusp
at k=k'=ks, the G's are smoothly varying functions of
k and k'. %e have only exhibited plots for cuts through
the (k,k') plane corresponding to k=k' and k'=0,
although we have investigated the functions (especially
Gq~. ") more thoroughly. For large values of k (i.e.,
k))P), Gqq

""' is determined almost solely by the hard
core of the potential, and is thus independent of v and r '.

Figures 14 and 15 show that G" and (G"+G") are
generally of the same sign as G".However, they appear
with opposite signs in Eq. (5.1). Thus G" alone would
tend to reduce the energy gap in nuclear matter whereas
thc coIQblnatlon tends to $sc'f8gSe thc gap.

The most extensive survey was made for vs*/tw= i.
However, in Fig. I5 we have also plotted a segment of
the G„s curve near the Fermi surface for various m jm.

' These integrals were carried out by performing a transfor-
mation which increased the sampling where s2 is large.
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FIG. 16. Energy gap parameters 60 and 6 as functions of m~/m.
The solid curves are calculated from the lowest order, BCS
integral equation for the two potentials (types I and II) given in
Table I (see also Ref. 8).The dashed curves include the contribu-
tions of Gy@ ~ calculated with the type-I potential.

It is seen that the numerical results are, unfortunately,
extremely dependent upon the value of the eRective
mass. Ke say "unfortunately" because values of the
effective mass which are su@ciently precise for our

purposes are not available.
Generally, if the Hamiltonian is multiplied by the

dimensionless effective mass m*/m, then this parameter
appears only multiplied by the potential —i.e., (energy
&&m~/m) is a function of (strength of the interaction
Xm~/m). When hard-shell interactions are present, then
m~/m appears only multiplied by the 6nite (attractive)
part of the interaction (i.e., X,).

The form G~~' in Fig. 15 shows that the potential
falls oR rapidly outside of the Fermi sphere. From the
behavior of solutions to the BCS equation with shell

interactions, we know that the strength of the potential
(at the Fermi surface) enters into the argument of the
exponential, whereas the momentum range of the inter-

action enters only multiplicatively. This suggests ap-
proximating G' by some mathematically convenient

potential of appropriate range. %e h,ave chosen a
Yamaguchi potential of the same range as the attractive
part of the singlet s-wave interaction. Once this ap-
proximation has been made, we can immediately utilize

the calculations of paper II to estimate the energy gap,
since G= G'+G~ now corresponds to a change in strength
of the attraction (or of m*). We have included. in Fig. 15

the two Yamaguchi fits to Gqi, ' corresponding to the

ranges of the attractive singlet parts of type-I and

type-II potentials. (We "conservatively" chose the
normalization to pass, not through k=k'=kg, but,

rather arbitrarily, through an average of the points at
0=k'= l.3, 1.4, and 1.5. The point at kg= I.4 was given
double weight. ) It is seen that G~ is of shorter range in k

(longer range in configuration space) than the attractive
singlet part of the nuclear potentials.

The solid curves' in Fig. 16 give the energy gap LV as a
function of m*(k~ ——1.4F—') for the two potentials (see
Table I). Associated with each solid curve is a broken
curve for 6 obtained according to the prescription of the
previous paragraphs. Recall that 6' is calculated using
the type-I potential. %e now believe that the type-II
potential is a better 6t to the singlet scattering data.
The triplet interaction is more .important than the
singlet in determining G' (compare Fig. 14), but G' is
determined completely by the singlet interaction. This
tends to lend somewhat more credence to the type II
results in Fig. 16. From this figure we note that unless
m*/m is larger than 0.85, the energy-gap parameter in
nuclear matter remains uninterestingly less than O.i
MeV. Nevertheless, the higher order corrections com-

puted here are seen to have a large effect on the magni-

tude of the gap. (Note that 'the difference between the
results for two potentials is relatively less important
when the gap is large. ) The value of m*/m suggested by
Brueckner et at."is 0.73.Bethe, Brandow, and Petschek"
estimate an eRective mass of 0.85 for the reference
spectrum; the relevance of the reference spectrum will

be examined in the next section.

VI. CONCLUSIONS

In an accompanying paper' it is shown that for
"realistic" forces the BCS energy gap in nuclear matter
is several orders of magnitude lower than that deduced
for the heaviest nuclei. In this article we have attempted
to improve the nuclear-matter calculations by gener-

alizing the gap equation to include higher order terms in

the transformed interaction. Both here and in a previous
Letter, ' we have conclusively demonstrated that such

higher order terms which allow nontime-reversed pairs
to be scattered, are not negligible, as had been argued. "
Their inclusion. can change the numerical value of the

gap in nuclear matter by orders of magnitude. The
computed value of the gap is sensitive to the eRective

mass and to details of the nuclear potential in the range

where the gap is small and therefore uninteresting.

