
P H YSI CAL REVI EW VOLUME 133, NUM 8 ER 4B 24 FEBRUARY 1964

The Uncoupled Phase Method for Interactions with Hard Cores*
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A system of e strongly coupled, two-body channels may be sufhcient to describe a given set of reactions.
A theoretical calculation on the other hand, might completely neglect one of these channels. The uncoupled
phase method (developed by Ross and Shaw) is a nonperturbative formalism (based on a potential model)
relating the "uncoupled" scattering amplitudes describing the e—1 channels to the actual amplitudes for all
e channels. We demonstrate in this paper that the uncoupled phase method remains a quantitative procedure
over a wider range of conditions than originally anticipated. The method is derived for interactions with
hard cores. By performing a two-channel computer experiment, the method is seen to be quantitatively
accurate for Yukawa interactions with hard cores; this holds for P-wave as well as s-wave orbital angular
momenta, and in the case that one of the channels is closed as well as when both are open.

I. INTRODUCTION The relation for the two-channel problem is

N many important physical situations, a set of n
- - strongly coupled two-body channels (some of
which may be closed. in the energy region of interest)
are sufhcient to describe the scattering processes. Often
dynamical calculations ignore one of these cltalnels
(say the rtth channel) e.g., theoretical calculations of
pion-hyperon scattering neglecting the kaon-nucleon
channel. ' However, the neglected channel, even if it is
closed, may be quite important in the actual scattering
process, and one must have a nonperturbative way of
handling it. On the other hand, one may be quite justi-
fied in neglecting a particular channel, but one needs
at least a semiquantitative criterion.

The "uncoupled phase method" is a formalism de-
veloped by Ross and Shaw, ' ' relating the "uncoupled"
scattering amplitudes4 describing the e—1 channels to
the actual amplitudes among all e channels. The un-
coupled phase method was based on a model of an
re Xn potential matrix Hr (with elements H,;) coupling
the n channels which would yield agreement with ex-
periment. These strong interactions were assumed to
have a short well-defined range, and no hard core. In a
nonperturbative manner, relationships were derived
between the uncoupled and actual amplitudes. These
relations can accommodate large modifications of the
uncoupled phases due to the presence of the nth
channel (as in the case of the s-wave ItiV reactions
where the formalism was applied' ).

(&st' —Ktt') (&ss'+I-) =&ts", (1.1)

where the E' matrix is normalized so that for the
familiar one-channel problem E' equals the tangent of
the phase shift divided by the threshold momentum
dependence, K11' is the uncoupled E' matrix element in
channel 1 and I. is related to the range of interaction in
channel 2. Relation (1.1) was tested' in a computer ex-
periment and found to be very accurate: For given
"kinematical" conditions, the strengths of the inter-
actions H,s and hence the K,t and K»' found by solving
a two-channel Schrodinger equation, were varied over
a very large range; the quantity I. as determined from
(1.1) was found to be (a) essentially independent of the
E;, and (b) closely related to the range of interaction.
The test described in A was quite limited however, in
that the Hg were equal-range square well potentials and
the particles in each channel were in a relative s wave.

The object of this paper is to demonstrate that the
uncoupled phase method remains a qluntitative pro-
cedure over a wider range of conditions than originally
anticipated: We derive, in Sec. II, the uncoupled phase
relationships LKqs. (4.10) and (4.11) of 8] for inter-
actions containing hard cores.

By performing a two-channel computer experiment,
we show in Sec. III that the uncoupled phase method
is quantitatively accurate for Yukawa interactions
with hard cores; for p-wave as well as s-wave orbital
angular momenta; and in the presence of a closed
channel. We compare the uncoupled phase method with
other methods which include the neglected channel as a
perturbation and thus have a much more limited range
of validity. Possible applications of the uncoupled
phase method are mentioned. (See also Ref. 5.)

The uncoupled phase method can be extended to the
relativistic problem by considering a set of e coupled
E/D equations. The resulting relationships are exactly
analogous to those derived from the potential model
considered here. This relativistic treatment will be
presented in a future publication. '

*This study was supported in part by the Air Force Ofhce of
Scienti6c Research Grant AF-AFOSR-62-452. Computer time was
supported by NSF Grant No. NSF-GP948.

' M. Nauenberg, Phys. Rev. Letters 2, 351 (1959);J. Franklin,
Proceedings of Midwest Conference on Theoretical Physics, p.82,
1962 (unpublished).

