
Qtf journal of experimental and theoretical physics established by E. L Nic.hols in 1893

SEcoND SERIEs, VOL 133, No. 5B 9 MARCH 1964

Analytical Properties and Nonperturbative Calculation of the
Qptical Potential for Nuclear Matter*

A. S. REAMER

Department of Xtsctear Physics, The Weizmann Instittste of Science, Rehoooth, Israel

(Received 24 September 1963)

Within the framework of Green s functions techniques, a definition is discussed of the optical potential

in terms of the self-energy of a particle. A theoretical expression for this potential is given based on a version

of the independent pair approximation for nuclear matter. Identical dispersion relations are shown to be
valid for both the exact and the approximated self-energy. A discussion is presented regarding the relation

between the independent pair approximation and the impulse approximation. The region of validity for the
latter has been estimated. Quantities related to the self-energy, spectral function, and optical potential for
a particle above the Fermi sea have been calculated for a given nuclear force. Tolerable agreement with

experiment is obtained for the real part of the optical potential. Reasons why only the trend of the imaginary

part is reproduced can be partly understood. An effective mass approximation is shown to be valid for a
wide range of particle and hole energies. In conclusion, a discussion of related approaches is presented.

1. INTRODUCTION

'HERE exists a variety of attempts to calculate
from basic interparticle interactions the optical

potential which replaces a medium as a scatterer. It is
not intended to review these attempts, rather a few
treatments will be mentioned which bear some relation
to the calculation presented below.

A first solution of the problem has been given by
Watson and collaborators' who developed the multiple
scattering theory as a tool to describe the optical
potential. Although conceptually clear a solution is

practical only in simplified situations. Particularly
favored is the so-called impulse approximation" valid
for high energies of the projectile. The approximation is
aimed to express the optical potential in scattering
amplitudes of the elementary interaction and in average
properties of the medium like the momentum distribu-
tion of the constituent particles.

More or less opposite to the impulse approximation
one 6nds straightforward perturbation calculations in

case the interparticle interaction is nonsingular. 4

Interest there centers mostly around the second-order

term, where the first nonvanishing contribution to the
imaginary part of the optical potential originates.

Perturbation theory for the optical potential meets
with the same difficulty as the corresponding theory for'

the binding energy of the medium in the case of singular

forces. Indeed one has corresponding to the Brueckner-
Goldstone theory for nuclear matter an approach to a
calculation of the optical potential, where selected terms
in each order are summed in a reaction matrix term. '

Parallel to these developments many attempts have
been made in scattering theory to eliminate all but the
elastic channels. Here also practical results are meager.
In addition the inclusion of the Pauli principle poses
serious difhculties in the case where the projectile and
the intermediate particles are indistinguishable. '

A definition of the optical potential which is satis-
factory from all points of view has been given by
Bell and Squires. ' These authors brought forward the
almost evident relation between the self-energy of the
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' K. M. Watson, Phys. Rev. 89, 575 (1953); N. Francis and 'K. A. Brueckner, R. J. Eden, and N. C. Francis, Phys. Rev.
K. M. Watson, ibid. 92, 291 (1953);W. B. Riesenfeld and K. M. 100, 891 (1955); G. L. Shaw, Ann. Phys. (N.Y.) 8, 509 (1959).
Watson, ibsd 102, 1157 (1953).. ' H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958).' G. F. Chew and M. L. Goldberger, Phys. Rev. 87, "/78 (1952); ' H. Feshbach, Ann. Phys. (N.Y.) 10, 287 (1962).
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particle due to the interaction with the medium and the
CRective potential replacing thc latter. The derivation
glvcn stI'csscd R 11Ilkcd clUstcl' Rppl oxlIQRtlon but
clearly any theory aimed at a calculation of the self-
energy is suitable for a calculation of the optical
potcntlR1.

ID the fo11ovring vre present such a calculation based.
on thc tcc11nlqUc of GlccQ's fUDctloDs Rnd not on
perturbation theory. ' An approximation to this theory,
the independent pair approximation (IPA), exploits
thc fRct thRt fol nuc1car Q1Rttcx' the Rvcx'Rgc lQtclpartlcle
distance exceeds the correlation length. This approxima™
tion has recently met with successes in a determination
of the average binding energy and density of nuclear
Inatter. Those calcU1RtloQS may bc cxtcDded to
deterIDine other interesting quantities 1ike particle
cncI'glcs above thc Fcrml energy. We do Qot, intend to
exhaust present knowledge of internucleon interactions
or to start from a given meson-nucleon interaction. "
Rather we wish to perform a mode1 calculation with the
same silnple ccntra1 QoIllocal force, which was at thc
basis of the nuclear matter calculation mentioned above.

An outline of the theory can for instance be found in
the work of Martin, Schwinger, and PuP 's (referred to
as MSP) and no repetition of arguments is presented.

Section 2 contains a compilation of some formulas
basic for a calculation of thc self-energy of a particle.
It ls then dlscusscd how OI1c CRI1 arrive. Rt a dc6nltlon
of the optical potential.

Section 3 contains some partly known resu1ts on
analytical properties of the self-energy of a particle as
derived in the exact theory and which results are
apparently also valid. in the SPA.

