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A theory of weak interactions is formulated in terms of unsubtracted dispersion relations and is applied to
the calculation of the ~-p, decay amplitude. First, derivation of the Goldberger-Treiman relation is re-
examined and the relationship between two different approaches, one by Goldberger and Treiman and the
other by Gell-Mann and others, is studied based on Ida's formulation of this problem. Then, it is shown that
a consistent use of unsubtracted dispersion relations for weak interactions leads us to an eigenvalue restric-
tion to be imposed on the choice of the parameters in strong interactions.

L INTRODUCTION

ECENTLY, a dynamical approach to weak
interactions was proposed by McCliment and

Nishijima' and was applied to derivation of the selection
rule

~
IhI j

=-,' in nonleptonic decays of strange particles.
In the present paper the Goldberger-Treiman relation
in m —p, decay is derived along the line of approach
employed in Ref. 1. First we shall recapitulate the basic
ideas underlying this approach and then point out some
puzzling points in the derivation of the Goldberger-
Treiman relation.

In field theory, a distinction is usually made between
elementary and composite particles although rigorous
definitions of them are not yet known, and a similar
distinction is made between fundamental and induced
interactions. In Lagrangian theory both elementary
fields and fundamental interactions are dered as those
objects occurring in the original Lagrangian, and
those others not occurring in it are called composite
fields and induced interactions, respectively.

In dispersion theory, fundamental and induced
interactions are characterized by the presence or the
absence of subtractions in the dispersion relations for
the corresponding vertex functions, and a composite
particle is likewise characterized by all the vertices
involving it—except for the universal electromagnetic
interactions —being induced ones.

In quantum electrodyanmics, for instance, the Dirac-
type interactions are considered to be fundamental,
whereas the Pauli-type interactions are treated as
induced ones, so that once-subtracted dispersion rela-
tions are used for the former or the charge form factors
and unsubtracted dispersion relations are assumed for
the latter or the magnetic form factors. These conditions
represent the consequences of the so-called principle
of minimal electromagnetic interactions.

In the next step these classi6cations of particles and of
interactions are combined with the requirement of re-
normalizability, i.e., it is postulated that the Lagrangian
describing strong interactions is renormalizable in the
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conventional sense. If we take this for granted, the
deuteron is not an elementary particle since the
interactions of a particle with unit spin are not renormal-
izable. This also leads to an interesting conclusion that
all the weak interactions are induced ones since, as far
as we know, the properties of weak interactions cannot
be described in terms of renormalizable fundamental
interactions. From the outset of classifications of
particles and of interactions some similarities are
expected to exist between composite particles and
induced interactions, and this anticipation is just the
motivation of the present work. In what follows we shall
list the characteristic features of the present dynamical
approach.

(1) The deuteron has unit spin, but it can be accorn-
modated in the renormalizable theory of strong interac-
tions provided that its interactions with other 6elds are
induced ones, since only fundamental unrenormalizable
interactions are supposed to give rise to unmanageable
divergences. The same remark applies to weak interac-
tions, and even when they could not be represented by
fundamental renormalizable interactions they would
not give us divergence difhculties provided all weak
interactions are induced ones.

(2) Since the deuteron is a bound state it can exist
only when certain eigenvalue restrictions are satisfied,
this must also be the case for weak interactions. The
Lagrangian representing strong interactions possesses
various symmetry properties, e.g., space-reRection
invariance, charge-conjugation invariance, and con-
servation of strangeness, and there are no terms in the
original Lagrangian that correspond to induced weak
interactions and violate those symmetries. Under
normal conditions weak interactions would not be
induced and the only possibility for induced weak
interactions would be a self-consistent bootstrap
mechanism. The self-consistency conditions are expres-
sed in the form of eigenvalue equations to determine
fundamental parameters in strong interactions.

(3) The deuteron exists only in the eSt+'Dt state
but not in other states since the eigenvalue restriction
is satisfied only in this state. A similar situation is
expected to persist for weak interactions. They can be
induced only in those states in which eigenvalue restric-
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tions are satisGed and this property may be expressed
in the form of selection rules in weak interactions.

In Ref. j. these points have been investigated in
detail for nonlcptonic decays of hyperons. It was
concluded that the well-known selection rule )AI

~

=-',

is a consequence of charge independence of strong
interactions, and it was also shown that the interactions
obeying this selection rule can be induced in a self-

consistent manner only when fundamental parameters
in strong interactions are properly chosen, i.e.,

Gxs '/4n =7, Gsy,.'/4s =1.
The results above illustrate the essence of the present
approach.

Now our subject will be switched to leptonie decays
of nonstrangle particles. The simplest process of this
kind is vr —p decay, and, in fact, investigation of this
process done by Goldberger and Treiman" was the
Grst step toward understanding of weak interactions in
terms of dispersion relations. They derived a relation,
called after their names, connecting the m —p, decay
constant with the Fermi coupling constant. The excel-
lent agreement of this formula with experiment stim-
ulated many other investigations regarding its deriva-
tion. In their original derivation Goldber ger and
Treiman assumed an unsubtracted dispersion relation
for the decay amplitude of the charged pion, whereas
Gell-Mann and others'' assumed an unsubtractcd
dispersion relation for the pseudoscalar amplitude in
nuclear capture of the p meson and obtained the
same result. These two assumptions are not necessarily
cqu1valcllt howcvcl and onc of thc main objects of
this paper is to clarify thc reason these two inequiva-
lent assumptions lead to the same goal.

In Sec. II dispersion relations obeyed by weak
pscudoscalar amplitudes are written down, and in
Sec. III the dispersion relation for the x—p, decay
amplitude is given and the Goldberger-Treiman relation
is derived in the multichannel case. It has already been
pointed out by Barrett and Barton' and by Ida~ that
the solution of this problem obtained by Goldberger
and Treiman in the nucleon-antinucleon pair approxi-
mation does not satisfy the originally assumed unsub-
tracted dispersion relation when the wave-function
renormalization constant of the pion Geld is divergent.
In order to overcome this difliculty, this problem is
formulated in the multichannel case in Scc. IV, and an
approximate solution is sought in Sec. V. Then, in
Sec. VI the approximate solution is inserted into Ida's
formula and an eigenvalue restriction is obtained as

~ M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(1958).