2 M. Ross and G. Shaw, Ann. Phys. (N.Y.) 9, 391 (1960).We
shall refer to this paper as A.

3 G. Shaw and M. Ross, Phys. Rev. 126, 806 (1962). We shall
refer to this paper as B.

' The uncoupled amplitudes (or phases) are de6ned to be those
that would exist if the couplings to one of the channels were to
vanish while the interactions among the e—1 channels remain
unchanged.

' M. Ross and G. Shaw, Phys. Rev. 115, 1773 {1959);Bull, Am.
Phys. Soc. 5, 504 (1960); G. Shaw and M. Ross, Phys. Rev. 126,
814 (1962). ' P. Nath and G. Shaw, Bull Am Phys. Soc. 8 626 (1963)
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IL EXTENSION OF UNCOUPLED PHASE METHOD
TO INTERACTIONS %9TH HARD CORES

Consider a system of e strongly coupled two-body
channels in some particular partial wave labeled by a
set of eigenvalues y of the constants of motions I', such
as J, J„parity, isotopic spin, etc. For simplicity in the
derivation, we assume that all e channels are open; the
results are independent of whether a channel is open or
closed, . The elements of the ega potential matrix III
producing the scattering among the e channels in the
partial wave y-contain hard cores:

H;;=+ ()0, r&r„
H;;=V;;(r), r&r„

where the V; s are strong potentials of short well-

defined range. We work at a axed energy (and par-
ticular y) and thus make no restriction on the energy
(or spin) dependence of these interactions. Using the
same notation as in B, the symmetric, real (when all
the channels are open) E matrix for the yth partial
wave can be written as~

The second term on the right-hand side of (2.g) causes
no trouble since II@ is 6nite for rgr, . In the first term
we have

P; "(r)=0, r&r. (2.9)

where H;; (r) in this region is + 0(). As is usually done, '
we make the substitution

H, (r)P; &(r)=)g"b(r r,)—r&r, . (2.10)

The &'s are determined by the relations (2.9). The
integral equations for P;p is

r"dr'G; (r,r')

XZ H;.)I';:("), (2.11)

where

G;(r,r') = —2p;j&,.(k r()rii,.(k,r)), (2.12)

and r» and r& are the smaller and. larger of r and. r', re-
spectively. Now substitute (2.10) into (2.11) and use
(2.9) to obtain for r, & r,

ff"s= 26v')"—'(4'»rA "& (2 2) O=bgjg, (k,r.)+r 2.G;(r„r,) Q )),;;"

p;= k;N, (2.3)
r'drG;(r„r) g V; )I; &

k; being the momentum and. ~; the reduced. energy in
the center-of-mass system in channel i. Both P; and

fP are 1Xn column matrices. (f); is the yth partial wave
of a plane-wave incident in channel j:

(2.4)

where the Q's are normalized eigenfunctions of the
operators I" in the partial wave y and l; is the orbital
angular momentum in channel i. f&, the actual wave
function satisfying the principal value boundary con-
dition is given by

The radial functions g;; go into the irregular spherical
Neumann functions eg,. outside the range of forces':

go~ ii(4r) (2 6)

E' is normalized. such that for the owe-channel problem

E=tan5, (2.7)

where 5 is the usual (real) scattering phase shift.
Substituting (2.4) and. (2.5) back into (2.2), we

divide the rad. ial integration into two regions:

Thus using (2.10) and (2.13) we can rewrite (2.g) as

ji, (k,r,) ();s
&v= —2(u'~ )"'

rii, (k,r,) 2)();

ji,.(k,r,)+2 (i i;(&~) 'ni. (ag))—
ni,.(k,r,)

XV; P;„~r2dr . (2.14)

j(,(k;r,)/n —(, (k,.r,)=K,'. (2.15)

is the single-channel hard-sphere E-matrix element,
and introducing

s;= $j (,.(kg)+Z,'Ni, (k,r)j, .(2.16)

or

2r.'p,~i, (k,r,) p y;; =b;—2p,

X r'dpi, (k r) p V;„p,.„~. (2.13)
fry

K;=—2(was)'I' Z
m - 0

ji,(ky)H; f; "r'dr.

E"=E'8;—2(p;p )"'g s, (r) V;„f;„"r'dr. (2.17)

+ j i, (k r) V;„p&„"r'dr . (2.8).
We observe the interesting result, which holds in

'Ke use units k=c=m =j..
8 These I's are the negative of the usual ones.

' See, e.g., K. Brueckner and J. Gammel, Phys. Rev. 109, 1023
(1958).
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e
relations derived in A and 8 remain unchanged in the
presence of interactions with hard cores. In this section
we shall demonstrate that these relations are quanti-
tatively valid for a variety of conditions by solving
numerically a set of tvro coupled Schrodinger equations.
Similar calculations have been described in A for the
restricted case of square-vrell potentials and zero orbital
angular momenta. The present calculations consider
Vukavra interactions with hard cores for l=0 and j..We
have also investigated the case vrhen one channel is
closed, as vrell as that vrhen both channels are open.