It will appear that the IPA and the impulse approxi-
matloD shRrc R fol'DlR1 slnlllallty Rnd ln paI'tlculRI' R

common high-energy limit. An estimate of the energy
for which OB-energy reaction matrix elements appearing
in the IPA may be replaced by elements on the energy
she11 is possible and is described, in Sec. 4.

Section 5 contains the actual results of the computa-
tions of the I'cal Rnd lmaglnary paI'ts of tll self-cncrgyq
the spectral function and the optical potential itself.

In the last section we anally discuss the relation of
our approach to a Brueckncr-type calculation on one
hand. Rnd a typical nonperturbative approach recently
brought forward by Sltenko. "
2. THE 'OPTICAL POTENTIAL IN THE INDEPENDENT

PAIR APPROXIMATION

%e shall present in this section some relations
between Gxeen's function and related quantities. For

9 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
"R.D. PuB, Ann. Phys. (N.Y.) 13, 317 (1961).
» D. S. Falk and L. Wilets, Phys. Rev. 124, 188'I (1961)."J.C. Reynolds and R. D. PuR, Phys. Rev. 130, 1877 (1963).

F. E. 8)plkIuQ(I~ 3. A. LIppnlRIll1y 8D(I M, J. MMRVCslky
Nuel. Phys. 29, 582 (1962); J. Dahrowski, s6rd. 37, 647 (1962).

'4 A. G. SitenkO, NuCI. Phya. 39, 506 (I962).

vrhere B and E are the Hamiltonian and number
operator of the system enclosed in a volume Q. ir
= (AT) ' is a parameter related to the temperature and

p stands for the chemical potential of the system. Z
6nally ls thc grRDd canonical paltltloD function.

Examples of averages mentioned in Eq. (1) are
m-body Green's functions dc6ncd by

G (1 I;1'~ ~ I')=(—i)"(SO~Tg(1) . )(N),
&&4'( ')" 0'(1')) I&O& (2)

T ls R time ordering opclRtol' acting oQ thc 6cld opera-
tors P. Its coordinate 1=rrit, may in fact contain
internal variab1es like spin and isospin as well, but those
are usual1y not denoted exp1icitly.

Green's functions for special coordinate arrangements
contain optimum information about the system, 1ikc
momentum distribution pair correlation, etc. Unfor-
tunately those functions cannot be expressed explicitly,
but appear instead coupled to correlation functions of
di8erent order. For example, the 6rst equation in this
hierarchy reads in a summation convention valid. for
repeated indices (A=2m = 1:G=—Gt).

~

i +(4+—p ~G(1,1')—i(12
~
s

) 34)Gs(34,2+1')
r)

E ai,
=&(1,1') . (3)

2+=sets+, with 1+ a time infinitesimally larger than 1

The interactloll appearing ln Eq. (3) ls only for sake of
convenience written as (12~s ~1'2') but is chosen to be
time-independent and. at worst Donlocal in relative
space coordinates.

Translational invariance in time and space coor-
dinates (the latter holding for an infinite medium) are
cxp1oltcd UpoI1 lntroductloIl of R ID01Tlcntum-frequency

representation. Let us take for example 6', being the
solution of Eq. (3) for s=o retaining however the
chemical potential p of the system in interaction.

Its Pourlcr tlansform lcRds

Go(ks&) = inn ((o ks+p, +is)— . (4)

It vn11 be noted that the negative-frequency portion of

proofs we refer the reader to the abundant literature,
in particular to that part which deals with Green's
fuQctlons dc6ncd Rs thermal RvcI'Rgcs, ' Thc 1attel
sRtlsfy partlcUlRl simple boundary condltloIls which
enable a calculation of propcxties of the ground state at
tcDlpcratUlc zero lQ all adIDlttcdly 1Ddll cct, but
relatively simple, fashion.

Let
~
XO) be the ground. state of a zero temperature,

many-body system. Ground-state matrix elements of
operators are then deined as

(XO~X~XO)=—»m»m Z-r('. ,n)

&(Tr(exp) —ir(IJ—pX)]X), (1)
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thc usual FcynIIlan pI'opagRtor ls absent lf p, +0,
which is the case for a self-bound fermion system dis-
cussed here.

The formal solution to (3) can with the help of G' be
written as

[G(k~) 3 '= [G'(k~) j '-'U(k~) (5)

which equation defines 'U(kor), the self-energy of the
particle. Instead of this relation between 0 and '0, one
usually studies a similar one after introduction of 2,
the spectral function of G(kor), related to the latter by

G(ks) =
" A(ku&') do)'

8 nonrcal.
co 2&

(6)

and is as usual related to the discontinuity of G(kor)
across the real axis:

A (4&) = hm i[G(k, &0+is) G—(kor —, is)1. (8)

After substituting (5) into (8) one obtains

r(kyar)
A (ko)) =

[or—s(kor)$'+-', r'(ko))

s(kor) =k' —p+Re'U(kor),

r (kor) = —2 Imu (k, or+is) . (10)

For values of or, for which r =0, A (kor) may be written

A (ko)) =2rrp(k) 5{or—o)(k)},
with or(k) solution of

or = s(kor} =k' —p+Re'U (kor} (12)

A satis6es as a consequence of the commutation relation
for P, ft at equal times

Bco
A (ko))—= 1

2'

p(k)v(k)
A (ko)) = =2rrp(k)8{M-o)(k) }

[or—o) (k) js+-ys(k)
with

y(k) =p(k)r{k, or(k)}. (15)

For states satisfying (14) there is still an approximate
encl gy-momentum 1clRtlon

or (k) =k'- p+ V(k), (12a)

but the particle now has a lifetime

r=[-.v(k) j '.
In other words

(16)

vi(k) =Re'U {k,co(k)},
Vs(k) = sv(k) = —p(k) Im'U{k ~(k) }

as real and in1aginary parts of' the 6eld experienced by
the particle can be naturally de6ned as the optical
potential. If condition (14) turns out not to be fulfilled,
the energy dependence of 'U(kor) is too strong and the
concept potential loses its meaning.