'M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354
(1958).

4 M. Gell-Mann, Phys. Rev. 125, 1067 (1962). See also other
papers quoted there.

I' Y. Nambu„Phys. Rev. Letters 4, 380 (1960).' B.Barrett and G. Barton, Nuovo pimento 29, '103 (1963).' M. Id', Phys. Rev. 1', 40& (1963).

we originally expected. It is worthwhile to notice,
however, that a consistent use of unsubtracted disper-
sion relations does not necessarily give eigenvalue
restrictions, but the possibility of obtaining eigenvalue
restrictions depends critically on the type of coupling.
A discussion of this point is made in See. VII.

II. DISPERSIDN RELATIONS FOR
PSEUDOSCALAR AMPI ITUDES

The interaction Hamiltonian density for P decay or
p capture is usually given by

II= (C&,vs —&~kyvtvs4 )@vs(1+vs)A
+(C+ vsgy —&A"vive'y)g. vs(1+vs)A, (2 1)

where Pi stands for the lepton field. In this paper only
the axial-vector part will be investigated, and that part
of the Hamiltonian density will be denoted by

Hg = As&—„ivy(1+vs)Pi As—'giivs(1+vs)P„(2. .2)

If A~ should be expressed in terms of Geld operators, we
should write down an expression like (2.1), but it is not
necessary and might eventually be impossible to do so.
Instead of doing so we shall determine the matrix
elements of Az from other general requirements: (1)
As(x) is a local axial-vector 6eld, and, (2) all the matrix
elements of Aq(0) between the vacuum and other
states regarded as functions of the total baryccntrie
energy squared s satisfy unsubtracted dispersion
relations.

Rigorously speaking the second condition is not valid
for many-particle states, but practically it is valid
since only two-particle states are considered in this
paper. This incompleteness is a reQection of the fact
that dispersion theory as it stands is not yet a closed
theory. For a rigorous formulation of the second
condition, reference should be made to parametric
dispersion relations for Green's functions, but for an
approximate treatment of the problem ordinary disper-
sion relations are more practical.

When the two conditions above are satisfied, (2.2)
represents an CGcetive Hamiltonian for the induced
interaction rather than the actual Hamiltonian for a
fundamental interaction.

The normal decay rate of the charged pion is deter-
mined by the matrix element

(2.3)

where q is the four-momentum of the m meson. The
decay rate for the process

(2.4)
ls given by

(2 5)
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T p,. =-u(e)iGv2y»(I))
(2qo)"'

(2.6)

Ida7 suggested the use of BJA~ as the fundamental where use has been made of the relations
object in the present problem and we shall follow his
suggestion by defining 1

Its matrix element for pion decay is given by

(~-lc(0) Io&= q F= —) F, (2.7)
(2qo)"' (2qo)"'

where p denotes the pion rest mass hereafter.
Next, a nucleon form factor associated with this

pseudoscalar Geld is defined by

(~le(0) Io&= (—) ')F.
(2qo)"'

Thus, the contribution of the one-pion intermediate
state to the absorptive part of f p(s) is given by

Imf„„-(s)=vnf2GFp'5(s p') . — (2.14)

Therefore, the dispersion relation for f„p(s) is given by

(uf-, (-) IC'(0) lo&=u(N)6»(f)f„„-(s), (2.s)
V2GFp' 1 " Imf„p(s')

f (s) = -+- ds'
p, —s x (S„i~ $ —s—ze

(2.15)

V2GFs s " Imf„„-(s')
f„p(s)=2Mg~+ +— ds' . (2.16)

)( —S 7I (((&&
~ S (S s—i—e)leap, (-)&=a'(u)-' '6)) "'Io&.

where s= —(t)+p)' is the total barycentric energy
squared of the t)p system and u(N) and e(I)) are the In order to take account of the boundary condition

Dirac spinors for the neutron and the antiproton in (2.9), the above dispersion relation will be written in

the final. state. In fixing the phase of the state
I ep(—))we the form of a once-subtracted dispersion relation.

use the convention

This form factor is normalized at s =0 by The above dispersion relation for the ep channel can
be generalized to an arbitrary channel o.

f „-(0)=2Mgg, (2.9)
G Fs s " Imf (s')

f-(s) =f.(o)+ +- d" . , (21'I)
p, —s 5' (3p)~ s (s s z6)

where M denotes the nucleon rest mass, and g~ is the
renormalized axial-vector coupling constant in. P decay
and p capture, and is related to Cz in (2.1) by

gA = CA. ~

where f,(s) denotes the form factor of C in the channel

(210)
o'i eg~

(n, (—)IC(0)lo)=c f (s), T, =c G, -

The absorptive part of the form factor obeys the
unitarity condition

Abs(n, (—) I
C (0) I 0)

(2s)4
r. T-p'~4(P- Pp)(P, (-)—IC (o) I o&, (2 11)

2

where T is related to the S matrix by

where c is an invariant in the channel n, and 0 is the
coupling constant between the x meson and the
channel a, e.g.,

c„p=u(e)iy»(p), G„p=V2G.

The dispersion relation (2.16) is reminiscent of
that for p ((, i.e., the form factor I)„„-(s) defined by

(p, (-) IP(plo&=u(N)i»&(u)I „„-(s) (2.1s)

S p=5 p i(2w)'f')'(P Pp)—T p. —(2.12) satisfies a dispersion relation

Since C is a pseudoscalar, the least massive intermediate
state in (2.11) is the one-pion. state. Choosing n=mp,
and P=x, the contribution of the one-pion inter-
mediate state to the absorptive part of (o;, (-) IC (0) I 0)
is evaluated:

Abs(a, (—) I
I (0) I 0)

(2s)4 d'q 1
u(n)iGv2»v(I))

2 (2s)~ 2qp

%2Gs s " Imk„p(s')
h„~(s) =— +— ds' . (2.19)

)) —s s' (8&)' s (s —s—iE)

Iml) (s')Gs s
h (s) = — +— ds' . (2.20)

)) s w (ap)~ s (s s—lc)

Let us consider the combination

Sy generalizing this dispersion relation to an arbitrary
channel 0, we may write

X ( p(')F54(e+p q)—, (2.13)— L (s) =f (s)+Fh (s), (2.21)
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then the new functions L (s) satisfy dispersion relations
of the form

s " ImL (s')
L (s) =f (0)+— ds' . (2.22)

&4&&' s (s —s—$6)

It is worthwhile to mention that the pole term corre-
sponding to the one-pion intermediate state is absent
in the above dispersion relation. It is also the case for
the form factor associated with the pion current

j =(0—p')&p. The pion vertex functions E (s) are
defined by

s pE.(s) =G + ds'
ImE (s')

(s' —p') (s'—s—ie)

for n=BB, 3s. , EE~, (2.29)

summation. Therefore, they satisfy unitarity conditions
of the same form.