Let K~~' describe the scattering in channel 1 when wc
set Hls ——0 (with II11 remaining unchanged). Then the
uncoupled phase relation (2.23) is

E;;=——E 6;,+I l'Je&'+ Q J;„''E„f, (2.18)

('?.19)J; '=2(p, py)'&s s;V; g; r'dr,

I '=2(p p)" s V "j l r'dr/J '' (2.20)

Defining uncoupled quantities (printed in boldface) as
those vrhich would exist if there were no coupling to the
eth channel, the interactions among the e—1 other
channels remaining the same, vre have for i, j&N (Ell' —Kll') (Ess'+L) = (Els')'.

general, that if IIr consisted of hard cores alone, the E and nonvanishing across any of the I thresholds. We
matrix mould be Chagoeal. note that the derivation of (2.23) and (2.24) is inde-

Eq. (2.17) is the desired modified form of (2.2) from pendent of (2.22b).
vrhich the uncoupled phase method can be derived
exactly as in the no hard-core situation considered in 3: IIL TWO-CHANNEL COMPUTER EXPEMMENT
SUbstltutlng (2.5) into (2.17) wc have B linea, ln-

Wc have showll 111 Scc yy that thc UQcouplcd phomogeneous equations relating the E; s: 0 ~

—K,;=—E;6;;+I;;J; + P J;„K„;. (2.21)

Since the g; have their value and derivative nor-
malized independent of the interactions outside the
interaction region, we ad.opt the approximations (a) that
the J; & are insensitive to the details of the g; well
inside the range of forces so that both the boMface and
superscript notation for J and I can be dropped, and
(b} that I;; is independent of i Thus.

There are two alternative forms of (3.1) which are more
useful in some situations. ' We de6ne a complex scatter-
ing length ie chawnel Z, u(k). (See B.)

(ks)"s+' cot5s —=—1/a.

Here 82 is the complex phase shift for channel 2. Equa-
'tloll (3.1) ma)r 'tl1ell be wllttcll

tan-'Ell ——tan-'Kit+tan-'fXm g/(Re u —I}) (3.2)

or

Furthermore, we expect that a range R„' exists for
which wc can write

jl (k„R ') (R„')""+'
(2,22b)

nl„(kj? ') (2l„+1)!!(2l„—1)!! II;l(r) =+~,
(3.4)

(2 22R) tan (kl /All) = tRQ Kll+ tan

XDm 1/. (R..1/o —I;1)-lj (3 3)

vrhere the j!Imatrix is the inverse of E'.
We perform the numerical test of (3.1) in the follow-

ing manner. The interaction is a 2&2 matrix of the form

E;„'
E„„'+I.)

E; —K;(
deti

Vc;.'
(2.23}

and —', (n —1)(I—2) relations for i,jWrl

E; —K;f'
=0, (2.24)

E, —K;(
E; —K;,'

det
E; K;—

vrhere the E =k, &"+~'EC; k &'j+'& are real, continuous,

where the latter applies for small k„.
Subtracting (2.21) from (2.18) and using (2.22a), it

then follows as in B that there are —,'(rl' —e) uncoupled
phase relations (corresponding to the number of un-
coupled K matrix elements) which can be expressed as
the vanishing of 2&2 determinants: e—I relations for
jhow

=V@, r&r, .(«)
The two-channel Schrodinger equation, ~

ds E;(3~+1)
I

—+
drs rs

s—k*' Ilt'(r)+2p* Z II'A~(r) =o (3 5)
j~J

where p.; is the reduced mass" in channel i, are solved
by numerical integration" to determine the matrix

'o In some of the situations investigated, one or more of the
particles was relativistic. In these cases, @re employ the modi6ca-
tion of L. Fonda and R. Newton [%novo Cimento 14, 102/
(1960)j who replace p; by the reduced energy co; and relate k; to
the energy relativistically.

»%e use the Noumano8 method. See J. J. depart and
C. Dullemond, Ann. Phys. (N. Y.) 16, 263 (1961).



TAsr.z I. 5-wave case (Ref. 7). Range n of Yukawa potential is 1.0 and core radius r, =0.2. Masses in channel 1 are 4.0 and 4.25
while in channel 2 they are 4.0 and 4.5. Total energy is 8.6 corresponding to k~ = 1.214 and k2=0.654.