In relation to this de6nition we should like to stress
that the exact 'U(ko)) can indeed unambiguously be
de6ned as an energy-dependent field. This is less
straightforward in any approximate theory. The
difFiculty arising is similar to the one met in the de6ni-
tion of effective 6elds for particles in the medium and is
rcfcrrcd to as the I'callangcIQcl1t cBect.

%e further remark that if the medium were 6nite an
average over many compound states would, for
instance, determine the width —',y (k) of the optical-model
state with energy or(k) )s For a.n infinite medium no
such average is necessary since the spectrum is con-
tinuous.

Having stressed the relation between self-energy and
optical potential we now proceed to a determination of
the former from Eqs. (3) and (5). Martin, Schwinger,
and Puff " show how one arrives at the following,
cguRtlon fol 62.

r) RCV(kor)
p(k)= 1—

co~ (k)-

Gs(12,1'2') =G(11')G(22')—G(12')G(21')

+Ais(12,34)(34 (s) 56)G (56,1'2')+C. (18)

One readily establishes from Eq. (2) for rs=1 that
p(k) [Eq. (13)]is just the momentum distribution of a
particle provided V =0 for all ~&0.

Iii case II11U(kor) =0, or=or(k) cstabllslics a dcfiilltc
energy momentum relation for a, then stable particle
and V(k) = U(kor(k)) is a true self-consistent potential
for that particle. If, however, Im'U&0, '0 still retains
the approximate meaning of a potential if it is only
weakly energy-dependent, or if Im'U is in a sense small
compared to Re'U. More precisely, if

The 6rst two terms represent the lowest order Hartree-
I'ock approximations to 62. The second term contains
implicit two-particle correlations, and is characterized
by the propagator

0

Aro(12, 34) = {Gs(13)G(24)+G(14)Gs(23)}~ (19)
2

The last term —in fact de6ned by 4~0—contains the
difference of intrinsic three-particle correlations and

p(k) (~rl~~)- (~)&&1, (14) "G.E. Brown, Rsv. Mod. Phys. 31, 893 (1959).
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correlations of lower order:

C=—-12iG'(14')(3'O'I 1I
I 34)l G2(234, 2'3+'1')

—G(22') Gs(34,3+'1') + G (21')G2 (34,3+'2')
—G (23')Gs (34,1'2')

—(same expression with 1 ~ 2}. (20)

The neglect of C amounts to a factorization of three-
particle correlations in a correlated pair (described by
G2) and a third one moving in some average field,
provided the pair is acted upon by a strong, short-range
interaction causing the correlation. "Pairs of particles
thus appear as independent entities in this approxima-
tion, which should be reasonable for a correlation length
of order or smaller than the average distance between
particles.

After neglecting C in (18) one proceeds to a solution
of G from (3) by introducing a T matrix through

(12
I

2I
I
34)G2(34, 1'2') —=(12 I

T
I
34)G(31')G(42') . (21)

The Fourier transform of T for the case needed (ti ——ts,
ts ——t4) is easily shown to satisfy the following integral
equation

dk"
(kliIlk")

(22r)'
&kl TK(~) Ik'&=&kls(1 —P.) Ik'&+

x1110(kl k2,ei)&k"
I TK(10)

I
k'), (22)

+ (ki" ~ ks") . (23)

The form (23) for A1II enables a determination of the
analytical properties of T, (22). Much like in the case
of the free-particle scattering matrix" one finds that T
is an analytical function in the complex co plane except
for a branchpoint at co= —p and possibly for poles e;,
the location of which is dependent on k, h', and p.
Those singularities correspond to scattering states and
bound states of the pair in the medium which in turn
is described by A.io. As a further property we mention
that T has its first Born term as high-energy limit

&k I TK(s) lk') -&k I s(1—P.) lk'& (24)

'~ The approximation C=O violates fundamental conservation
laws LG. Baym and L. P. Kadano6, Phys. Rev. 124, 287 (1961)g
which is, however, not an uncommon practice in many approx-
imate theories. For further remarks the reader is referred to
Ref. 12.