From postulate I we know that subtractions are
needed for E for n=BB (baryon-antibaryon pair),
3x, and EKm. Thus the dispersion relations for E are
given by

(n, (—) l j,(0) l0&=c,E (s).

Then it is clear that E (s) is related to h (s) by

(2.23) 1 ImE (s')
E (s) =— ds', for all other channels. (2.30)

s —s—16

E-()=L( —')/ )fs-() Therefore, we shall assume that the form factor L (s)

Th f f t L ( ) th t 1 t f th requires the same number of subtractions as does E (s)

operator
for the same channel 0..

C+FCl (p=By(A)+F8)y),

and can be expressed by

(2.25) s ImL (s')
L (s)=f (0)+— ds'

s s —s—z6

L-(s) = j-(s)+FLs/(s I') jE-—(s) (2 26)
and

for n=BB, 34r, EEL, (2.31)

ImL (s')ds', for all other channels. (2.32)
s —s—ze

These dispersion relations form the basis of a dynamical
calculation of form factors to be studied in later sections.

Subtractions

Owing to the absence of the pion-pole term in dispersion
relations, it is simpler to study L (s) than f (s), so that L~( )=
we shall regard the form factors L (s) as more basic
than the original f (s).

In determining the form factors L (s) it is essentially
important to 6x the number of subtractions needed in
each dispersion relation. For this purpose we shall
utilize the similarity between the form factors I. and
E and the following postulate:

I'ostllate I.Form factors corresponding to renormal-
izable vertices satisfy once-subtracted dispersion rela-
tions, and all others satisfy unsubtracted dispersion
relations.

The argument leading to this postulate has been given
in Ref. 1 so that we shall not repeat it, but we shall
mention that the subtractions in dispersion relations
correspond exactly to those needed in the vertex
renormalization. Postulate I can immediately be applied
to form factors E and then to L by making use of the
similarity between them.

First, the unitarity conditions for E and I. will be
written down to visualize their similarity.

III. DISPERSION RELATION FOR THE
DECAY AMPLITUDE

Combination of the unitary condition (2.28) and
dispersion relations (2.31) and (2.32) enables us to
determine, if not uniquely, the matrix elements of C

when the subtraction constants f (0) and the decay
constant Ii are given. The decay constant F is dered
by (2.7), i.e.,

IC'(0) lo&=(olc'(0) l ')= —V/(2qo)'"jF (2 7)

This formula can be extended to the off-shell pion "x"
of mass (s)'~' as given by

&" -", (-) lc(0) lo&= —ls/(2q)" lF(s). (3.1)

A rigorous definition of F(s) can be given, with the help
of the LSZ reduction formula, ' by

sF(s) =i d4z e "'(cl.—p')(ol T[c(0)yt(z)llo&, (3.2)

(24r)4
c ImE' (s)= — P' T et54(P Pe)ceEe(s), (2.27—)

2 p

(24r)4
c ImL (s) = — P' T~et54(P Pe)ceLe(s), (2.28)—

2 p

where the primes on the summation symbols mean
omission of the one-pion intermediate state in the

where s= —q'.
The unitarity condition (2.11) as applied to n= "w—"

gives
(24r)4

s ImF(s) = P' E *(s)f (s)c *c e4(q P') . (3.3)—
2

'H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 1, 205 (1955).
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Let us introduce a density function for the channel n by

p. (s) = (2s)' Q' c.*c„b'(q P.-); (3.4)
in'

the multichannel case erst derived by Ida. ~ The denom-
inator is equal to the wave-function renormalization
constant of the pion Geld, i.e.,

then Eq. (3.3) may be written in a simpler form

s ImF (s) = s. g' K *(s)f (s)p (s) . (3.5)

& —'= 1+ dso (s), (3.14)

This function F(s) is related to the constant F by

s—p,

F(s)=F+
ImF(s')

4$
3„) (s'- p') (s'-s-io)

(3 6)

independently of whether or not F(s) requires a
subtraction.

In what follows F(s) is assumed to satisfy an un-

subtracted dispersion relation.

ImF(s')
F(s)=— ds'

(31)L)
& S S Z6

(3 7)

where o(s) is the Lehmann weight function for the
pion propagator. A similar function y(s) will be
introduced by

( —
I ')'7( )=2' &-*( )L-( )P-( ) . (3.9)

Then F can be expressed in terms of other parameters
as done by Goldberger and Treiman. 2 Here we shall

closely follow Ida's derivation' which is a generalization
of that of Goldberger and Treiman. For this purpose we

recall the formula

(s—p')'a(s) =2' &-*(s)&-(s)p-(s) (3 g)

and it is considered to be divergent in most cases. When
it is divergent, however, the relation (3.13) is rneaning-
less and an alternative form of the solution of (3.12) is
given by

$—p,
F= ds Ly(s) —Fo (s)]

p
2

1+ ds—a.(s) . (3.15)

This formula was first derived by Ida' based on the
1V/D method, but in this paper it has been derived
without reference to that method in order to clarify the
subtraction properties of the dispersion relations. From
now on throughout this paper we shall assume the
divergence of Z ' so that we shall not use Eq. (3.13)
but only the alternative form (3.15) will be used. The
latter will be referred to as Ida's formula.