1.56
1.55
1.55
1.57
1.42
1.42
1.57
1.57
1.52
1.53
1.58
1.61
1.31
1.38
1.30
1.32
1.40
1.34

0.225
0.773—0.143
0.156
0.041
0,018—0.012—0.149—0.055—0.051—0.195—0.194
0.365
0.335
0.460—35.620

43.370—28.216

—0.111—0.111—0.204
—0.204

0.032—0.073-0.157—0.157—0.064—0.134—0.204—0.194
0.081
0.081
0.184
0.081
0.082
0.184

Ima

Reu —I
0.42
1.22
0.07
0.45
0.01
0.11
0.17
0.01
0.01
0.10
0.01
0.00
0.33
0.29
0.29

13.31
8.50
5.19

0.81
0.48—0.38
0.44

10.59—0,06
1,03—23.50—2104.89
1.06
3.23—5.26
0.35
0.84
0.74—0.03
0.02—0.04

—9.02—9.02—4.90—4.90
31.37—13.64—6.35—6.35—15.65—7.45—4.90—5.13
22»33
12.33
5.44

12.33
12.33
5.45

Iml/a

2.02
4.04
1.64
9.10
0.07
7.16
1.75
0.14
0.08
1.59
0.68
0.01
2.46
1.17
1.03

14.20
8.89
5.26

—0.443—0.529—Q.114—0.566—0.013—0.159—0.241—0.015—0.014—0.142—0.016—0.001—0.337—0.282—0.252—0.006—0.007—0.003

Rcc

0.513
1.120—0.058
0.338
0.207—0.004
0.200
0.117
0.205
0.110
0.024
0.114
0.287
0.432
0.449
1.316
1.395
1.341

—0.392—0.623
0.038—0.231—0.205
0.008—0,204—0.120—0.206—0.118—0.028—0.115—0.138—0.317—0.308—1.582—1.017—1.440

0.626
0.904
0.310
0.707
0.104
0.361
0.446
0.112
0.107
0.229
0.119
0.022
0.576
0.520
D.522
3.083
4.048
1.657

elements E' and Err' to an accuracy of about 1oro. First
we 6x the "kinematical conditions, " i.e., masses of the
particles in channels 1 and 2, total energy, orbital
momenta (we consider lr ——lz ——1=0 or 1), and in addi-
tion, the core radius r, and range of the Yukawa force n.
Then (3.5) are solved for many different sets" of V;;
and E;/ and Krr' determined for each set; the quantity
I. is calculated by means of (3.1).

Typical results are given in Tables I and II. Over a
wide range of potential strengths" L is found to be both
a constant and a measure of the range of the inter-
action. Calculations similar to those presented in
Tables I and II were performed with different values of
the masses, n and total energy (in particular, when

channel 2 was closed) and entirely similar conclusions
drawn.

Two roeak coupling approximations" to obtain the
scattering are sometimes made. These are: (1) neglect
of the second channel in E;Ett'=Krt' and, (2) neglect
of the second channel in M—= (E') '; 3ftr=Mrr.
Method 1 is expected to be a valid approximation when
l
Im a/(Re a I.) l is small (com—pared to 1)and method 2

when
I Im(1/a)/t:Re(1/a) —I. '3

l
is smail These con-

jectures are substantiated by the numerical results.
(See Table I.) In particular, the last three entries in
Table I dramatically demonstrate that a small

l
Im a/Re al and hence a small inelastic cross section

is not a sufhcient condition for the validity of either of

TanLE II. I'-wave ease (Ref. 'I). The masses, energy, range a, and core radius r, are the same as in Table I.

1.14
1.03
0.99
1.19
1.16
1.12
1.09
2.07
1.03
0.91
0.90
1.04
0.99
0.94
1.15
1.08

+11

0.692
1.041
1.223
0.054
0.068
0.083
0.097
0.105
0.342
0.422

-2.106
0.302
0.364
0.437
0.676
0.227

0.009
0.044
0.054
0.014
0.027
0.039
0,051
0.054
0.090
0.090
0.090
0.054
0.090
0.126—0.003—0.003

Im 8

Re u —I.
1.19
1.55
1.70
0.07
0.07
0.08
0.08
0.08
0.41
0.53

10.06
0.41
0.44
0.47
1.17
0.41

—Q.23—0.52—0.61—1.16—2.09—3.14—4.44—5.23—0.57—2.39
-0.71—1.06—1.20—1.14—0.24-1.77

112.33
22.30
17.42
67.95
37.66
25.86
19.57
27.41
11.05
21.05
11.05
17.41
11.05
7.93—393.71—393.71