'7 See for instance M. Goldberger, Relations de Cispersion et
particNles elementaries, L&'cole d'ete, I.es IXoeches, 1960 (Dunod
Cie. , Paris).

with I', a complete exchange operator and k, K relative
and center-of-mass momenta. We have also introduced
the Fourier transform of the propagator A1II, Eq. (19)
which can be expressed in terms of the spectral function
A, (6), as

1 "dc0' A (ki"eI')
A iI)(k,"ks",eI) =-

2 0 22I aI Ce ks +ti+se

Returning to the solution for the self-energy one first
substitutes Eq. (21) into (3). The result is an equation
of the form (5), with the self-energy 'U expressed in
terms of the scattering matrix T: Le(x) =2(1+@/lxl) j
U (ki& Mi+2e)

=i lim
7l~o+

dk2 dG0 g

ps' 2

(22r)2 22r'

x&k I
TK(~1+~2'+se) Ik&G(k»2')

'8 The situation el (0 corresponds to a Copper state for the pair
in the medium and causes the ground state to be that of a super-
Ruid system, with all pairs with higher energies being condensed
in the Cooper state. PL. N. Cooper, Phys. Rev. 104, 1189 (1956).
See also, for instance, A. Katz, Nucl. Phys. 42, 394, 416 (1963)j.

dk2 dies
A (ksaI2)e( —Ies)

(22r)2 22r

x(kl TK(&1+~2+se) I
k). (25)

The last result has been obtained by substituting the
spectral representation (6) for G and performing the
integration over co2 k.eeping in mind the analytical
properties of T. The same also claim a real value for
'U(krone) for Ie &0, provided the lowest bound state of T
satisfies ei)0." In this case one may apply (11) and
infers from (25) for all Iei

dk2
U (ki, 1ei+2e) = ti(k2)

1,&1~ (22r)2

x(k
I
TK((ei+eI (ks)+ie} I k) . (26)

Since aI2 in (25) is limited to eI2&~0, a parallel upper
limit occurs for a finite k, in (26) and it is then natural
to call that limit the Fermi momentum of the system in
interaction. It satisfies

aI(kr) =kr2 —p,+ V(kf,0) =0. (27)

Equation (22), (26), (11),and (13) have in a certain
approximation been used to calculate for or(0 the
effective field acting on a particle in an occupied state
(k (kr), which calculation bears directly on a determina-
tion of the ground-state energy and density"" (See
also Sec. 5). For a determination of the optical potential
one also needs 'U(kaI) for Ie)0. Actually, frequencies
—p&or) 0 are of minor importance. Those correspond
according to the definition of the separation energy p, of a
saturating system to unoccupied bound states. For
true "scattering states, " ~&—p, and 'U calculated by
(26), (22), and (23) will possess both real and imaginary
parts reading [P~ principal value; Q=Q(k, &es, k2), the
argument of T in Eq. (26)j
Rem (ki cei)

dk, —
&kli &'&(Q) Ik,)

P(ks) E
(22r)' ' Q —e;

+Re(kl TK'(eii+ee(k2)+is lk) . (28)
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G(ks) —:—+— f 1)

(u'A (ku') +OI-
2s- s' (k i TK(s) it') = (kl TK(s')

I
k')
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+
q
—p aabove the ground sta e

d further by a compom letlng ses stem an ur
ction then rea s inThe spectral func

'
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'

finite
here the contour
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(ki TK(s) k'&=«I (1-~.) lk')+Z
i

1 " Im(kl TK'((o'+i&
I
k'

eas mptotice ri ht-hand side are the yTh 6rst termsonth rig
nd tI1c coQtI'lbutlons u illBorn term and

th region whereTh last term stem 8 flon1 Cc

oQc

lscon

fina y se of 28) and. (29) (IOI real)finally derives by Iise of (28 an

Re'U(kicoI

!

&&~(~ ~X I+&Zro) (———8 —(u) (32)
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po
' '

result the integral in q.E . (31)Upon using this 1'csu t
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2II)

1 " Im(kl TK'{(u'+a (k2)+is} I k)

(klp. &'I((l) lk)
p(k2)L(kin(i-P, ) lk)+P

( 3

=k' —„+(iVOI { „i, ,t]
(33)7

Th

h s. Rt."v. 121, 942 (196t),'9 J, t,uttinger, Phys. Rev.

e written j.n terrorse final result for U(k) may then be wr' '
s

p(k, )(kiI(1—8,) ik&3'

Im U(kI& co +$E.
(2s.)

en
'

(l Schrvinger inen b Martin anult 34) has been gIven y"The result

Ref. 9). For a I ereen/. Proof see e.generally e .
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Eqs. (35) and (38) are identical provided p and '0

are replaced by their approximate values in the inde-

pendent pair approximation. This somewhat surprising
result can be understood in part. The appearance of the
Born term in (38) is obvious, since any IPA is based on
an equation of the type (22) being different only in the
form of the propagator A."But such a Born or Hartree-
Fock limit for Gz, Eq. (18), holds apparently also for
the exact "U (k&o).

A dispersion relation for the energy-dependent
optical potential 'U, based on a formal solution of the
problem of coupled channels, has also been derived by
Feshbach. ' It is quite clear there that Born elastic
scattering dominates at high energy. The only di6erence
between (35) and Eq. (2.5) of Ref. 6 lies in the absence
of the exchange part in the Born term, due to neglect of
antisymmetrization between incident and target nu-

deons. The inclusion of the Pauli principle as worked
out in Ref. 7 should of course yield the correct form (38).

At this stage we recall that our results were intended
as an extrapolation of the MSP theory for bound
states to scattering states of low energy. In addition we

have obtained results, which are also correct in the
high-energy limit. It is therefore natural to determine
the region of validity of this high-energy limit as
compared to the result (26).