Next the properties of Ida's formula will be studied.
First, the denominator of (3.15) is convergent provided
the Lehmann representation without subtraction is
valid. Therefore, the numerator must converge, too,
if the formula (3.15) should be meaningful. At this
point one can immediately recognize that the two terms
in the numerator lead to divergent results if integrated
separately, since the second term gives rise to the same
divergence as that in Z —'. This implies that the two
terms in the integrand cancel one another for large
values of s, i.e.,

ol

s
o (s), (3.10)

s—p2
s Imp(s) =s.(s—p')' 7(s) F—

Then it is possible, with the help of the relation (2.26),
to express Imp(s) in terms of these functions, i.e.,

or

v(s) —Fo(s)
lim

o (s)

y(s)
F=lim

swiss a(S)

=0
7 (3.16)

(3.17)

1 ImF(s) s—p'
y(s) —Fo (s) .

s—p
(3.11)

Solving this equation for Ii, we find

$—yF= ds ~(s) 1+ dso (s) (3.13)

This is the generalized Goldberger-Treiman relation for

The unsubtracted dispersion relation (3.7) enables us
to write down the following relation:

s ~2
P=P(p') = ds y(s) —P dsa (s) . (3.12)

This relation expresses the convergence condition for
Ida's formula provided the difference 7(s) Fo (s) does-
not oscillate infinite times for large values of s. The fact
that the convergence condition (3.17) is nothing but
the Goldberger-Treiman relation was first recognized

by Barrett and Barton' in the nucleon-antinucleon
approximation, and then by Ida in the general case. In
what follows it will be shown that the Goldberger-
Treiman relation follows from the convergence condi-
tion in typical models.

Ãucleon-Anttnucleon Pair Apyroximation

If only the nucleon-antinucleon pair is kept in the
unitarity conditions (2.27) and (2.28), E„p(s) and
I.„s(s) satisfy equations of the same form.
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s—p, ~

E.;(s)=42G+
ImE „-(s')

ds' , (3.20)
(s'—w') (s' —s—& )

s " ImL„s(s')
L„y(s)= 2Mgg+ ds'—

s s —s—26
(3.21)

Unitarity: ImE„s(s) = Ltanb(s) $ ReE'„s(s), {3.18)

ImL„s(s) = Ltanb(s) j ReL„„-(s), (3.19)

where tan8 is the ratio of the imaginary part to the
real part of the amplitude for elastic ep scattering in
the 'So state.

Dispersion relations:

consequence of (3.26). It is worthwhile to notice,
however, that in this model the unsubtracted dispersion
relation for F(s) or Ida's formula has not been used to
derive the Goldberger-Treiman relation. Ke may con-
clude from the above illustrations that what is relevant
in deriving the Goldberger-Treiman relation is the
unsubtracted dispersion relations for the form factors
f (s), but not necessarily the assumed unsubtracted
dispersion relation for F(s). In the nucleon-antinucleon
pair approximation considered by Goldberger and
Treiman, the unsubtracted dispersion relation for f„„-(s)
is a consequence of that for F(s) as seen below. In this
approximation vre have

L.„-(s) L.„-(0) L.;{0) 2Mgg

E.s(s) E„s(0) E s(il, ') V2G
(3.22)

In this approximation o(s) and y(s) are given by

Combining unitarity with dispersion relations equations
of the Omnes type are obtained for both E„„-(s) and
L „-(s). If the simplest Omnes solutions are employed
for both form factors, it is immediately concluded that
these two functions diBcr only by a constant factor, i.e.,

v(s) F~(s)—L-s(s) FE-.-—(s)

o (s) E„y(s)

and the convergence condition (3.17) requires

L.g (s) FE„;(s)—
=0

E„„-(s)
or

f„y(s)
lim =0.

"E„„-(s)

{3.27)

(3.29)

(s ~')'~( )s=E-s*(s)E s(s)~-s(s)

(s—~')'v(s) =E-.-*(s)L.;(s)~-.-(s)

so that application of the convergence condition (3.17)
yieMs I.„,-(s)=FE.„-(s), (3.30)

From the argument given in the 6rst model it is easily
seen that the ratio (3.28), before the limit is taken, is a
constant and hence follows the relation

V(s) L-;(o)

o (s) E„;(0) v2G
(3.23)

Ol

f. ()=- 'F[E.s()/( —')j (3.31)

The Model of Ge11-Mann and Others

Gell-Mann and others~" proposed a model in which
C is proportional to the pion 6eld q. The proportionality
constant can be determined with reference to (2.'I), i.e.,

C'= —p Py.
From this equation we immediately 6nd

f-(s) = —~'FLE-(s)/(s —~')j

(3.24)

(3.25)

I. (s)=FE (s). (3.26)

The Goldberger-Treiman relation (3.23) is an immediate

I M. Gell-Mann and M. Levy, Nnovo Cimento 16, 705 (1960}.' J. Bernstein, M. Gell-Mann, and L. Michel, Nuovo Cimento
16, 560 (j.960}."J. Bernstein, S. Fubini, M. Gell-Mann, and W. Thirring,
Nuovo Cimento 17, /55 (1960).

This is the Goldberger-Treiman relation and the
derivation above parallels that of Goldberger-Treiman"
except that the convergence condition (3.17) was used
here instead of (3.13). It should be noticed, however,
that when the integrals in (3.13) are divergent or very
slowly convergent the ratio tends to (3.17).

Therefore, when E„s(s) requires only one subtraction
f„s{s)satis6es an unsubtracted dispersion relation as
postulated by other people"; in other words, in this
approximation the assumption of an unsubtracted
dispersion relation for F(s) made by Goldberger and
Treiman already requires an unsubtracted dispersion
relation for f „-(s) assumed by others. The Goldberger-
Treiman relation is essentially a consequence of the
latter assumption but does not necessarily require the
stronger assumption made by GoM.berger and Treiman.
In order to clarify this point let us insert the approx-
imate formula {3.30) into Ida's formula (3.15). Then
what we get is F=0, which is an indication that F(s)
requires a subtraction in contradiction to the original
assumption. This difBculty has already been pointed
out ln Refs. i and 6 and the necessity of a subtraction
for F(s) was suggested. It has been shown recently by
Ida, ' however, that this difhculty is due to the in-
adequate nucleon-antinucleon pair approximation.