Re 1/a —I;~

8.72
4.87
4.30
1.63
0.94
0.66
0.51
0.46
6.72
1.04
4.51
2.16
2.43
2.78
7.24
1.00

—0.637—0.617—0.604—0.087—0.092-0.097—0.102—0.105—0.384-0.565—0.109—0.439—0.433—0.424—0.662-0.53&

0.606
0.630
0.636—0.045—0.084—0.124—0.164—0.185
0.094—0.163
0.912—0.018
0.011
0.041
0.589—0.225

0.181
0.521
0.688
0.054
O.D94
0.127
0.183
0.204
0.141
0.589—1.324
0.256
0.270
0.291
0.181
0.441

0.948
1.258
1.397
0.221
0.228
0.236
0.242
0.247
0.542
0.704
0.962
0.556
0.586
0.618
0.931
0.591

"Ke have considered potentials strong enough to have deep bound states as AH as those with weak bound states and no
bound states at all. The ratios of the diagonal to nondiagonal elements Vn/Vu, Vss/Vis have been allowed to vary over the
range 0 to 10. See also footnote 24.

"An even more crude approximation than 1 or 2 is to assume that the transition amplitudes are equal p»' —g»'.
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the weak coupling approximations 1 or 2. It is also clear
from the tables that neither of these approximations is
valid under as wide a range of interaction strengths as
Eq. (3.1).Indeed, the total variation" in L is seen to be
&+15%.

We turn now to a discussion of L and its dependence
on the range of the potential and the hard-core radius.
Very roughly, L=n for s wave and L=n'/3 for P wave, r

as is expected from (2.22b). To determine the de-
pendence of I.on r„ the hard-core radius, we 6rst 6nd
an average L (for a variety of potentials V;;) for a given
hard core. This is repeated for different hard cores. The
results are shown in Fig. 1.The width of the band indi-
cates the extent to which individual cases (specific
choices of V;;) departed from the average value of L.
The other kinematical conditions; masses, energy as
well as the Yukawa range u, are held 6xed in these
results. Simple effective range arguments suggest the
relationship L=L,„D+2r, for s wave. From Fig. 1(a)
we see that this is approximately satisfied. On the other
hand, p-wave scattering is less sensitive to a short-
range repulsion; effectively, this means that L,„,, is
a constant for most cores of physical interest (r,&0.3).
In general, in a complicated problem, we expect E„'
(see Eq. (2.22b)] to be of the order of magnitude of
the effective range. "

We envision two uses for the uncoupled phase
method: (a) All the relevant cross sections are experi-
mentally measured (at a particular energy) and hence
the e&&eE' matrix is known. The relations (2.23) and
(2.24) along with an estimate of L (see the discussion
above) allow the uncoupled K' matrix to be calculated.
This K' may then be compared with a K' determined
from a simplified theoretical calculation which neglects
one of the channels. (b) Due to experimental difEculties
only one of the channels (the nth one) is available as an
incident channel so that only the complex scattering
length and the production ratios into the other channels
can be measured. From these n experimental quantities
and a theoretical estimate of the i2e(e —1) uncoupled.
K' elements which neglect this eth channel, the
~~e(e —1) uncoupled phase relations (2.23), (2.24)
allow us to determine all the -', n(n+1) E' matrix
elements. See Ref. 5 where this is explicitly worked out
for the two- and three-channel cases and applied to

"Equation (3.1) is well satisfied even for cases in which there
is a shallow bound state present (either in the coupled or un-
coupled solutions). On the other hand, cases which do not satisfy
this equation at all well appear to have VI~ so large that with
VII= V2~=0 and V12 unchanged, there are several bound states
present.

"For a discussion of the multichannel eAective range theory
see Ref. 3.
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Pre. 1.Plot I.versus hard-core radius r, for a wide class of dif-
ferent potential strengths with the same range 0.. The computer
results for I are contained within the shaded region. Masses in
channel 1 are 4.0 and 4.25 while those in channel 2 are 4.0 and 4.5
(Ref. 7}.The total energy is 8.6 corresponding to kI-—1.214 and
k2 =0.654.

s-wave XE scattering. Here the XE complex scattering
lengths determined from experiment are used in equa-
tions similar to (3.2) to correct theoretical pion-hyperon
E-matrix elements (which neglect the EE channel) for
the presence of the strongly coupled EE channel.

Our general conclusions are: The uncoupled phase
relationship (2.23), (2.24) is well satisfied by a large
class" of hard-core, Yukawa interactions. This is true
both above and below threshold and for various core
radii. In particular, the uncoupled phase method holds
in many cases where the neglected channel cannot be
included as a perturbation. The parameter I may be
estimated roughly in terms of the effective range and
is not strongly dependent'4 on the potential strengths.