4. INDEPENDENT PAIR APPROXIMATION
AND IMPULSE APPROXIMATION

The IPA as obtained by the neglect of C, Eq. (20),
states that certain three-particle correlations can be
factorized in a pair correlation, while the third, spectator
particle is only inQuencing through its average field

or momentum distribution. Formulated in this way
one readily sees that the independent pair approxima-
tion is not too remote from the impulse approximation. '
The latter is essentially a high-energy approximation
in the additional assumption that the T matrix describ-

ing the scattering of the correlated pair is taken to be
on the energy shell. Both approximations under discus-

sion employ a T matrix, be it with diBerent propagators
A., with the same Born term as the high-energy limit.
It is therefore of interest to investigate at what energy
the impulse approximation starts to deviate from Eq.
(26). In this way one may get a feeling as to the validity
of that aspect of the impulse approximation where

free-scattering amplitudes are used instead of Eq. (26).
It is clear, however, that nothing can be said about
multiple-scattering corrections, which are lost in the
basic assumption C= 0 in Eq. (20).

Let us restore the original momenta in (22) and define

(kikz i
AT

i
kikz) =—(kikz i

T((vi+(o(k, )+ze) i kikz)
—(kikz

~

Tf(kiz+kz+ie)
~
k,kz) ) (W)

as the deviation in the T matrix if, instead of (22), the

2' D. Koltun, R. D. Pu6, A, S, Reiner, and I,. Wilets (to be
published),

A rough estimate of (40) is obtained by a calculation
in Born approximation (T~v) and retaining first-

order terms in the expansion of Aft —Ajo. %e further
assume Im'U«Re'U in the high-energy limit, which

establishes a relation between i0& and ki Lcf., Eq. (12)j
a)i ——lim (ki' —zi+ U (ki(ui) }=ki' —zz+ V(ki) . (41a)

For &o(kz), (kz&kr), we substitute the relation correct
in the MSP approximation

o)(k,)=kzz —zz+ V(kz) (41b)

and thus arrive at

(kikz )
&T)kikz)

=(V(ki)+ V(kz)}
dkg'dk2'

(2zr)'

)(k,kz)zl/k, 'kz') /'
X

V(ki)+ V(kz) "
I ~(q) I'

g2 —4k2 —ie

(k=-', (ki—kz)). For a Yukawa potential

(42)

one estimates
w (r) = —z 0(e

—"/nr), (43)

zr (V(k,)+V(k,)}zp'
(k,k, i

aT ik,k,)=-
n2(n2+4k2} 2

(3n'+4k'
X( —/. (44)

n' k)

The substitution (41a) assuming )
Im'0 ((()Re"U

) is

from (43) seen to be consistent provided k)n. Along

the same lines we estimate

(k,k, iaTik, k,) (1 iaTik)

(k,k,
i
T ik,k,) (kiTik)s. ,„

zr V(ki)+ V(kz) 3n'+4k'
p (45)

2 (k i
zI(1 —P,) i k) n'(n'+4k')'

Again k&n or k' 150 MeV seems a trustworthy
estimate of the validity of the impulse approximation

to Eq. (26),

free-scattering matrix Tf would have been used in the
expression for the self-energy (26). One readily finds

(kikz )
~T

~
kikz)

=(A, i@~»(ki'+kz'+ze)
~
kikz)

+(k,k, i T (ki'+kz'+ze) (Af o—)
y, T((oi+(o(k,)+ze) i k,kz). (40)
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5. NUMERICAL RESULTS FOR THE SELF-ENERGY,
SPECTRAL FUNCTION, AND OPTICAL POTENTIAL

In an actual computation of the self-energy one
has apparently to solve the following set of coupled
equations

(a) Assuming a spectral function one solves by means
of Eq. (23) for the T matrix (22).

(b) With the aid of this result, (26) yields the self-
energy U.

(c) The spectral function A is then recovered from
'U by Eqs. (9) and (10).

The procedure, which has to be repeated &ill self-
consistency is reached, is apparently' quite intricate.

It has therefore already in the energy calculation of
occupied states, ~&0, been suggested to replace 4~0
in (22) by A00, 10 "obtained by putting there

A —+ A'=22rb(10 —k'+p) (46)

with the result

1110 f100(klk2rM) = L00—kt —k2'+2p+20j —'. (47)

This approximation makes step (a) independent of A
and reduces the computation to one single determina-
tion of T and an independent treatment of the steps (b)
and (c).

In order to keep contact as close as possible to
previous developments and to profit from some results
obtained there, we use the same interaction which was
at the base of the calculations of PuB, Falk, and Wilets.
It is a Yamaguchi potential supplemented by a "hard-
shell" potential both acting in relative s states only, the
former being different in singlet and triplet spin states.