Ke may conclude this section by saying that what is
relevant in deriving the Goldberger-Treiman relation is
the unsubtracted dispersion relations for the form
factors f (s), and we shall explicitly assume it.

FostllateII. The form factors f (s) satisfyunsubtrac-
ted dispersion relations in all channels.
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FIG. 1.The Feynman diagram express-

ing the 6nal-state interaction via exchange
of a x or K meson.

FIG. 2. The Feynman diagram express-
ing successive annihilation and creation
of baryon-antibaryon pairs.

8'

IV. DYNAMICAL THEORY OF FORM FACTORS

In this and following sections a dynamical calculation
of the weak form factors f (s) will be carried out based
on the assumed unsubtracted dispersion relations. In
order to perform such a calculation, however, we have
to know the T matrix for strong interactions that enters
the unitarity condition. In this paper the perturbation-
theoretical expression of T will be employed as an
illustration, and only contributions from diagrams in
Figs. 1 and 2 will be considered.

Furthermore, we shall assume that strong interac-
tions are invariant under R conjugation de6ned by

~+
(pl (-"'l

(e) E=--) kEo ) &—E-) '
(4 1)

Z ~ —Z, A ~ A. , g -+ —z.

H =iGz~x[v2Z+»p E'+2'y4(p E eZ')—
+v2Z y46 E %2Z+y4 '—E+-—
+2'74(~~ E++~'Es)+422 yg E']-
+%4~x[APy4(p E +6 E')

+X'y4( E+—'E')]+Berm. conj. (4.3)

In what follows we keep only the baryon-antibaryon
channels and the only Feynman diagrams contributing

This de6nition is diferent from the conventional one,"
but as far as charge independent interactions are
concerned they are essentially equivalent. This approx-
imate invariance is not necessarily favorable in compar-
ison with experiment, but it will be assumed for two
reasons: (1) to reduce the number of independent
coupling constants, and (2) to study the connection of
symmetry principles between strong and. weak interac-
tions. Then, discarding the four-boson interactions the
interaction Hamiltonian densities for the x- and E-
couplings are given, respectively, by

+~=4GNN~(+'r4&+ 474& ) '&—
+iGz4, (Xy4A+Xy4X) . m, (4.2)

to T are given in Figs. 1 and 2. In incorporating the
requirement of postulate II into the calculation it is
convenient to consider the combinations

D (s)=I (s) FE (s—). (4.4)

ep, AOZ, Z h.o,

The matrices A and 8 are given by

GNNr
0

A= 0
0

0
Gz~ '

0
0

and

0
0
0

(46)

(4.7)

(4.8)

respectively. The constants G are given by

G~y=V2GNN», Ggg= Ggj =Ggg,
Gg~~ = —42GNN» ~

The unitarity condition for D (s) reads

(4.9)

Then postulate II requires the above expressions to
obey unsubtracted dispersion relations. First, the
unitarity condition for D (s) will be derived.

The T matrix normalized by (2.12) is given in the
lowest order approximation by

(B,B(r(B', B')
=(B,B[T'[B', B')

1=A, ~ u(p)i»N (p') 8 (p')iy4V (p)
(p p')'+~'—

1
(p)'~ (W (-)'. (p')'

(p+p')'+~'
where A and 8 are constant matrices connecting various
channels. The E couplings are omitted in the above
formula but their contributions will be included later.
The subscripts 0. and 0.' run over the following four
baryon-antibaryon channels:

u(p)imp(p) ImD (s)=—(24r)4 d'p' d'p' - 1 ip'y+M—
,~'(p+I p' I-')D () ~.— -. . p(p)6

210' 210' - (p p')'+p'-2po

(4.10)
i P'y M—1 — ( iII'7 M —iP'y+M- —

Xi» ip,s(I-)—B.„- u(p)i». (I ) Tr
(p+p')'+~' 2po' 2po'

"S.Okubo and R. E. Marshak, Nuovo Cimento 26, 56 (1963).
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where we have set all baryon masses equal to M. Since
the T matrix has been evaluated in the lowest order, it
is more reasonable to replace Ds(s) by ReDs(s) than
to keep this form. Introducing a transformation of
variables of integration

In solving the equation for D (s) we have to know the
boundary condition at s=0, which is given by

D (0)=L,(0)—FE (0)=f (0)—FG
=2Mg F—G (.4.1'7)

&=p+p= p'+p',
~=(p-p)/2, ~'=(p'-p')/2,

we can write

Pp dp
,~'(p+0 p' p—')"—.

2po 2po
- F

2 / 2 )

Then making use of the formulas

(4.11)

(4.12)

D, (s)=0,
or, by the definition (4.4) we get

L (s) FE (s—)=0.

(4.18)

(4.19)

In terms of the Geld operators this relation is expressed
by

The constants g express the boundary values of the
axial-vector parts.

First, let us suppose that no solution exists for the
unsubtracted dispersion relations for D (s); then the
only possibility is given by

we get

u(p) (ipy+M) = (

ipse—

+M)v (p) =0,
p'= (F/2)+~' p= (F/2)+~
p'= P'/2) —~', p= (&/ 2)—~,

(4.13)

u(p)iso ( ip'y+—M)iso ( ip'p —M)iso—v (p)
= (6—LV)'u(p)iyov(p),

and

Tr/iso ( i@'y—M)iy—o( ip'7—+M)j
2P'= 2s. (4.1—4)

1 (s—4M'
ImD (s) = —

~
P ReDs(s)

16v5 s p

( u' s—4M'+y') q

s—4M' u' /)
ux' s 4M'+ux'—

+&s( 1—
s—43P PK

Inserting these results into (4.10) we get the unitarity
condition. Here the Gnal result will be written down
including the contributions arising from the E-meson
exchange.

i = —pal y. (4.20)

This is exactly the model proposed by Gell-Mann and
others discussed in the previous section. This does not
necessarily mean, however, that the absence of the
solution of the unsubtracted dispersion relations for
D, (s) always leads to this model, but for this model to
be valid a further restrictive condition must be satisGed,
i.e., the equation

(4.21)

must be integrable to give a local axial-vector operator
Aq for the given source term. Gell-Mann and others
looked for models, within the framework of Lagrangian
theory, in which Eq. (4.21) is integrable. In this paper
we shall look for solutions in which D (s) do not
identically vanish.