However, it becomes less sensitive to these parameters
as the gap increases. Qualitatively we can say that if the
eRective mass is less than about 0.75, the gap parameter
6 is expected to be negligible; if the effective mass is

larger than about 0,85, then we expect 6 to be larger

than 0.1 MeV.
In order to improve upon the reliability of the above

calculation, we might suggest the following:

(a) One should include the difference between the

energy spectrum of intermediate states tb.at occur in

~' K. A. Brueckner, J.I.Gammel, and J. T. Kubis, Phys. Rev.
118, 1438 (1960).



ENERGY GAP IN NUCLEAR MATTER. I. EXTEN DED THEORY 81131

higher order diagrams and that of an isolated quasi-
particle. The g~ which enters in &t, =(Aa'+gt, ')'t' is
closely related to the normal single-particle energy
computed by Brueckner et al.s' (srs*/m 0.7), but the
intermediate-state energies )which enter both in the
T-matrix series and explicitly in the integral for 6',
Eq. (5.2)] are more closely related to the reference
spectrum of Bethe, Brandow, and Petschek. The refer-
ence spectrum energies are characterized by a larger
effective mass (rrt* 0.85) and an additive constant.

(b) It would be useful to repeat our calculations with

the best phenomenological potentials (with explicit use

of one-pion exchange), thus including the effects of
relative angular-momentum states beyond 3=0. In that
case it would also be interesting to determine the

anisotropy of th, e gap with respect to some arbitrary
direction.

The results of our calculation lead us to believe that
the energy gap in infinite nuclear matter is very small,

if not absent. This suggests that the gap may well be a
finite-size e6ect, and work is in progress to determine

whether this is indeed the case.
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The Bardeen-Cooper-Schrieifer (BCS) theory is employed to study the energy gap in nuclear matter with

various internucleonic potentials which Gt singlet low-energy scattering data and the s-wave phase shift at
310 MeV. The interactions are expressed as the sum of two terms, each of which is separable, thus admitting

exact solutions of the energy-gap equation. The dependence of the energy gap on the form and parameters

of the interaction, as well as on the nuclear density and effective mass, is investigated. For normal nuclear

density, the gap is found to be small compared with that observed in the heaviest nuclei.

I. INTRODUCTION

'HE prediction of an energy gap in the spectrum
of a superconductor by the theory of Bardeen,

Cooper, and Schrieffer' (BCS) and observations on the

spectra of even-even nuclei have led to the speculation
that the same concepts might apply to nuclei' and

nuclear matter. '' An essential feature of a supercon-

ducting system is the attractive interaction of time-

reversed pairs near the Fermi surface. The present paper
uses this feature to study the energy gap in infinite

nuclear matter.
Solutions of the basic integral equation are obtained

which qualitatively confirm the results of Emery and

Sessler, ' who used a Gammel-Thaler potential acting in

s waves only. In addition, we show the sects on the

*Supported in part by the U. S. Atomic Energy Commission
under Contract A.T.(45-1)1388, Program B.

' I. Bardeen, L N. Cooper, and J. R. SchrieBer, Phys. Rev.
108, 1175 (1957).

2A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110, 936
(1958).' L. N. Cooper, R. L. Mills, and A. M. Sessler, Phys. Rev. 114,
1377 (1959).

R. L. Mills, A. M. Sessler, S. A. Moszkowski, and D. G.
Shankland, Phys. Rev. Letters 3, 381 (1959}.' V. J. Emery and A, M. Sessler, Phys. Rev. 119, 248 (1960).

gap of different forms of the potential between nucleons,
define criteria for the existence of an energy gap (see
also Ref. 4), and compare approximate solutions with

exact solutions of the integral equations.

II. ENERGY GAP FOR A SINGLE
SEPARABLE INTERACTION

The basic equation to be solved is the BCS integral
equation' (for notation, see Ref. 6; however, we use
here 6& for the quantity 6&')

~k'Gk, k'
~.= —s 2

(8,2++,2) 1/2

The energy gap is interpreted as 2h»—=2A. 4k is a
renormalized single-particle energy measured with

respect to the Fermi energy and Gk, k is the free-
particle-interaction matrix element

Gs,g' ——(k, —k( V~k', —k').

Throughout this paper only the s-wave part of this
matrix is used, and ek is represented by the effective-

g E. M. Henley and L. Wilets, preceding paper, Phys. Rev.
133, B1118(1964).