This potential reads

sinkr, sink'r,
(162r2)-'(k

~
0

)
k') = lim X,

&c~m

(48)
(k'+P') (k"+P)'

The following set of parameters gives a fit for scattering
lengths, effective ranges, deuteron binding energy e&

and singlet. phase shift at 310 MeV:

rf ——0.4554 F,
peiagtet= 2 004 F 'ptriptet= 2 453 F
Kinglet =3.64037 F 4riyiet =8.6949 F

The solution for the T matrix equation in singlet or
triplet states can then be written as

1 1
(32~') '(kI T(z) Ik')= A(z)lt

k2+P2 kr2+P2
—&(z) (~)"'

sin kr, 1.

k' k"+p'

sinkr, sink'r,

sinkr, 1

k k"+p'

The functions 3, 8', and C are de6ned as

A (z)

+{1+~(z))— [&'(z)—A (z) {1+~(z)}j ' (50)
k k'

C(z)

z= 2Q

z= 2Q +20

(z 2arc 1)—
CL

~'i
(z2iarc 1)

2~9'f2
(Z are Z

—Prc)—
~2 P2

(tciarc —Z
—iirc)

~2+P2

p(+p)' .

P(~+2P)'

(51)

A calculation of binding energy and density of nuclear
matter in its ground state requires T for z&0 only.
Since T has no pole for z&0, 'U is purely real and
consequently

A (k00) =22rp(k)b{c0—t0(k)), 00&0. (52)

The momentum distribution p(k) and energies 00(k) in
(52) have been calculated as" (k/kf(1)

p(k) =0.87746+0.01422k/kf —0.0264(k/kf)', (53)

and

ce(k) = 88 706 47 285k—/kf+. 18—3 283.(k/kf)'.
—47.362(k/kf)2Lin MeVj. (54)

The same functions have been used in the calculation
of 'U(k00) Eq. (26) for 00)0 and. the results for various
values of k/kf are given in Figs. 1 and 2. Real and
imaginary parts of 'U recall typical dispersive and
absorptive behavior as expected from the familiar
index of refraction of atomic or molecular systems. As an
example of correspondence one notices the approximate
coincidence of the point of inQexion in Re'U and the
location of the maximum in Im'U (see Fig. 3). There
are, however, also notable differences between the
conventional behavior of an index of refraction for
scattering of light and the self-energy of a particle.
One notices that the point of coincidence stressed above
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program, sketched in the preceding section. The spectral
function is moreover the cornerstone for a calculation
of various other properties of nuclear matter derivable
from the density propagator. "As a last point we may
mention that the outcome of the sum rule (7) provides a
check on actual calculations.

We have therefore plotted in Figs. 4 a few spectral
functions for a range of k/kf values. To the extent that
these functions show a pronounced resonance behavior
we expect the lifetime of a particle to be long and the
definition of a weakly energy-dependent optical poten-
tial to be meaningful. One notices that the isolated peaks
in A for k/kf(~1. 27, merge with the background but
remain fairly pronounced throughout.

Table I contains results pertaining to quantities
related to the spectral function and which we set out
io calculate. We have entered in column 2 for a range
of k/kt values the function ts(k) Eq. (13) s' Columns 3
and 4 contain the position of the maximum in the
resonance curve and its width. The fifth column
contains the value of the integrated spectral function
and has to be compared with the exact value 1. The
value of the parameter p(k)(BI'/Dos)„=„ta& determining
the validity of the narrow resonance approximation to
A [cf., (14)] is entered in column 6. The last two

columns finally contain V& and V2, the values of the
real and imaginary parts of the optical potential. Those
were also separately plotted in Figs. 5 and 6 both as
function of the momentum in the medium k/kt and as
function of the energy of the particle. The conversion of
those units is easily read off a plot of os (k) +tt as function
of k (Fig. 7). Table I'I contains for k &kt some values of

p(k), now the momentum distribution, which is also

- l 00

X -50 - 75&

)
E

- 50

-75

tsar {MeV )

FxG. 3. Real and imaginary part of the self-energy for the
selected value of k/kf=1. 4 as function of c«. One notices the
approximate coincidence of, respectively, the point of inaction
and maximum in the two curves.

the contribution to the integrated spectral function as
far as ~(0 is concerned. The third column then
demonstrates the importance of the very weak. but
extend. ed background A (kso) for o&)0.

Regarding these numerical results various remarks
have to be made. We first see that, although for k (kf, 3
has the behavior (52) for os&0, AHO for suKciently
large ~ and provides a weak background. One notices
the close agreement with the exact value 1 of the
integrated spectral function. This result, however, is

t.00-

0.75—

FIG. 4. The spectral function A (%co)
in MeV ' as function of co for various
values of k/kr. The same numerical
scale is used to plot the strength of
the 8 functions to which A reduces for
the plotted values k/kr = 1.1 and
1.25. No background is shown for
them.

sts

X
—0.50-
3

k/k]*LI l.25 I.5 l.4 l.5

0.25-

0
IOO ISO

e (Mev)

~ A. S. Reiner, Phys. Rev. 129, 889 (1963); and (to be published).
"We wish at this point to distinguish between the left-hand side of Eq. (13) for k &k~. If the upper sign hoMs we shall use the

notation p(h). If k(kt, p(k) will be used, which sss the Jtf SI' theory equals the momentum distribution.
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TABLE I. For various values of the momentum are given: columns 2, 3, and 4 strength, position of maximum, and full width of
resonance in the spectral function; column 5 the integrated spectral function; column 6 the parameter determining the validity of the
narrow-resonance approximation for A; columns 7 and 8 real and imaginary parts of the optical potential as function of the nucleon
moment inside nuclear matter.