Equation (4.17) involves axial-vector coupling con-
stants g, and in order to discuss determination of them
we shall introduce new form factors a and b by

(np, (—) ~A), (0) ~0)=u(e)(a„„-(s)iygyo
+b„;(s)(u+p)gyo$v(p), (4.22)

and similar relations for other channels. Then the form
factors f (s) are expressed in terms of a (s) and b (s) by

f (s)=2Ma (s)+sb (s), (4.23)

+28s, (4.15)
S—p,

and

g =a (0). (4.24)

where C p is given by
0
j.C=~~GXN'KGANK

.0

j. 1 0
0 0
p p 1 (4 16)

0,

Therefore, determination of g requires the solution of
the equations for a (s). The unitarity condition for
a (s) can be written down when the scattering ampli-
tudes for the baryon-antibaryon system in the 'E& state
are known. In the present approximation we get

s—4M»~o — ( 2u' 1 f 2u' ' (s—4M'+u') )Ima. (s)= — 2 «a-(s) ~-s( 1— +-I
327r s s — & s—u' 2 Es—4M' 4 u' /)

( 2px2 1 2yx' )' (s 4M'+yx'—
+C.,j

1- +-
~

l
~ I

. (4.25)
s—pro 2 s—4M') E p,x' ]
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The vacuum polarization correction proportional to 8
in Eq. (4.15) does not occur in the above equation due
to conservation of angular momentum in the inter-
mediate states. In deriving the above relation, usc
has been made of the formulas

~1N(p)fuse(p) =o,
N(p)~v ( «p'v—+~) v~v ( ~s'v—~) v ~(p)

=H~ —~')'&1.—2(~—~')~(~—~').ll (p)~v.v~~(P)

Thc solution of tile equation foI' G~($) will enable 1ls to
determine the constants g that are needed in Eq.
(4.1'7) provided form factors u (s) obey unsubtracted
dispersion relations.

In all the existing theories, the form factors u (s) are
assumed to sRtlsfy once-subtracted dlspcrslon 1clatloQS
so that the constants g are arbitrary, but in this paper
R further Rssulnption is made that they also satisfy
uQsubtractcd dlspcl sloIl I'clRtlons ln RccordRQce with
oui' bRslc ideas mentloncd lQ Scc. I. This assumption
will be formulated in R more general form by extending
postulate II.

Postulate /Iu. All the form factors in weak interac-
tions 8Rtlsfy unsubtractcd dlspcrslon 1clatlons.

The standard method to solve coupled integral
equations of the Qmnes-Muskhelishvili type is to
exploit the X/D method, "" but in what follows we

shall solve oQly approximate cquRtlons by R slIQplcx'

method. It is worthwhile to notice in reducing the
equations that Rll the kernels are invariant under R
conjugation and hence commute with the foHowing

Inatllx 8:
0 0 0

0 0 0

Furthermore, strong interactions are invariant under
G conjugation so that the kernels commute with the
following matrix 6:

0 0 0

0 0 0

Presence of such quantum numbers simplihes the treat-
ment of the problem In Eq. (4.1'/) there is a term
proportional to G„which is given by

~&Gear

G ZA.x6 (4.28)
Gx~

It is clear that this vector is R simultaneous eigcnvector
of R Rnd G.

» y. D. Sjorven, Phys. R.ev. I tters 4, 473 (&9')."J. D. Bjorken and M. Nauenberg, Phys. Rev. 121, 1250
(1961).

'~ S. %. MacDovrell, Phys. Rev. Letters 6, 385 (1961).

V. APPROXIMATE SOLUTION

The equations for D (s) and a (s) given in the
previous section are very approximate in nature, So

that they serve only to iHustrate the general prescrip-
tion. In order to simplify the equations a further
approximation is introduced by setting the masses of
both the ~ and Emesons equal to zero; then Kqs. (4.15)
and (4.25) reduce to

1 (s—4M')'"
ImD. (s)= —

~ ~ g RCDp(e)
32~( s

X$2A p+2C p+48 pj, (5.1)
and

1 s—4M') "'
Imo (s)= — --

i P Reap(s)
32~ s

X[~.p+C.pJ, (52)

I'cspcctlvcly. First wc shR11 And the clgcnvcctols of thc
matrices occurring in. the above brackets. In accordance
vrith the assumption made Rt the end of the preceding
section we shall pick up only those vectors satisfying
the equations

Z(e.)=—(e.), G(e.)=—(e.).
There RI'c t%'o llncally lndcpcndcnt clgcnvcctoI'8

satisfying Kq. (5.3), and they are given by

0
0

. —13

0'

82=

.0,'

These two vectors span a two-dimensional vector

'6 M. Kamaguchi and K. NishijiIna, Phys. Rev. 108, 905 (1957).
These authors considered axial-vector interactions even under E.
conjugation to account for the absence of the then unobserved
%—8 Inode of decay.

&(G-)= —(G-) &(G-)=—(&-) (429)

where the parentheses denote a vector. Therefore„we
know that the vectors g and D (0) should, have non-

vanishing components, odd under both R Rnd G. In
general, both vectors are linear combinations of vectors
of different tl'RnsfoxIQRtlon pxopcx'tlcs, Rnd coGlponcnts
of diferent transformation propcY'ties satisfy uncoupled
sets of equations. In what foHows we shaH pick up
only those components of g and D (0) that are odd
undeI' both E.and G conjugations. "This is an additional
assumption which we make in. the present approxima-
tion, but lf Inolc chMlncls, such Rs the thlcc-ploTl
channel, are introduced to improve the approximation,
solutions with wrong transformation properties can be
eliminated by a mechanism to bc discussed later, So
that this assumption becomes unnecessary. This
postulate ls not RQ csscntlal one but lt 18 lntloduccd to
reproduce the results of a more elaborate approximation.



space, and projection of the matrices 2, 8, and C into
this reduced space gives the following representations:

/
—GP 0)A=!

0 G2'

tions requires that only those eigenvectors belonging to
positive eigcnvalues are the accessible solutions. Call
the positive eigenvalues of (5.'7) and (5.8), Xl and X2,

respectively; then the s dependence of the solutions is
given by

4G12 2VZGlg2)

2v2glg'2 2G22 )

C=
0 2VZG2G4)

!
2v2G2G4 0

(5.5)
D (s) ~exp-

42S2 S (S —S—22)

p X, ~s' —4M2y'/2~-
(5 9)

(162 s'

where

Gl '&2/'x y G2 GZ/Lw y G2 GENK 1 G4 G/WK ~ (5 6)

Therefore, in this two-dimensional reduced vector space
we get

a (s)~exp-
4sr s'(s' —s—ie)

( X2 )s' —4M' '/2'-
t»-1!

! !, (5.10)
&32~& s' )

—7G12

2'(2gl G—2+G2G4)

g2—A —C=!
5—2%2GSG4

The eigenvectors of these matrices should satisfy
decoupled Omncs equations, and the absence of subtrac- with

respectively. The subscripts I and 3 to X stand for the—292(2glg2+G2G4) 'So and 'I'~ of the baryon-antibaryon system. The
posltlvc cigcnvalucs and thc corresponding cigcnvcctors
are given by

~,=-2'[—7G12—5G,2

—2v2G2G4)
(5.8) +((7GP—5G,')'+32(2G,G,+G,G,)')'/'j,

G 2 G 2+ ((G 2+G 2)2+32G 2G 2)l/2

D (0)= (2Mgg 42FG1) (el+—cle2),

7G 2 5G 2+[(7G 2 5G 2)2+32(2g g +G G )2jl/2

4%(2G1G2+G2G4)

Next, the above results will be combined with

with

C3=

g =/2 (0)=gg(el+c2e2),

G '+G '—[(G '+G ')'+32G 'G j"'
4V2G2G4

and
(5.11)

D„(0)=2Mg —FG

(Glel+ G2e2)

(4.17)

(5.13)

Since three two-dimensional vectors D (0), g, and G
are linearly dependent, we can determine the constant

X~ is positive only when F in terms of other parameters.

G2G4 f35)'"

G1G2 (8 ~

G2—%2glc2
2M' —42FGg= —F. (5.14)

This restriction arises from the fact that the vacuum-
polarization contribution in (5.7) expressed by the
matrix 8 gives a strong repulsion and in order to over-
come this repulsion the nondiagonal matrix elements
have to play an important role in providing a strong
attraction. In fact, in the nucleon-antinucleon approx-
imation considered by Federbush, Goldberger, and
Treiman, "there is no positive eigenvalue.

"P. Federbush, M. L. Goldberger, and S. B. Treiman, Phys.
Rev. 112, 642 (1958), see Appendix 3.

It is extremely important that due to R-conjugation
invariance all three vectors above become essentially
two dimensional and only onc constant F is determined, .
Should the E invariance be invalid, wc would in general
get more restrictions on the choice of parameters. This
is one of the reasons we dropped solutions even under E
conjugation. It is clear now that the so-caBed Gold-
berger-Treiman relation holds when and only when the
right-hand side of Eq. (5.14) is very small as compared
with V2Ii Gl.
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%hat is remarkable here is the fact that we can get
another equation to determine Ii in terms of other
parameters with the help of Ida's formula (3.15). The
results obtained in this section are based essentially on
the convergence condition that is independent of Ida's
formula,

Finally, it should be mentioned that unsubtracted
dispersion relations are more easily satisfied by the
axial-vector form factors a (s) than by the pseudoscalar
from factors D (s) as seen from the presence of a
restriction (5.12) for the latter, which is a justification
of postulate IIa introduced in this paper.

Thus the Ida formula is given by

1 " 1(s—4M2~ '~2

F= yZG, +c,G,) ds-(
4lr 42r' s E s

dS

)((2Mg~ v2FG—1). (6.5)

Since the Goldberger-Treiman relation requires

2$ s' —4M'~ '~'~
Xexp — tan 'i

42r' s (s —s) (162r s J

VI. APPLICATION OF IDA'8 FORMULA Xl/162r((1 (6.6)

1 " ds(s —4M' "' 2s " ds'
(6.1) —

~
exp-

42r 4M' S ( S 7r 42r~ s (s —s)(s—1 ')'

In order to apply the unsubtracted dispersion relation as we shall see soon, it wiij. be assumed to iurtner
for F(s) to the solution obtained in the preceding section
we shall exploit Ida's formula (3.15). For this purpose

approximate 6.5 . %ith t e assumption 6.6, the
integral in 6. is simp e and is given bythe following expressions will be evaluated 6rst:

1 [s(s—4M')]"'
(s)=- 2 I&-(s) I',

2

y(s) —Fa (s) =
1 [s(s—4M')]'"

2 &-*(s)D-(s). (62)
82r2 (s—112)'

(Xt»-I --
~ ~

=—.(6.V)) )
The vector IC (s) has two components, one parallel to
D, (s) and the other orthogonal to D (s).The component
orthogonal to D (s) is an increasing function of s, and
the parallel component being proportional to D (s) is a
decreasing function of s. In the expression (6.2) only
the decreasing component of E (s) contributes to the
scalar product with D (s). Inserting the solution for
D (s) into (6.2), we get

v(s) —F~(s)
1 [s(s 4M2)]'l2-

(2Mg~ v2FG1) (1(ZG1+—clG2)
42r2 (s—p2)'

2$
g exp—

8$

s'(s' —s)

t
4(s' —4M2) '12q-

y tan-'i —
i i i (6 3)

(16& s' & )

p' 1 [s(s—4M')]'i'
=1+ ds— QG 2

s 82r2 (s—122)2

(~)2 G 2

=1+—
I

—
I ~

(64)

In evaluating the denominator in Ida's formula we
shall use perturbation theory to show that the second
term in the denominator .is small as compared with
unity.

p
1+ —0 (s)ds

Then Eq. (6.5) reduces to

2Mgg V2FG1=— p.
2(VZG1+clG2)

(6.8)

The Goldberger-Treiman relation is obtained from (6.8)
by dropping the right-hand side, which is consistent
with (6.6). It is interesting to compare (6.8) with
(5.14) since combination of them gives

t"2—V2csGg

2(%2G1+clG2) c2—cl
(6.9)

All the parameters involved in this equation a,re
expressible in terms of strong coupling constants, so
tlla't Eq. (6.9) cxpl'csscs all clgcllvaluc 1'cstl'lctloll

imposed on the choice of the fundamental parameters in
strong interactions. Remarkable results here are that
the weak interactions are completely determined,
except for the over-all normalization, by strong inter-
a,ctions and that the presence of weak interactions
alone imposes eigenvalue restrictions on the strong-
interaction parameters. In other words, strong and weak.
interactions are controlled by each other and their
structure cannot be discussed separately.