ca(h)
(MeV)

v(~)
(MeV)

(»l
~(&&)&~/2~ rl

&&~j.(~)
V&(k)
(MeV)

Vg(h)
(MeV)

1.1
1.25
1.3
1.4
1.5
1.75
2.0
2.5

0.87z
0.847

0.88

0.83'
0.82s
0.83'
0.88'
0.90

19.98
49.53
59.8~

80.18
101.99
161.3
225.0
365

0
0
0.55
3.33
6.62

15.19
24.4
19

0.98
0.99
1.0~

0.99
0.92
0.89
0.85
0.98

0
0
0.22
0.11
0.20
0.41
0.68
0.7

—70.0
—58.6
—54.9
—48.4
-41.5
—23.9
—8.6

+16

0
0
0.28
1.67
3.31
7.60

12.2
9.5

& Particular computational difhculties bar accurate calculation of these quantities.

not a measure for the correctness of the approximations
used: The example of the ideal I"ermi gas provides a
case with (7) rigorously ful61led for all values of k.

One may argue that (7) only expresses the anticom-
mutation relation for field operators at equal times.
As such it should be satisfied by any approximation
preserving complete symmetry between the particles.
It has been shown in fact by Pu6,"and by Falk and
Wilets" that the A« theory violates to a slight extent

the Pauli principle, but the effect as reflected on the
sum rule is apparently very small.

The situati. on is somewhat diferent for k&ky. Since
for any such momentum A (k&o) =0, for ~(0 the entire
contribution to the sum rule comes from positive fre-
quencies only. But

dM
A (ka)—= 1—p(k)

0 2'

+75
I 5.0

+60
l2.5-

+45
10.0-

+15
5.0—

0— 2.5—

1.5 2.0 o 25 k/kf
I

t'
l-IS

I I I I I

0 50 l00 l50 200 300 cu (k)+p, (MeV)

FIG. 5. Real part of the optical potential as function of momen-
tum and energy. Experimental points are taken from Ref. 24.
Uncertainties in experimental points are not shown.

0 50 IOO l50 200 500 cu (k)+p, (Mev)

FIG. 6. Imaginary part of the optical potential as function of
momentum and energy. Experimental points are taken from
Ref. 24. Uncertainties in experimental points (up to 5 MeV in
magnitude) are not indicated.
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200

FIG. 7. Plot of particle
energies as function of
momentum.

a) IOO

3

—IOO
0.50 0.75 E,oo

k/kf

I.25 I.50 1.75

) k)' /'k 4

~(k)+&~ 105 5+85.01 I
2 26' in MeV,

Ekfi Ek,

k/kf) 1. (56)

In other words an effective mass approximation with

m*/m =0.60 (57)

is valid up to momenta at least as large as k 2.5kf.
Pals and Wilets" find a slightly smaller value at k= kf.
An effective mass more around 0.5m Gts energies of
occupied states although fourth-order terms are more
important for k(ky.

One concludes that an effective mass approximation
seems to be valid for essentially all relevant particle
and hole states, which appear separated by a gap. This
result together with a treatment "on the average'"' of
the Pauli principle for particles in intermediate states
from the premises of nuclear matter calculations by
Bethe, Brandow, and Petschek'4 based on the so-called
reference spectrum, which is assumed to possess the

is the probability to 6nd the momentum state k
unoccupied. It is typical for the MSP approximation
that there exists a sharp Fermi surface. All particle
states with k&kf are thus unoccupied and the approxi-
mate theory is bound to yield in a self-consistent way
the result p(k) =0 corresponding to no occupation of
states k) kf. The small derivations from 1 as displayed
in column 5 of Table I do correspond to the estimated
accuracy of the calculations.

We next wish to comment on the particle energies

~(k)+y of column 4 and shown in Fig. 7. The values
can be well represented by the function

TABLE II. For values k(ky, the momentum distribution p(k},
being the integrated spectral function for negative frequencies,
is compared with the total integral. The difference shows the
importance of the extended weak background for co&0.

k/ky p(h) = A (%co)dao/2+ A (keg) de/2'

0.2
0.4
0.6
0.8
1.0

0.880
0.880
0.877
0.872
0.864

0.98
0.98
0.98
0.99
l.00

properties sketched above. This point is not the only
correspondence between the two approaches, but the
discussion will not be pursued here Lsee however
Ref. (21)j.

We now discuss the comparison between the predicted
and the experimental values for the optical potential.
As to the latter, those are of course always parameter
fits for an assumed functional dependence. " These
6ts contain broad limits in particular for the imaginary
part of the potential.

As far as general trends are concerned the general
predicted behavior for t/'~ is in fair agreement with
experimental results, although the former seems to be
systematically larger up to 200 MeV. It is of interest
to remark that the hard core is predicted to exert an
ever more pronounced effect for high energies and to
cause a change in sign for t/'~ at energies 250 MeV.

Concerning the imaginary part it seems that at
best the trend of the uncertain experimental points
seems to be reproduced. The theory describes the sharp
increase and leveling off beyond 150 MeV but the
quantitive agreement is not satisfactory. We may,

"H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys. Rev. "See, for instance, H. Feshbach, Ann. Rev. Nucl. Sci. 8, 49
129, 225 (1963). (1958).
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however, bring forward the following argument, showing
that there is room for a correction in particular for
low-scattering energies.