It is a very interesting problem to solve the eigenvalue
equation to determine one coupling constant assuming
others, but we shall not try to do it in the present paper
since the solution of the eigenvalue problem is extremely
sensitive to the approximation employed. First, in
deriving the eigenvalue equation, low-energy behavior
of the solution of the integral equation is important, but
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& =sGrvrr (&V& ="V~—)~~, (6.10)

then this interaction modi6es the bracket in Eq. (4.15)
by an additional term

s—2M' s—4M'+p, ')
ln

~
s—4M'

(6.11)

and it also changes the bracket in Eq. (4.25) by

s—s+i s—2M'+p '
s 4Ms)—

(s—4M'+p„')
)&1n~ ( . (6.12)

)

These terms dominate other terms in the brackets at
high energies, at least, in the present approximation.
Of course, one should be reminded, of the possible
damping of these terms at high energies due to vertex
corrections. At any rate it is extremely hard to derive
a reliable eigenvalue equation which vre can work vrith.

VD. NATURE OF THE EIGENVALUE PROBLEM

One of the most important achievements attained in
this paper is the derivation of the eigenvalue restriction.
It has been knovrn for some time ' hovrever, that the
assumption of unsubtracted dispersion relations alone
is not sufEcient to get this restriction so that one has to

"M. Baker arrd F. Zachariasen, Phys. Rev. 119, 438 (1960).

the approximation employed in Sec. V is good only at
high energies since those terms in Eqs. (4.15) and (4.25)
neglected in writing down Eqs. (5.1) and (5.2) give
important contributions at low energies. Second, the
contributions from vector mesons have been completely
neglected in this paper. If the vector mesons should be
responsible, at least partly, for the hard core in nuclear

forces, their contributions at high energies should not be
overlooked. In order to illustrate the effects of vector
mesons on the present problem, let us consider the
contributions of the au meson. Assuming that the co

meson is odd under R conjugation, vre shall vrrite dovrn

the follovring interaction of the eu meson vrith baryons;

Gnd a reason, case by case, why the eigenvalue restric-
tion is obtained. Therefore, we shall recapitulate the
arguments leading to the eigenvalue restriction in the
tvro already discussed cases of nonleptonic decays of
hyperons and of x—p decay.

In the former case vre dealt with vertex functions
corresponding to

(7.1)

There are diferent vrays, hovrever, to dehne form
factors according to the choice of the particle to be put
o6 the mass shell. In the integral equations di6'erent
types of form factors are coupled through unitarity and
as far as the integral equations are concerned these
vertex functions appear as completely independent
objects. The eigenvalue restriction arises from the fact
that diferent types of form factors must be equal vrhen
all the three particles are on the mass shell.

In the x—p decay problem the eigenvalue restriction
arises for a di8erent reason. An important point is that
the axial vector operator A), is not irreducible but has a
pseudoscalar component 8),A), so that we get Eq.
(4.17). The ratio of the components of D (0) is deter-
mined by the strong inal-state interaction of the
baryon-antibaryon system in the 'So state, vrhereas
that of g is determined by the interaction in the I'~
state. Thus Kq. (4.17) renders determination of the
constant Il in terms of other parameters, and the
assumed unsubtracted dispersion relation for F(s) gives
another expression of F in terms of the other parameters.
Then a consistency requirement is given, in the form
of an eigenvalue equation, that the tvro expressions for
P be identical.

There are a few further remarks deserving emphasis.
The restriction brought about by Eq. (4.17) is really a
very strong one, but ln the approximation employed ln
this paper vre could easily adjust the parameters so as
to satisfy Kq. (4.17). This is because both D (0) and

g can be formed by superposing two vectors e~ and e2,
but in general more independent vectors might be
needed to express D (0), g, and G, if the E invariance
were not valid. This means that the restriction of the
theory by Eq. (4.17) is so strong that more than one
constant can be determined after all. The restriction
other than the eigenvalue condition (6.9) did not
appear explicitly in the present approximation since
the other condition is automatically satisfied by the
assumed E invariance for strong interactions. This
suggests that the existence of the solution of the problem
of weak interactions requires some symmetry higher
than charge independence in one form or the other.
From the discussion abave, it is clear that the situation
is completely diferent for conserved vector and
pseudoscalar couplings. For the former, the scalar part
is absent so that the 6nal-state interactions are relevant
only in the 7=1 states, vrhile for the latter only J=o
is relevant. In either case only one value of the angular
momentum enters the 6nal-state interactions.
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Pseudoscalar Coupling

It has been pointed out already by Ida that an
unsubtracted dispersion relation for F(s) is unlikely
for the pseudoscalar Fermi interaction. Because of the
importance of this question his argument will be
repeated here.

Let us start from the following effective Hamiltonian
or the 5 matrix:

P~=iC'f„(i—y~)P„+Herrn. conj.

Then introduce

and other formulas corresponding to the axial-vector
case, in particular, the formula

Ida's formula in this case is given by

1+ dso (s)

In this formula the second term in the numerator is as
divergent as the pion self-energy and it is very unlikely
that this divergence is cancelled by the first term.
Therefore, it seems reasonable to assume that the func-
tion F'(s) requires at least one subtraction. Further-
more, we do not get any eigenvalue restriction in the
same approximation as we employed in the axial-
vector case. The presence of the pseudoscalar coupling
thus contradicts our basic assumption that all the weak
amplitudes are governed by unsubtracted dispersion
relations.
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