It has already been mentioned before that the Zoo
approximation causes Im'U=O for all co& —2p+6g

25.5 MeV. In the original approximation one expres-
ses the optical potential in terms of a slightly different
T matrix (22), which has a branch point at —p. Even
if T(A~o) would show no isolated poles, TWO from zero
scattering energy on. A similar increase in y as shown in
Fig. 6 but starting about 27 MeV lower will definitely
improve the agreement. Discrepancies, however, will
persist since nuclear matter calculations cannot account
for absorption at the surface of an actual nucleus.

Further discussion is deferred to the next section.

6. DISCUSSION AND COMPARISON

A comparison between experimental data from real
nuclei and quantities calculated for nuclear matter is
far from straightforward. On the experimental side
lack of sufBciently accurate data is not the only barring
factor. It has become clear in recent years that the
variation of optical potential parameters with mass
number is less smooth than originally assumed. "It is
therefore not well known to which values those param-
eters converge in the limiting case of nuclear matter,

We mentioned already the impossibility to calculate
surface absorption in matter calculations. It seems
unnecessary to stress that there are more points of
difference in the behavior of an actual nucleus and
nuclear matter.

No less uncertainty stems from inherent inconsis-
tencies introduced by any approximation. In principle,
for instance, the same binding energy E/1V or density p,
should result in a given approximation when the equi-
librium condition is zero pressure, @=8(E/Ã)//Bp or
(E/X)//p. This condition, however, is violated in any
approximation and a different equilibrium density p
results in each case. Together with p one gets different
expressions for particle energies &o (k) and the momentum
distribution p(k), the numerical values of which are
used in the calculations above.

The remarks above show that one should not push a
comparison between theory and experiment too far
and be satisfied with tolerable agreement.

Concerning the possibility to employ results of
nuclear matter, calculations for various densities to
simulate the situation in an actual nucleus, we remark
that the MSP theory is not a suitable tool. There it is
assumed that the system binds itself, which require-
ment will not be fulfilled for low densities.

We now discuss the comparison with other theories
and deliberately limit ourselves to two approaches only.
First those which have as central element a scattering

~6 See, for instance, F. G. Percy, Phys. Rev. 131, 745 (1963).

matrix linearly related to the effective field acting on a
nucleon and further an example of an essentially non-
perturbative theory.

A representative of the first class of approaches is of
course the Brueckner theory or any variant thereof.
An exposition can for instance be found in the paper by
Shaw, ' who incidently does use a folding procedure
sketched above to determine the optical potential as
function of the density as observed in an actual nucleus.

The main point of difference with the Green's
functions treatment seems to be the very quantity
related to the T matrix. In a Brueckner-type theory
this is directly the field experienced by a particle with
given momentum. The energy momentum relation is
presupposed and tested as to its self-consistency. Eden
has shown" that for the ground-state problem the self-
consistenty requirement is tantamount to a variational
calculation of the ground-state energy. Such a require-
ment is not necessarily rigorous for a scattering state.

The quantity directly determined in the MSP theory
is not the optical potential, but the energy-dependent
self-energy. It is then the spectral function which
determines both the energy-momentum relation and
the condition for which such a relation has meaning.

A recent calculation of the optical potential not based
on perturbation theory is due to Sitenko. "The starting
point of his approach is Glauber's theory of high-energy
scattering, " which relates in lowest order the optical
potential to the T matrix and the form factor e(k),
the Fourier transform of the particle density. One
notices the difference with the Brueckner or MSP
theories where the momentum distribution p(k) appears
instead of the form factor.

Much like in the case of classical Rayleigh scattering,
Sitenko equates the imaginary part of the optical
potential to the cross section for scattering oR density
fluctuations. It requires, then, special approximations
and averaging procedures to separate the scattering
amplitude for nucleon-nucleon scattering from a
correlation property of the nuclear ground-state, in
case the autocorrelation of density fluctuations.

We do not wish to comment on the various approxim-
ations made which, incidently, can be inferred from a
straightforward calculation of the scattering amplitude
corresponding to an interaction

P e(ro —r,) = e""e(q)w(q)
(2n)'

We wish to stress the point that Im'U appears propor-
tional to what is essentially G2(12,1+2+). The exact

"R. J. Eden, Nuclear Reactions, edited by P. M. Endt and
M. Demeur, (North-Holland Publishing Company, Amsterdam,
1959), p. 1."R. Glauber, Lectures in Theoretical Physics (Interscience
Publishers, Inc. , New York, 1959), p. 406.
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self-energy can in fact be written as a functional of G&,

but not in the coordinate arrangement which is equiva-
lent to the density autocorrelation function G, (12,1+2+).
It is typical for a Green's functions approach that the
quantities it sets out to calculate like the momentum
distribution or the pair correlation functioned related
to G~(12,1+2+) have classical analogs. However, the
calculation of those functions leads to the appearance
of Green's functions with arbitrary coordinate arrange-
ments having no classical counterpart. Sitenko's final

answer has an intuitive appeal, as its classical analogous
already shows, but it is hard to test its reliability in a
systematic way. It seems unlikely that his approach

is a first approximation in an attempt to incorporate
successive correlations.
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